
Efficient Learning of Hierarchical Latent Class Models

Nevin L. Zhang
Department of Computer Science.

Hong Kong University of Science & Technology
Hong Kong, China

Tomáš Kočka
Laboratory of Intelligent Systems Prague

Prague University of Economics
Prague, Czech Republic

Abstract

Hierarchical latent class (HLC) models are tree-
structured Bayesian networks where leaf nodes are ob-
served while internal nodes are hidden. In earlier work,
we have demonstrated in principle the possibility of recon-
structing HLC models from data. In this paper, we address
the scalability issue and develop a search-based algorithm
that can efficiently learn high-quality HLC models for real-
istic domains. There are three technical contributions: (1)
the identification of a set of search operators; (2) the use
of improvement in BIC score per unit of increase in model
complexity, rather than BIC score itself, for model selec-
tion; and (3) the adaptation of structural EM for situations
where candidate models contain different variables than the
current model. The algorithm was tested on the COIL Chal-
lenge 2000 data set and an interesting model was found.

1 Introduction

Hierarchical latent class (HLC) models [8] are tree-
structured Bayesian networks (BNs) where leaf nodes are
observed while internal nodes are hidden. They general-
ize latent class (LC) models [3] and were first identified
as a potentially useful class of Bayesian networks by Pearl
[5]. This paper is concerned with the problem of learn-
ing HLC models from data. The problem is interesting for
three reasons. First, HLC models represent complex de-
pendencies among observed variables and yet are compu-
tationally simple to work with. Second, the endeavor of
learning HLC models can reveal latent causal structures.
Researchers have already been inferring latent causal struc-
tures from observed data. One example is the reconstruction
of phylogenetic trees, which can be viewed as special HLC
models. Third, HLC models alleviate disadvantages of LC
models as models for cluster analysis.

When learning BNs with latent variables, one needs to
determine not only model structures, but also cardinalities
of latent variables, i.e. the numbers of values they can take.

Although not using the terminology of HLC models, Con-
nolly [1] proposed the first, somewhat ad hoc, algorithm for
learning HLC models and tested it on one small toy exam-
ple. A more principled algorithm was proposed by Zhang
[8]. This algorithm hill-climbs in the space of HLC models
guided by a scoring function. It starts with an LC model.
At each step of search, it first generates a number of can-
didate structures by modifying the structure of the current
model. It then optimizes cardinalities of latent variables,
resulting in candidate models. Finally, it evaluates the can-
didate models and picks the best one to seed the next step
of search. Search terminates when the best candidate model
is no better than the current model. To optimize the car-
dinalities of the latent variables in a model structure, the
algorithm employs another hill-climbing routine. Hence we
call it the double hill-climbing (DHC) algorithm.

Zhang [8] has empirical shown that the DHC algorithm
performs well in terms of model quality when coupled with
the BIC score [6]. However, it has a serious drawback,
namely its high complexity. Let n be the number of ob-
served variables. At each step of search, DHC generates
O(n2) models structures. To optimize the cardinalities of
the latent variables in a given model structure, O(n2k) mod-
els are examined, where k is the maximum cardinality for
a latent variable. Hence there are totally O(n4k) models to
evaluate. Before a model can be evaluated, its parameters
must be optimized. Due to the presence of latent variables,
parameter optimization requires the EM algorithm, which
is known to be computationally expensive.

In this work, we reduce the complexity of DHC in two
steps. The first step is to reduce the number of models ex-
amined at each step of search from O(n4k) to O(n2). This
is achieved via a new algorithm called single hill-climbing
(SHC). Two technical aspects of SHC are particularly in-
teresting: 1) The set of search operators that it employs is
the result of our efforts in finding an appropriate tradeoff
between algorithmic complexity and model quality. 2) It
selects among model based on, instead of BIC score itself,
improvement in BIC score per unit increase in model com-
plexity. As we will see, BIC score does not work for SHC.

1

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)

1082-3409/04 $20.00 © 2004 IEEE

Y2Y1

X2

X1

Y4

Y3

X2

Y5

Y6

Y7

X3

X1

Y4Y5 Y6 Y7

X3

Y1

Y2

Y3

Figure 1. An example HLC model and the cor-
responding unrooted HLC model. The Xi’s
are latent variables and the Yj ’s are manifest
variables.

