
SHAMASH. An AI Tool for Modelling and Optimizing Business Processes

David Camacho, Ricardo Aler, Daniel Borrajo
Universidad Carlos III
Avda. Universidad, 30

28911 Leganés (Madrid). Spain

Almudena Sierra-Alonso
Universidad Rey Juan Carlos

Tulipán S/N
Móstoles (Madrid). Spain

Abstract

In this paper we describe SHAMASH, a tool for modeling
and automatically optimizing Business Processes. The main
features that differentiate it from most current related tools
are its ability to define and use organisation standards, and
functional structure, and make automatic model simulation
and optimisation of them. SHAMASH is a knowledge based
system, and we include a discussion on how knowledge ac-
quisition did take place. Furthemore, we introduce a high
level description of the architecture, the conceptual model,
and other importants modules of the system.

1. Introduction

Current organisations need a continuous and dynamic re-
organisation of their processes to allow them to be more effi-
cient. The principal aim of Business Process Reengineering
(BPR) is to design techniques to allow simulate and check
differents set of processes that could be improve its own or-
ganisaton [6]. This task can be accomplished manually or
by using modeling tools. Currently there are many sophis-
ticated modeling tools that help organisations on making
their processes more efficient by allowing to graphically de-
sign process models and simulate them [7, 8, 12]. However,
although these tools are very sophisticated, current technol-
ogy can be pushed even further by automatically optimising
and simulating the processes [13] and allowing to explicitly
represent the standards that constrain processes [11].

Artificial Intelligence (AI) has been very successful on
both, representing knowledge, which is needed for defining
and using organisation standards, and optimising models.
There have been already some approaches to apply AI to
BPR such as ontology definitions [4, 16, 18], planning [9],
multi-agent systems [5]. With respect to representing or-
ganisation standards, there is a lot of related work on com-
puter systems for legal support, that require to represent
laws using different techniques like Case-Based Reasoning
(CBR) [1], ontologies [15], and also reason automatically

about them [2, 17].

In this article we presentSHAMASH, a tool for modeling,
simulating and optimising business processes.SHAMASH

shares some of its capabilities with other BPR tools, like
offering an interface for process modeling, simulating these
processes, and exporting processes to WPDL (Workflow
Process Description Language). But it also has some char-
acteristics which are not found in other existing tools. In
particular,SHAMASH is able to automatically improve an
existing model by using AI optimisation techniques. It
also permits to define organisations and process standards,
which are used bySHAMASH to automatically validate
user process models. Another remarkable characteristic of
SHAMASH is that it offers a powerful language to describe
rules for the system, and also a specially built inference en-
gine to manage them. Most of the knowledge required in the
system can be represented by means of such rules. For in-
stance, the knowledge required for optimising, for describ-
ing the behaviour of activities during simulation, and to de-
fine the standards, can all be defined by using rules. This
makesSHAMASH an extensible and customisable tool. Fi-
nally, the tool allows to export the graphical representation
of processes and standards into a text version (actually, html
code is produced). In some organizations, processes are de-
livered in a mixture of graphical and text representations,
resulting in consistency problems. The text generator al-
lows to maintain the coherence between the graphical and
text versions.

This article has been structured as follows. First, the
general architecture ofSHAMASH will be described in Sec-
tion 2. One of the central components ofSHAMASH (the
inference engine) is explained in Section 3. The rest of
the article will be illustrated by using an example related to
a university maintenance process that is presented in Sec-
tion 4. SHAMASH has been built by using two methodolo-
gies (IDEAL and UML), which are described in Section 5.
Then, the mainSHAMASH subsystems (Author, Simulation
and Optimisation) are detailed in Sections 6, 7. Finally, Sec-
tions 8 summarize the conclusions.

Authorized licensed use limited to: Univ Carlos III. Downloaded on December 16, 2009 at 05:36 from IEEE Xplore. Restrictions apply.

Cita bibliográfica
Published in: 13th International Conference on Tools with Artificial Intelligence, 2001, p. 306-317

Knowledge

Subsystems

Organization
structure

Text generation subsystem

Workflow interface subsystem

Simulation and optimization
subsystem

Author subsystem

Standards Resources

Workflow
engine

Text version

WPDL version

Processes

SHAMASH

Goals

User

Figure 1. Architecture of the SHAMASH tool.