The second step to reduce the complexity of DHC is to
apply the idea of structural EM [2] to SHC so that exact
EM is required only once for each step of search. The re-
sult is an algorithm called heuristic SHC (HSHC). Structural
EM completes data using the current model and uses the
completed data set to evaluate candidate models. Candidate
models generated by SHC contain latent variables that are
non-existent in the current model or are different from the
corresponding variables in the current model. Therefore,
the application of Structural EM to SHC is not straight-
forward. We have found approximate ways to evaluate the
candidate models that turn out to be equivalent to perform-
ing hypothesis tests for conditional independence and for
goodness-of-fit of LC models.

We have conducted empirical studies to determine
whether HSHC can find good models for real-world appli-
cations in a timely fashion. In particular, HSHC was used
to analyze the COIL Challenge 2000 [7] data. The data set
consists of 86 variables and 5822 records. After preprocess-
ing, we were left with 42 mostly binary variables. HSHC
took 121 hours to finish the analysis and it produced an in-
teresting model.

2 HLC models

A hierarchical latent class (HLC) model is a Bayesian
network where (1) the network structure is a rooted tree and
(2) the variables at the leaf nodes are observed and all the
other variables are not. An example HLC model is shown
in Figure 1 (left diagram). In this paper, we use the terms
“node” and “variable” interchangeably. The observed vari-
ables are referred to as manifest variables and all the other
variables as latent variables. A latent class (LC) model is an
HLC model where there is only one latent node. We usually
write an HLC model as a pair M = (m, θ), where θ is the
collection of parameters. The first component m consists of
the model structure and cardinalities of the variables. We
will sometimes refer to m also as an HLC model. When it
is necessary to distinguish between m and the pair (m, θ),
we call m an uninstantiated HLC model and the pair (m,θ)

an instantiated HLC model.
Two instantiated HLC models M=(m,θ) and

M ′=(m′, θ′) are marginally equivalent if they share
the same manifest variables Y1, Y2, . . . , Yn and

P (Y1, . . . , Yn|m, θ) = P (Y1, . . . , Yn|m′, θ′). (1)

An uninstantiated HLC models m includes another m′ if for
any parameterization θ′ of m′, there exists parameterization
θ of m such that (m, θ) and (m′, θ′) are marginally equiva-
lent, i.e. if m can represent any distributions over the mani-
fest variables that m′ can. If m includes m′ and vice versa,
we say that m and m′ are marginally equivalent. Marginally
equivalent (instantiated or uninstantiated) models are equiv-
alent if they have the same number of independent param-
eters. One cannot distinguish between equivalent models
using penalized likelihood scores.

Let X1 be the root of an HLC model m. Suppose X2 is
a child of X1 and it is a latent node. Define another HLC
model m′ by reversing the arrow X1→X2. In m′, X2 is the
root. The operation is hence called root walking; the root
has walked from X1 to X2. Root walking leads to equiv-
alent models [8]. This implies that it is impossible to de-
termine edge orientation from data. We can learn only un-
rooted HLC models, which are HLC models with all direc-
tions on the edges dropped. Figure 1 also shows an exam-
ple unrooted HLC model. An unrooted HLC model rep-
resents a class of HLC models. Members of the class are
obtained by rooting the model at various nodes. Semanti-
cally it is a Markov random field on an undirected tree. The
leaf nodes are observed while the interior nodes are latent.
The concepts of marginal equivalence and equivalence can
be defined for unrooted HLC models in the same way as
for rooted models. From now on when we speak of HLC
models we always mean unrooted HLC models unless it is
explicitly stated otherwise.

Let |X| stand for the cardinality of a variable X. For a
latent variable Z in an HLC model, enumerate its neighbors
as X1, X2, . . . , Xk. An HLC model is regular if for any
latent variable Z, |Z| ≤ ∏k

i=1 |Xi|/maxk
i=1 |Xi|, and when

Z has only two neighbors, strict inequality holds and one of
the neighbors must be a latent node. Note that this definition
applies to both instantiated and uninstantiated models.

Given an irregular instantiated model m, there exists a
regular model that is marginally equivalent to m and has
fewer independent parameters [8]. The process of obtain-
ing the regular model is called regularization. It is evident
that if penalized likelihood is used for model selection, the
regularized model is always preferred over m itself.

3 The SHC algorithm

Assume that there is a collection D of i.i.d samples on
a number of manifest variables generated by an unknown
regular HLC model. SHC aims at reconstructing the reg-
ular unrooted HLC models that corresponds to the genera-
tive model. It does so by hill-climbing in the space of all

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)

1082-3409/04 $20.00 © 2004 IEEE

unrooted regular HLC models for the given manifest vari-
ables. For this paper, we assume that the BIC score is used
to guide the search. The BIC score of a model m is:

BIC(m|D) = logP (D|m,θ∗) − d(m)

2
logN

where θ∗ is the ML estimate of model parameters, d(m) is
the dimension of m, i.e. the number of independent param-
eters, and N is the sample size.

The overall strategy of SHC is similar to that of
greedy equivalence search (GES), an algorithm for learning
Bayesian network structures in the case when all variables
are observed [4]. It begins with the simplest HLC model,
i.e. the LC model, and works in two phases. In Phase I,
SHC expands models by introducing new latent nodes and
additional states for existing nodes. The aim is to improve
the likelihood term of the BIC score. In Phase II, SHC re-
tracts models by deleting latent nodes or states of latent
nodes. The aim is to reduce the penalty term of the BIC
score, while keeping the likelihood term more or less the
same. If model quality is improved in Phase II, SHC goes
back to Phase I and the process repeats itself.

Search operators: SHC hill-climbs using five search
operators, namely State Introduction, Node Introduction,
Node Relocation, State Deletion, and Node Deletion. The
first three operators are used in Phase I and the rest are used
in Phase II.

Given an HLC model and a latent variable in the model,
State Introduction (SI) creates a new model by adding a
state to the state space of the variable. Clearly, the new
model includes the old one.

Node Introduction (NI) involves one latent node X and
two of its neighbors. It creates a new model by introducing
a new latent node X ′ to mediate X and the two neighbors.
The new node has the same number of states as X . Consider
the HLC model m1 in Figure 2. Applying NI to the latent
node X and its neighbors Y1 and Y2 results in the model
m2. The new node X1 has the same state space as X . For
the sake for computational efficiency, we do not consider
introducing a new node to mediate X and more than two of
its neighbors. Without this restriction, the number of candi-
date models the operator could produce is exponential in the
number of neighbors. Also note that NI is disallowed when
X has only two neighbors. In this case, it would create a
latent node that is also a leaf node. In HLC models, only
manifest nodes can be leaves.

Let m′ be a model obtained from another model m via
NI. Then m′ includes m. Note that if we set the cardinality
of the new node X ′ to a number smaller than |X |, then m′

would no longer include m. On the other hand, if we set
|X ′| to a number larger than |X |, then m′ would be more
complex than necessary.

The two operators discussed so far introduce new ingre-
dients to a model. Node Relocation (NR), the next operator,

X

Y6

Y5

Y4

XX1

m1 m2

X1

m3

Y3

Y2

Y1

X

Y4

Y5

Y6

Y3

Y2

Y1 Y6

Y5

Y4

Y3Y2

Y1

Figure 2. The NI and NR operators.

re-arranges connections among existing nodes. It involves
two neighboring latent nodes X1 and X2 and a neighbor
Z of X1 that is different from X2. It creates a new model
by relocating Z to X2, i.e. removing the link between Z and
X1 and adding a link between Z and X2. Consider the HLC
model m2 in Figure 2. Relocating Y3 from X to X1 results
in model m3. Note that a node is allowed to be relocated
only “one step away”. This is for the sake of computational
efficiency and, judging from our experience, more flexibil-
ity does not seem necessary. Also note that if the latent
node X1 has only two neighbors, relocating Z to X2 would
make the latent node X1 a leaf node. In this case, we simply
remove X1.

State Deletion (SD) is the opposite of SI. Given an HLC
model and a latent node, it creates a new model by deleting a
state of the latent node. It is not applicable if the latent node
has only two states. Node Deletion (ND) is the opposite of
NI. It involves two neighboring latent node X and X ′ in
an HLC model. It creates a new model by deleting X and
making all neighbors of X other than X ′ neighbors of X ′.
If model m′ is obtained by applying State or Node Deletion
to model m, then m includes m′.

All of the five operators might lead to the violation of the
regularity constraints. We therefore follow each operator
immediately with a regularization step.