2. SHAMASH architecture

The general architecture of theSHAMASH tool appears
in Figure 1. It is composed of four subsystems:

� Author subsystem: through a user-friendly interface,
the user can define two types of knowledge to the sys-
tem: knowledge on standards, and knowledge on pro-
cesses. Standards, or norms, are statements on any or-
ganization that define how processes should behave,
be created, achieve business rules, or maximize or-
ganization goals. In most cases, this type of knowl-
edge can be easily translated into a rules formalism, so
SHAMASH allows the user to interactively create these
rules in a language that is easy to understand by the
user. We believe that current information technology
users are no longer unaware of technology, and the
concept of a rule is a very close one to humans. In any
case, we contemplate the idea of a programmer profile
to help the process modeling user.

Processes1 are “computation” units within organiza-
tions. They are able to generate an output from an in-
put, using organization resources. ForSHAMASH pur-
poses, processes are not constrained to business pro-
cesses. Therefore, the tool has to be general enough
to allow defining all types of behaviour to represent all
types of processes, from chemical plant processes to
marketing ones. See section 6 for more details on this
subsystem.

1We will not differentiate in this article between the words processes,
procedures, tasks or activities.

� Simulation and optimization subsystem: the tool
allows to perform simulations with historical or pre-
dicted data. Results are analyzed by the system, and
misbehaviours reported to the user. Also, the tool can
automatically perform an optimization phase by which
new optimized models are generated. The user can
then decide whether to adopt the new models, or to
continue with the old ones. Section 7 describes in more
detail these two components.

� Text generation subsystem: in most organizations,
processes are delivered to their end-users (human re-
sources of the organization) in plain text. Sometimes,
they are delivered using a graphical representation
without the details that for obvious space restrictions
can not appear in the graphical representation. And, in
some organizations, processes are delivered in a mix-
ture of graphical and text representations. A common
consistency problem appears when any one of the rep-
resentations, or both are updated. In those cases, the
other one has to be changed, and this does not always
happens. InSHAMASH this subsystem is responsible
of maintaining a coherence between the graphical and
text versions. When the user performs any change in
the graphical representation of a process, this subsys-
tem automatically generates a new text version of this
process.

� Workflow interface subsystem: SHAMASH is not to
be used directly as a workflow engine. Therefore, it
needs to have an interface that automatically translates
the defined process models into the input of a workflow
engine. As for the output language, the goal would be
to generate a process representation complying with
the intended standard WfMC (Workflow Management
Coalition) WPDL (Worflow Process Description Lan-
guage). However, given that there is still no general
consensus on how this language is, we have adopted a
practical approach generating the output in the current
version of WPDL.

Also, the tool allows the user to create and maintain
knowledge about the organization that will be used when
defining, simulating, and optimizing the processes. Types
of knowledge that can be defined within the system are
knowledge about standards, processes, organization struc-
tures, resources (human and material), or goals of the pro-
cesses. Now, we will describe in more detail these modules.

3. Inference Engine

Given thatSHAMASH is a knowledge-based tool using
rules and objects, we had first to devise an inference engine
that would take a representation of classes and instances in

Authorized licensed use limited to: Univ Carlos III. Downloaded on December 16, 2009 at 05:36 from IEEE Xplore. Restrictions apply.

C++, a set of rules, and build an efficient inference engine
based on theRETE algorithm [3]. In order to do so, we de-
signed a language for describing the rules that is based on a
classical structure ofif andthen parts.If parts are composed
of conditions that refer to the existence (or not) of instances
of classes with some properties. The structure is similar
to the Frulekit tool, developed in CMU by Peter Shell and
Jaime Carbonell [14]. Apart from the fact that their tool was
built in Common Lisp and ours is on C++, and the fact that
the languages differ in specific aspects, one of the main dif-
ferences relates to the possibility ofSHAMASH users to ask
in the if part whether a given value (either constant or vari-
able value) belongs to a list that is the value of an attribute.

Suppose, for instance, that there is a class namedsig-
nature, which represents the type of activity of signing a
given document. One of the attributes of that class might
beallowed-signatures which refers to organization
people that can sign the corresponding document, and is
represented by a list of references to instances of the class
person. Then, one might have a rule as in Figure 2 which
says that if a document can be signed by two peopleperson1
andperson2, andperson1 knows more about the document
thanperson2, thenperson1 is the one that should sign the
document (organization agent that should be the responsible
of the activity). Names in italics correspond to variables.