Model selection: Given a data set, our task is to find a
model that fits the data well and has low complexity. It is
possible to achieve perfect fit to data using an LC model
where the latent node has a high cardinality. That is to use
the model with the lowest structure complexity and high
variable complexity. Here variable complexity refers to the
number of values latent variables can have, while structure
complexity refers to the number of nodes and links among
them. Clearly, we need to find a balance between vari-
able complexity and structure complexity so that the overall
model complexity is low.

The SI operator increases variable complexity, while the
NI operator increases structure complexity. To find an ap-
propriate tradeoff between the two aspects of model com-
plexity, SHC starts with the model that has the lowest vari-
able complexity and the lowest structure complexity, i.e. the
LC model where the latent node has only two states. At each
step in Phase I, it generates candidate models by applying
the SI, NI, and NR operators on the current model and se-
lects one of the candidate models to seed the next step of

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)

1082-3409/04 $20.00 © 2004 IEEE

step. The key question is which candidate model to select.
A naive answer to pick the one with the highest BIC

score. This strategy does not work. We have observed in ex-
periments that SHC often does not leave LC models when
models are selected based on BIC score itself: It kept in-
creasing the cardinality of the only latent node, but did not
introduce new latent nodes.

To understand the phenomenon, consider the first step,
where the current model is the LC model with a binary la-
tent node. Suppose there are n manifest variables. Then,
SI would introduce n+1 additional parameters, while NI
would introduce only 2 additional parameters. More pa-
rameters means better fit to data, which in turn implies that
the loglikelihood term of the BIC score is higher. At this
early stage of search, the improvement in the loglikelihood
term is more drastic than the increase in the penalty term.
Consequently, the (unique) model generated by SI is likely
to have a higher score than models produced by NI and is
likely to be chosen, resulting in another LC model where the
latent node has three states. In one of our experiments, the
initial LC model has a BIC score of -128,684. The model
generated by NI from the initial LC model has a BIC score
of -125,185, while the best model generated by NI has a
BIC score of only -125,569. Repeating the arguments, we
see that SI is likely to be applied again in the next step, and
again in the step after, and so on.

As an analogy, we compare candidate models to invest-
ment alternatives and their BIC scores to earnings (divi-
dends minus transaction costs) of investment alternatives.
When deciding one particular investment, if one aims at
maximizing the earning, then one would prefer alternatives
that involve large sums of fund to those that involves small
sums of fund. Compared with small investments, large in-
vestments usually have higher earnings despite higher trans-
action costs. Similarly, if we aim at maximizing the BIC
score, then we would prefer more complex candidate mod-
els than less complex one. At the beginning of SHC, the
likelihood term of the BIC score increases faster with model
complexity than the penalty term. Consequently, more com-
plex candidate models usually have higher BIC scores with
less complex ones.

Maximizing the earnings of each investment transaction
does not bring about maximum total earnings for the finite
fund that one has. A better strategy is to maximize earnings
ratio, i.e. earning over the amount of investment. We apply
this idea to model selection. Let m be the current model
and m′ be a candidate model. Define the unit improvement
of m′ over m given D to be

U(m′, m|D) =
BIC(m′|D) − BIC(m|D)

d(m′) − d(m)
. (2)

It is the increase in model score per unit increase in
model complexity. SHC selects models using the following
cost-effectiveness principle: Among all candidate models,

choose the one that has the highest unit improvement over
the current model.

The NR operator does not necessarily increase the num-
ber of model parameters. Care must be taken when com-
paring models it produces with models generated by other
operators. At each step, SHC first considers candidate mod-
els produced by the NR operator. Among them, those mod-
els whose BIC scores are not higher than that of the cur-
rent model are discarded. If there are, among the remain-
ing, models that have fewer parameters than the current
model, the one with the highest BIC score is chosen and
search moves to the next step immediately without consid-
ering other operators. If all the remaining models have more
parameters than the current model, on the other hand, then
they are compared with other candidate models using the
cost-effectiveness principle.

Model selection in Phase II is straightforward and is
based on model score.

Pseudo code: We now give the pseudo code for the SHC
algorithm. The input to the algorithm is a data set D on a
list of manifest variables. Records in D do not necessarily
contain values for all the manifest variables. The output is
an unrooted HLC model. Model parameters are optimized
using the EM algorithm. Given a model m, the collections
of candidate models the search operators produce will be
respectively denoted by NI(m), SI(m), NR(m), ND(m),
and SD(m).

SHC(D)
Let m be the LC model with a binary latent node.
Repeat until termination:

m′=PhaseI(m,D).
If BIC(m′|D)≤BIC(m|D), return m. Else m=m′.
m′=PhaseII(m,D).
If BIC(m′|D)≤BIC(m|D), return m. Else m=m′.

PhaseI(m,D)
Repeat until termination:

Remove from NR(m) all models m′

s.t. BIC(m′|D)≤BIC(m|D),
If there is m′∈NR(m) s.t. d(m′)≤d(m)

m=m′ and continue.
Find m′ in NR(m)∪NI(m)∪SI(m)

that maximizes U(m′, m|D).
If BIC(m′|D)≤BIC(m|D), return m. Else m=m′.

PhaseII(M,D)
Repeat until termination:

Find the model m′ in ND(m)∪SD(m)
that maximizes BIC(m′|D).

If BIC(m′|D)≤BIC(m|D), return m. Else m=m′.

4 The heuristic SHC algorithm

At each step of search, SHC generates a set of candidate
models, evaluates each of them, and selects the best one.

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)

1082-3409/04 $20.00 © 2004 IEEE

Before a model can be evaluated, its parameters must be
optimized. Due to the presence of latent variables, param-
eters are optimized using the EM algorithm. EM is known
to be computationally expensive. SHC runs EM on each
candidate model and is hence still inefficient.

The same problem confronts hill-climbing algorithms
for learning general Bayesian networks from data with
missing values. There, structural EM was proposed to re-
duce the number of calls to EM [2]. The idea is to com-
plete the data, or fill in the missing values, using the current
model and then evaluate the candidate models based on the
completed data. Parameter optimization based on the com-
pleted data does not require EM at all. EM is called only
once at the end of each iteration to optimize the parameters
of the best candidate model.

In this section, we apply the idea of structural EM to
SHC. The main technical issue that we need to address is
that the variables in the candidate models can differ slightly
different from those in the current model. Hence there
might be a slight mismatch between the completed data and
the candidate models. In a candidate model generated by
the NI operator, for instance, there is one new variable that
does not appear in the current model. The completed data
contain no values for the new variable.

How should we evaluate a candidate model based on a
slightly mismatched data set? The answer depends how the
candidate model is generated, i.e. by which operator. We
divide all the candidate models into several groups, with
one group for each operator. Models in a group are com-
pared with each other based on the completed data and the
best one is selected. Thereafter a second model selection
process is invoked to choose one from the best models of
the groups. This second process is the same as the model
selection process in SHC, except that there is only one can-
didate model for each operator. In this phase, parameters of
models are optimized using EM.

4.1 Model selection in Phase I

In the next 3 subsections, we discuss how to select
among candidate models generated by each of the search
operators used in Phase I. Here are some notations that we
will use. We use m to denote the current model and θ∗ to
denote the ML estimate of the parameters of m based on
the data set D. The estimate was computed using EM at
the end of the previous step. Let Pm be the joint probability
represented by the instantiated model (m, θ∗).

Completing the data set D using the model (m, θ∗), we
get a data set that contain values for all variables in m. De-
note the completed data set by Dm. Let V the set of vari-
ables in m. Dm induces an empirical distribution over V,
which we denote by P̂ (V). In the following, we will need to
refer to the quantities of P̂ (X) and P̂ (X|Y), where X and Y

are subsets of variables. Such quantities are computed from
the model (m,θ∗) and the original data set D. They are not
obtained from the completed data set Dm. In fact, we never
explicitly compute the completed data set. It is introduced
only for conceptual clarity.

4.2 Selecting among models generated by NI

Consider a candidate model m′ in NI(m). Suppose it
is obtained from m by introducing a latent variable H to
mediate the interactions between a node A and two of its
neighbors B and C. Define

UNI(m′, m|Dm) =
N

∑
A,B,C

P̂ (A, B,C)log P̂(B,C|A)

P̂ (B|A)P̂ (C|A)

d(m′) − d(m)
. (3)

This is the criterion that we use to select among models in
NI(m); We select the one that maximizes the quantity.