If signature is asignature such that
person1 is in the listallowed-signatures,
person2 is in the listallowed-signatures,
assigning todocument1 its input-document and

document1 is adocument such that
assigning tokeyword its buy-computer and

person1 is aperson such that
buy-computer is in the listkeywords and

person2 is aperson such that
buy-computer is not in the listkeywords

Then modify objectsignature
with responsible-agent is person1

Figure 2. Example of rule in SHAMASH.

The general architecture of theRETEmodule is shown in
Figure 3. TheRETE net is created at the start ofSHAMASH

application with the objects and rules that configure base
level SHAMASH. Afterwards, the definition of each rule
triggers theRETE generator component, which creates the
correspondingRETE net structure to that rule. The defini-
tion or modification of any object triggers the generation of
tokens that traverse theRETE structure in order to generate
the next conflict set. Whenever anySHAMASH subsystem
wants to execute the rules, it should call the rules execu-
tion module, which selects one rule from the conflict set at
that moment, executes the actions in thethen part of the
rule that usually cause modifications in the KB. We have
also defined several ways in which rules can be executed
depending on the type of ruleset they belong to. Behaviour
of activities will be executed by the simulator for each ac-

Figure 3. Graphical representation of the RETE

module and its connections with the Author
and Knowledge subsystems.

tivity instance in every simulation cycle. On the other hand,
validation rules will be executed until no more rules of that
ruleset appear in the conflict set.

4. An Example

In this section we describe an example of a simpli-
fied organisation that will be used to ilustrate each one of
SHAMASH modules.

In our university there is a maintenance department
which offers services such as fixing furniture, producing
keys, attaching blackboards to walls, etc. The goal is to rep-
resent, analise and improve the management process that is
followed by this department when a request arrives. The
first step is to determine whether the request can be man-
aged by the maintenance department. Then, according to
the type of request, the petition is sent to the manager for
signature. Basically, each request has an importance level
and if this level is very important, the manager has to sign it.
Finally, it is decided whether the service will be carried out
by the university staff or it will be performed by external
contractors. This final decision depends on the estimated
cost of the request. If it is too expensive, the service is con-

Authorized licensed use limited to: Univ Carlos III. Downloaded on December 16, 2009 at 05:36 from IEEE Xplore. Restrictions apply.

tracted. Figure 4 shows a graphical representation of this
process.

In addition, this department has a manager and an assis-
tant manager for each of the two university campuses. The
maintenance staff depends directly on each of the assistant
managers.

Figure 4. Maintenance Service Management

5. Knowledge Acquisition and Modeling Tasks

SHAMASH combines features of both KBS and OO sys-
tems. So we have decided to integrate both technologies
for its development. From the KBS area we used knowl-
edge acquisition techniques and knowledge representation
formalisms, as production rules. From the object oriented
area we have used UML notation and use cases. It has to be
remarked that these methodologies will be used for require-
ment analysis, knowledge acquisition and system design; it
is not required that the user knows any of them to use the
tool. Here, we will explain the conceptual model and how
we have used and integrated these technologies to build the
tool. Working through the use cases has been the first task.
We have develop both Use Case diagrams and Class dia-
grams from the knowledge acquisition process. The next
task has been the elaboration of the Sequence Diagrams to
model the interactions in the system. Then, the classes were
fully designed with their methods, extra attributes, a more
detailed set of relationships including aggregation types,
cardinality, and even relationship classes that needed to be
defined. From here, the design process has proceeded as a
standard object-oriented one and completed with State, Ac-
tivity, Components and Deployment Diagrams from UML.