The criterion is intuitively appealing. Consider the term
on the numerator of the expression on the right hand side
of (3). Except for a constant factor of 2, it is the G-squared
statistic, based on Dm, for testing the hypothesis that B and
C are conditionally independent given A. The larger the
term, the further away B and C are from being indepen-
dent given A, and the more improvement in model quality
the NI operation would bring about. So selecting the candi-
date model m′ in NI(m) that maximizes UNI(m′, m|Dm)

amounts to choosing the way to apply NI operator that
would result in the largest increase in model quality per
complexity unit.

The UNI criterion is also a natural approximation of the
cost-effectiveness principle.We explain why in the rest of
this subsection.

The cost-effectiveness principle states that we should
choose the model m′ in NI(m) that maximizes:

U(m′, m|Dm) =
BIC(m′|Dm) − BIC(m|Dm)

d(m′) − d(m)
. (4)

For technical convenience, root m and m′ at node A. It is
well known that BIC(m|Dm) is given by

N
∑

X∈V

∑

X,pa(X)

P̂ (X, pa(X))logP̂ (X|pa(X) − d(m)

2
logN,

where pa(X) stands for the set of parents of X in m.
The challenge is to compute term BIC(m′|Dm). Let θ′∗

be the ML estimate of the parameters of m′ based on Dm.
Use Pm′ to denote the joint probability represented by pa-
rameterized model (m′, θ′∗). Consider a variable X in m′

that is not B , C, or H . The parents of X in m′ are the same
as those in m. Moreover, the variable and it parents are ob-
served in the data set Dm. Hence we have Pm′(X|pa(X)) =
P̂ (X|pa(X)). Consequently, BIC(m′|Dm) is given by

logP (Dm|m′, θ′∗) − d(m′)
2

logN

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)

1082-3409/04 $20.00 © 2004 IEEE

= N
∑

X∈V\{B,C}

∑

X,pa(X)

P̂ (X, pa(X))logP̂ (X|pa(X)

+N
∑

A,B,C

P̂ (A,B, C)logPm′(B, C|A) − d(m′)
2

logN

where Pm′(B, C|A)=
∑

H
Pm′(H |A)Pm′(B|H)Pm′(C|H).

One can estimate the conditional probability distributions
Pm′(H |A), Pm′(B|H), and Pm′(C|H) from Dm. But this
requires running EM because Dm does not contain values
for H .

Not wanting to run EM, we seek an approximation for
the second term on the right hand side of the above equation.
We choose to approximate it with the maximum value pos-
sible, i.e. N

∑
A,B,C

P̂ (A, B,C)logP̂ (B, C|A). This leads
to the following approximation of U(m′, m|Dm)

N
∑

A,B,C
P̂ (A, B, C)log P̂(B,C|A)

P̂ (B|A)P̂ (C|A)
− d(m′)−d(m)

2
logN

d(m′) − d(m)
.

Simplifying this expression and deleting terms that do not
depend on m′, we get the term on the right hand side of (3).

4.3 Selecting among models generated by SI

Consider a candidate model m′ in SI(m). Suppose it is
obtained from the current model m by introducing a new
state to a variable A. Use A′ to denote this modified vari-
able in m′. The completed data set Dm contains values for
A. Since A′ differs from A, Dm cannot be directly used to
evaluate m′. We hence remove the values of A from Dm

and denote the resulting new data set by Dm,A.
Let B1, . . . , Bk be the neighbors of A (A′) in m (m′).

Define USI(m
′, m|Dm,A) by

N
∑

B1,...,Bk
P̂ (B1, . . . , Bk)log P̂ (B1,...,Bk)

Pm(B1,...,Bk)

d(m′) − d(m)
. (5)

This is the heuristic we use to select among models gener-
ated by the SI operator.

This selection criterion is intuitively appealing. In m,
consider the LC model formed by A and its neighbors B1,
. . . , Bk. With respect to Dm,A, A is latent and the Bi’s are
observed. Except for a constant factor of 2, the term on the
numerator of the expression on the right hand side of (5) is
the G-Squared statistic for testing the goodness-of-fit of the
LC model. If the term is small, then the Bi’s are close to
being mutually independent of each other given A. Most of
the observed correlations among them are accounted for by
the latent variable A. If the term is large, on the other hand,
the Bi’s are far from being mutually independent given A.
There are significant correlations among them that are not
accounted for by the variable A. Introducing a new state to
A will help to capture those correlations and hence signifi-
cantly increase model fit.

It is clear that the complexity of computing
USI(m

′, m|Dm,A) is exponential in k. For the sake of
efficiency, the criterion is not implemented exactly. Rather,
we use the following approximation:

2N
∑

i,j:i�=j

∑
Bi,Bj

P̂ (Bi, Bj)log
P̂ (Bi,Bj)

Pm(Bi,Bj)

(k − 1)(d(m′) − d(m))
. (6)

In the rest of this subsection, we explain how
USI(m

′, m|Dm,A) follows from the cost-effectiveness mea-
sure

U(m′, m|Dm,A) =
BIC(m′|Dm,A) − BIC(m|Dm,A)

d(m′) − d(m)
. (7)

Let VA the set of variables in Dm,A. It is the same as
the set of variables in m′ except for A′. Let θ′∗

A be the ML
estimate of parameters of m′ based on Dm,A. Use Pm′,A to
denote the joint probability distributions represented by the
parameterized model (m′, θ′∗

A). For technical convenience,
root m at node A and m′ at node A′. Then BIC(m′|Dm,A)
is given by

N
∑

X∈VA,pa(X) �=A′
∑

X,pa(X)
P̂ (X, pa(X))logP̂(X|pa(X))

+N
∑

B1,...,Bk
P̂ (B1, . . . , Bk)logPm′,A(B1, . . . , Bk)

− d(m′)
2

logN.

To obtain Pm′,A(B1, . . . , Bk), one needs to run EM to es-
timate Pm′A(A) and Pm′,A(Bi|A). Not wanting to run EM,
we approximate the second term in the above expression
with N

∑
B1,...,Bk

P̂ (B1, . . . , Bk)logP̂ (B1, . . . , Bk), which
is an upper bound of the term.

Let θ∗
A is the ML estimate of parameters of m based on

Dm,A. Use Pm,A to denote the joint probability distribu-
tion represented the parameterized model (m, θ∗

A). Then
BIC(m|Dm,A) is given by

N
∑

X∈VA,pa(X) �=A′
∑

X,pa(X)
P̂ (X, pa(X))logP̂(X|pa(X))

+N
∑

B1,...,Bk
P̂ (B1, . . . , Bk)logPm,A(B1, . . . , Bk)

− d(m)
2

logN.

To obtain Pm,A(B1, . . . , Bk), one needs to run EM. Not
wanting to run EM, we approximate it using the same joint
probability Pm(B1, . . . , Bk) in the parameterized model
(m, θ).

The above two approximations lead to the following ap-
proximation of BIC(m′|Dm,A)−BIC(m|Dm,A):

N
∑

B1,...,Bk
P̂ (B1, . . . , Bk)log P̂ (B1,...,Bk)

Pm(B1,...,Bk)

− d(m′)−d(m)
2

logN. (8)

Substituting this for BIC(m′|Dm,A)−BIC(m|Dm,A) in
(7), simplifying the resulting expression, and removing
terms that does not depend on m′, we obtain the right hand
side of (5).

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)

1082-3409/04 $20.00 © 2004 IEEE

4.4 Selecting among models generated by NR

Consider a candidate model m′ in NR(m). Model m′
consists of the same variables as m and hence the applica-
tion of structural EM is straightforward in this case. To be
more specific, suppose m′ is obtained from m by relocat-
ing a neighbor B of a node A to another neighbor C of A.
For technical convenience, assume m is rooted at A. Then
BIC(m′|Dm)−BIC(m|Dm) is given by

∑

A,B,C

P̂ (A, B, C)log
P̂ (B|C)

Pm(B|A)
− d(m′) − d(m)

2
logN. (9)

Among all models in NR(m), we choose the one for which
this difference is the largest.

4.5 Model selection in Phase II

Consider a candidate model m′ in ND(m). Suppose it is
obtained from m by deleting a latent node B. Suppose the
neighbors of B in m are A, C1, . . . , Cr and suppose the Ci’s
are made neighbors of A in m′. For technical convenience,
assume m is rooted at A. Then BIC(m′|Dm)−BIC(m|Dm)
is given by

∑m

i=1

∑
A,Ci

P̂ (A, Ci)logP̂ (Ci|A)

−∑m

i=1

∑
B,Ci

P̂ (B, Ci)logPm(Ci|B)]

−∑
A,B

P̂ (A, B)logPm(B|A) − d(m′)−d(m)
2

logN. (10)

Among all models in ND(m), we choose the one for which
this difference is the largest.