5.1. Knowledge Acquisition Process

To build SHAMASH, we needed knowledge about pro-
cesses, standards, validation for standards and processes,
and the behaviour of processes for simulation and the op-
timisation of models. To address all these matters, ex-
pert knowledge was required. It has been often stated that
knowledge acquisition is a bottleneck. For this reason, it is
very important to plan this stage. Next, we intend to de-
scribe the two main expert acquisition issues:

� The knowledge sources: In theSHAMASH project two
types of knowledge sources were used: semi-public
documentation and expert knowledge. As semi-public
knowledge source we used the standards of Unión
Fenosa. We analysed the contents of these standards
and extracted basic concepts to understand the domain.
But the most important knowledge is the expert knowl-
edge. We have extracted knowledge from two kinds
of experts: BPR experts and domain experts. From
the former kind, we obtained general knowledge about
processes, standards, optimisation, etc. From the latter
kind of experts, we obtained knowledge for building li-
braries for particular domains. For instance, from pur-
chasing experts, we obtained knowledge about what
processes, standards make up a typical purchasing do-
mains, how to detect bottlenecks in such processes, etc.

� Acquisition Meeting Planning: Knowledge acquisi-
tion took place in all phases of the project. In this
phase, knowledge acquisition has been split in two
parts: knowledge elicitation to build the conceptual
model and validation of that model. It is necessary
to meet with two different kinds of experts: BPR ex-
perts and domain specific experts. BPR have been
interviewed for knowledge elicitation and experts in
purchasing processes have been asked for conceptual
model validation. Afterwards, several meetings took
place with the BPR experts taking into account the ex-
tracted knowledge. Each of the meetings was focused
in each ofSHAMASH subsystems (Author, Simulation
and Optimisation, Text Generator and Workflow Inter-
face). The knowledge acquisition techniqes we have
used have been: open interview, structured interview,
questionnaires, protocol analysis, etc. The result of
this effort has been the conceptual model that repre-
sents the main concepts of the domain, the attributes of
those concepts, the relationships among the concepts
and the function of each concept in the solution of the
problem. This model was validated by the purchasing
experts of several companies.

Authorized licensed use limited to: Univ Carlos III. Downloaded on December 16, 2009 at 05:36 from IEEE Xplore. Restrictions apply.

6. Author subsystem

The author subsystem has most of the usual functions in
the process modeling tools. Its main function refers to the
definition of processes, and their related knowledge. Some
of its characteristics are:

� Definition of standards: none of the analyzed cur-
rent tools allows to define an important type of knowl-
edge of any organization: its norms. They constrain
how processes should be defined. A typical exam-
ple are authorization levels for performing certain op-
erations (e.g. signing documents, or approving pur-
chases). They have different shapes depending on the
organization, so the interface allows to easily create
their structure, to fill them and to link them to other
types of knowledge, such as the organization structure,
related standards or processes, or resources to be used.
If the user wants some code to represent the way in
which a constrain of the organization works with re-
spect to the processes, the tool allows to define rules to
model that type of knowledge.

� Definition of processes: this function is common to
all modeling tools, and allows the user to graphically
define how processes are combined, how they relate
to other processes, or how they can be decomposed
or grouped into others in a hierarchical way. Since
SHAMASH is a knowledge-based tool, the user can
define specific behaviour of processes, or define new
types of activities, processes links, or decision steps.
This allows to define more simulation and optimisa-
tion knowledge into the processes than the usual one,
that refers to cost or time associated to processes. In
order for the user to design new processes a domain-
independent ontology has been defined. That is, the
ontology is generic for all workflow process models
and each graphical representation of a user model in-
stantiates this generic ontology.

One application of this type of knowledge could be to
define how individual processes provide more or less
quality according to the resources employed. Another
application could be to useSHAMASH as a tool for per-
forming competencies management, by defining spe-
cific knowledge-oriented information that is needed to
perform a given process, and selecting resources ac-
cording to that information.

� Validation of standards and processes: since stan-
dards define restrictions on how processes should op-
erate, a validation should be performed on the consis-
tency among them. The system incorporates a set of
generic validation rules, and the user can define new

Figure 5. Maintenance Model

rules. For instance, when a standard says that approv-
ing any purchase above 1,000,000 pts. should be per-
formed by a department head or a higher role in the
organization, the validation will check whether this is
so in the user created process.

� Connection among organization processes and
standards: processes in organizations are not sepa-
rated from each other. Therefore, tools modeling pro-
cesses need first to allow the user to create processes
models independent of the rest of processes of the or-
ganization (for the sake of modularity). Then, and very
importantly, such tools should allow the user to con-
nect the related processes, such that they can be sim-
ulated and optimized in an integrated way.SHAMASH

allows to do so by means of defining interconnections
among processes.

� Creation of libraries: given that users are able to de-
fine new activities and processes with a particular be-
haviour, this new knowledge-based processes could be
re-used in other related modeling episodes. The tool
allows the user to define libraries of processes to be
used in other processes modeling applications.

Figure 5 shows our maintenance model, after having
been designed by the user withSHAMASH author subsys-
tem.

7. Simulation and Optimization

The aim of this section is to explain two important mod-
ules of SHAMASH: the simulator and the optimiser. Both
modules work together to optimise a model automatically,
so their integration will also be explained in detail.

The simulator interface allows the user to select the pro-
cess to be simulated, and to define the user goals. These user

Authorized licensed use limited to: Univ Carlos III. Downloaded on December 16, 2009 at 05:36 from IEEE Xplore. Restrictions apply.

goals are numeric values that measure how well the model
did after the simulation, according to the organisation crite-
ria. SHAMASH includes two standard user goals -time and
cost- but the user can define new ones that take into ac-
count any of the simulation indicators, like queue lengths,
percentage of use of a given resource, quality of the pro-
cess, etc. At the end of the simulation,SHAMASH outputs a
trace displaying the user goals, the aforementioned indica-
tors, and other useful information. Besides detecting model
inefficiencies and errors by watching the user goals and the
indicators, the user can define rules to verify those problems
automatically.

Figure 6. Example of authorisation Rule. It
checks whether the document that arrives to
an authorisation activity is important enough
(element-level). In that case, it will be sent to
the YES branch.

There are many tools that let the user simulate a model.
However,SHAMASH has a feature that is rarely found in
other simulators: the behaviour of activities can be defined
by means of rules too. For instance, the behaviour of the
authorisation activity -a decision type activity- is defined by
the rule of Figure 6. Basically, this rule says that if some
conditions are fulfilled, then the petition should go to the
yes branch of the activity. Those conditions are expressed
by the rule grammar which is common to any rule that can
be defined inSHAMASH. If the decision level (an attribute
from the petition document) is higher than the level defined
in the activity, then the document will travel through theyes
branch. It should be noted that changing the activity level
might influence the model efficiency.

The simulator is an important part ofSHAMASH not only
because it allows the user to check the behaviour of his/her
processes, but for allowing automatic optimization. Of

course, the user can optimize his/her model by simulating
the model, anoting where the model seems to be inefficient,
changing and improving the model by hand and trying again
(that is, the user can carry out what is usually called what-if
analysis). However, there is no reason why this process can
not be automated, and this is whereSHAMASH optimisation
module enters the picture, as it is explained below.

One of SHAMASH most important features is its abil-
ity to automatically optimise user process models. Opti-
misation is not intended just as an automatisation of what-
if analysis (which is quite useful by itself), but as a first
step towards adaptive workflow systems [9, 10]. Adaptive
workflow aims to provide support for quickly adapting to
changes both in company processes and when the process
model is being enacted. Changes in company processes
can occur because of new laws, standards, norms, business
goals, resources, etc. Once those changes have taken place,
workflow experts can redesign company processes to adapt
to them. But even with the help of the simulator, this is a
slow method. Automatic optimisation coupled with other
features ofSHAMASH (such as the ability to handle stan-
dards) can help here. All that is required from the user
is to make those changes (standards, resources, etc) to the
model. At this point, the model will be inefficient because
some other modifications should take place in order to take
full advantage of, for instance, more resources, relaxed stan-
dards, etc. The user could perform these modifications by
hand, but obviously automatic optimisation would be more
effective and exhaustive.

Automatic optimisation could also help in the second
point addressed by adaptive workflow systems: adapt to
changes when the process is being run or enacted. Such
changes involve staff coming and going, hardware unex-
pectedly breaking down, activities taking much more time
than expected, etc. Some of these changes could easily
be accomodated by the existing model, but at some point
it might be worthwile to dynamically modify the process
model. Automatic optimisation can also help here, by
automatically adapting the model to the new conditions.
However, optimisation is a computer intensive process and
in quickly changing environments, the optimisation algo-
rithms might not be able to cope.

SHAMASH optimisation is based on a generate and test
approach. The generate part will be achieved by using ex-
pert heuristics for generating new process models from a
given one. Test or evaluation of a newly generated process
model will be taken care of by means of a user supplied
evaluation function. This function evaluates the model by
combining different indicators obtained after simulating the
process model.

The underlying paradigm for optimization inSHAMASH

is search in a process space. Each node of the search space
is a different user process model. This process model in-

Authorized licensed use limited to: Univ Carlos III. Downloaded on December 16, 2009 at 05:36 from IEEE Xplore. Restrictions apply.

cludes the process diagram as well as the organisation struc-
ture associated to it and the inputs to the process. Also, an
evaluation function must be defined. This evaluation func-
tion calls the simulator and measures how well this particu-
lar model does. This is measured by a user goal, that can be
any arithmetic expression including simulation indicators.
Finally, there must be a way to move within this space of
possible models. This is provided by the search operators.
A search operator takes a model, transforms it, and gener-
ates a new model. Optimisation operators propose possi-
ble modifications of the initial model. Those new models
are generated and simulated. The user goal obtained from
the simulation is used as the worth of the model. This pro-
cess continues until a timelimit or until one of the generated
models has a “good enough” worth (this has been specified
by the user in advance).

In a model, there are many things that could be changed:
increase the number of resources, remove agents, change
the process diagram, increase/decrease decision-making pa-
rameters, etc. However, the number of possible models
that can be obtained by performing such changes at random
would be enormous and would make the search process
very time consuming.SHAMASH answer to this problem is
to use knowledge acquisition to elicit from the expert how
to make changes that produce benefit to the model under
study. This knowledge will be formalized later into search
operators. It would seem that acquiring perfect search op-
erators (that is, those that always generate better models)
would be the best option. However, such perfect operators
need not exist, and in any case, they would be very difficult
to elicit. Therefore, search operators that are likely to gen-
erate better models should suffice, although in some cases
they might degenerate the model. Such operators would be
enough to constrain the search enough to make it efficient.
The evaluation function would be used to focus the search
further, by choosing the best generated alternative models.

SHAMASH allows to define the search operators by
means of rules too, in the very same language used in other
parts of the tool. The left hand side of the rules will access
the knowledge base and match static features of the model
(model diagram, resources, etc) and dynamic ones (bottle-
necks, idle resources, etc) and determine how the model
should be changed so that it is likely that it will be improved.
A simple search operator is shown in Figure 7. This rule
changes (increases) the authorisation level of the authorisa-
tion activity which was mentioned in previous paragraphs.
There is another rule to decrease the same attribute. There-
fore, in this simple example, the optimiser can fine-tune au-
tomatically one of the free parameters of the model.

The kind of heuristic search described above fits into
many different search algorithms, such as hill climbing,
simulated annealing, beam search, heuristically augmented
genetic programming, etc. In the current version of the

Figure 7. Optimisation Rule. It says that if
the model has a Authorisation activity and
its authorisation level is not already too large
(<50), then a new model can be generated by
increasing it.

tool, best first search has been used. This search method al-
ways focuses on the best model (according to the user goal),
and generates all possible modifications of this model, ac-
cording to the applicable search operators. In the future,
SHAMASH might use a beam search technique.

At this point, the user can either accept the new model
proposed by the optimiser or maintain the initial model.

8. Conclusions

In this paper we have presented an overview of a process
modeling tool namedSHAMASH. SHAMASH allows users
to define, simulate, and optimise BPR models. There are in
the market many other tools that provide functionalities for
modeling processes, but we have identified two areas where
technology could be pushed further:

� Definition of standards: from the user point of view,
it is very interesting that BPR tools allow to define
and use knowledge about organisation standards, as
SHAMASH does.

� Automatic optimisation: Currently, BPR tools sim-
ulate the models and allow the user to change them
if s/he spots any problem in the simulation results.
SHAMASH goes further and automatically suggest
changes that improve the model.

Authorized licensed use limited to: Univ Carlos III. Downloaded on December 16, 2009 at 05:36 from IEEE Xplore. Restrictions apply.

Another important feature ofSHAMASH is that some of
the knowledge in the system can be represented inside the
tool by means of rules, which users usually understand bet-
ter than other formalisms like computer programs. This
makesSHAMASH a very extensible tool. InSHAMASH, the
behaviour of activities, validation rules, organisation stan-
dards, and optimisation operators, can all be defined by
rules. In order to handle them efficiently,SHAMASH in-
cludes aRETE algorithm that has been completely inte-
grated with the rest of the tool.

We intendSHAMASH to be an adaptable tool by both pro-
viding basic process libraries and by making its architecture
modular. However, in order to provide the two important
features mentioned before (standards and optimisation), ex-
pert knowledge is required. To acquire this knowledge, it is
necessary to use a knowledge based methodology. We have
used knowledge acquisition techniques to obtain the expert
knowledge and knowledge representation formalisms, such
as production rules. For instance, they have been used to
represent optimisation and validation rules. Knowledge for
this kind of systems comes from two different sources. The
knowledge required for handling standards and optimisa-
tion needs a BPR expert, whereas the knowledge for build-
ing libraries needs an expert in the specific domain of that
library (i.e. the purchasing domain).

Acknowledgements

The research reported here was carried out as part of
the research project funded by CICYT TAP-99-0535-
C02 (http://decsai.ugr.es/�lcv/SEPIA/tap99-0535-c02-
01.html).

References

[1] K. D. Ashley. Case-based reasoning and its implications for
legal expert systems.Artificial Intelligence and Law, 1992.

[2] J. Breuker and N. d. Haan. Separating world and regula-
tion knowledge: where is the logic? In M. Sergot, editor,
Proceedings of the third international conference on AI and
Law, pages 41–51, New York, 1991. ACM.

[3] C. L. Forgy. Rete: A fast algorithm for the many pat-
tern/many object pattern matching problem.Artificial In-
telligence, 19:17–37, 1982.

[4] G. M. Fox, M.S. Enterprise modelling.AI Magazine, pages
109–121, Fall 1998 1998.

[5] T. Gray, E. Prez, D. Pinard, S. Abu-hakima, A. Daz, and
I. Ferguson. A multi-agent architecture for enterprise appli-
cations. In W. Hamscher, editor,Working Notes of the AAAI-
94 Workshop on Artificial Intelligence in Business Process
Reengineering, August 1994.

[6] M. Hammer and J. Champy.Reengineering the Corpora-
tion. Harper Business Press, New York, 1993.

[7] T. T. S. C. HPS. Ithink. www hps-
inc.com/bussolu/ithink/ithink htm, 2000.

[8] IDS-Scheer. Aris. www.ids-scheer.com/aristoolset.htm,
2000.

[9] P. Jarvis, J. Moore, J. Stader, A. Macintosh, A. C. du Mont,
and P. Chung. Exploiting AI technologies to realise adaptive
workflow systems. InAgent-Based Systems in the Business
Context. AAAI’99 Workshop, 1999. Submitted.

[10] M. Klein. Workshop towards adaptive workflow sys-
tem. InProceedings of the 1998 Conference on Computer-
Supported Cooperative Work, 1998.

[11] U. Reimer, A. Margelisch, B. Novotny, and T. Vetterli.
Eule2: A knowledge-based system for supporting office
work, 1998.

[12] Rockwell-Software. Arena. www.sm.com, 2000.
[13] W. J. Salter. Organizational designs cannot be optimised. In

W. Hamscher, editor,Working Notes of the AAAI-94 Work-
shop on Artificial Intelligence in Business Process Reengi-
neering, August 1994.

[14] P. Shell and J. G. Carbonell. FRuleKit: A frame-based pro-
duction system. User’s manual. Internal paper, 1989.

[15] J. B.-C. Trevor and R. V. Pepijn. Ontologies in legal infor-
mation systems; the need for explicit specifications of do-
main conceptualisations. InSixth International Conference
on Artificial Intelligence and Law, page 132. ACM Press,
1997.

[16] M. Uschold and M. Gruninger. Ontologies: Principals,
methods and applications.Knowledge Engineering Review,
11(2), 1996.

[17] R. Winkels and H. d. Bruijn. Making a case for case frames.
Information & Communications Technology Law, 7(2):117–
133, 1998.

[18] E. Yu and J. Mylopoulus. Organization modelling for busi-
ness processes reengineering. In W. Hamscher, editor,Work-
ing Notes of the AAAI-94 Workshop on Artificial Intelligence
in Business Process Reengineering, August 1994.

Authorized licensed use limited to: Univ Carlos III. Downloaded on December 16, 2009 at 05:36 from IEEE Xplore. Restrictions apply.