We do not have good heuristics for selecting among
models in SD(m) based on Dm. So we proceed with them
in the straightforward way. Parameters of all these candi-
date models are optimized by running EM. Their BIC scores
are then computed. The one with the highest BIC score is
chosen.

4.6 A generalization

The algorithm outlined so far has a natural generaliza-
tion. For a given operator, instead of choosing the best
model we can choose the top K best models for some num-
ber K. This top-K scheme reduces the chance of getting
trapped in local maxima. In general, the larger the K, the
smaller the probability of encountering local maxima. On
the other hand, larger K also implies running EM on more
models and hence longer computation time. In practice, one
can start with K being 1 and increase it gradually as long as
time permits.

4.7 Local EM

By applying the idea of structural EM, we have substan-
tially reduced the number of calls to EM. Nonetheless we

still need to run EM on a number of models at each step of
search. Within the top-K scheme, we need to run EM on
K models for each of the operators except for SD. For SD,
we need to run EM on nh models, where nh is the num-
ber of latent nodes in the current model. To achieve further
speedup, we replace all those calls to EM with calls to a
more efficient procedure that we refer to as local EM.

Parameters of the current model m were estimated at the
end of the previous search step. Each candidate model m′

generated at the current search step differs from m only
slightly. The idea of local EM is to optimize the conditional
probability distributions (CPDs) of only a few variables in
m′, while keeping those of other variables the same as in m.
If m′ is obtained from m by adding a state to or deleting a
state from a variable A, then only the CPD’s that involve A

are optimized. If m′ is obtained from m by introducing a la-
tent node H to separate a node A from two of its neighbors,
then only the CPD’s that involve A and H are optimized.
If m′ is obtained from m by relocating a node B from A to
C, then only the CPD’s that involve A and C are optimized.
Finally, if m′ is obtained from m by deleting a node B and
making all neighbors except for one, which we denote by
A, neighbors of A, then only the CPD’s that involve A are
optimized.

Obviously, model parameters provided by local EM de-
viate from those provided by EM. To avoid accumulation of
deviations, we run EM once at the end of each search step
on the model that is selected as the best at that step.

5 Empirical results

This section reports experiments designed to determine
whether HSHC can learn models of good quality and how
efficient it is. In all the experiments, EM and local EM were
configured as follows. To estimate all/some of the param-
eters for a given uninstantiated/partially instantiated model
m, we first randomly generated 64 sets of parameters for
the model, resulting in 64 initial fully instantiated models
1. One EM/local EM iteration was run on all models and
afterwards the worst 32 models were discarded. Then two
EM/local EM iterations were run on the remaining 32 mod-
els and afterwards the worst 16 models were discarded. This
process was continued until there was only one model. On
this model, EM/local EM were terminated either if the in-
crease in loglikelihood fell below 0.01 or the total number
of iterations exceeded 500.

1At the end of each search step, we ran EM on the model selected in
that step. This model was used as one of the initial instantiated models.
Hence only 63 initial models were actually generated randomly.

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)

1082-3409/04 $20.00 © 2004 IEEE

3

2

3

a b c

3

d e f

2

3

g h i

3

j k l

2

3

m n o

3

p q r

2

2

3

a b c

2

e 3

d f

2

3

g h i

3

j k l

2

3

m n o

2

p q r

Figure 3. TOP: One of the test models. Man-
ifest nodes are labelled with their names.
All manifest variables have 3 states. La-
tent nodes are labelled with their cardinali-
ties. BOTTOM: The unrooted HLC model re-
constructed from data by HSHC3.

5.1 Experiments with synthetic data

We used 5 generative models, consisting of 6, 9, 12, 15,
and 18 manifest variables respectively. One of the models
is shown in Figure 3. Parameters were randomly generated
except we ensured that each conditional distribution has a
component with mass larger than 0.8. We also ensured that,
in every conditional probability table, that the largest com-
ponents of different rows are not all at the same column.
A data set of 10,000 records were sampled for each model.
We then ran both SHC and HSHC to reconstruct the gen-
erative models from the data sets. HSHC was tested on all
the 5 data sets, while SHC was tested on only 3, i.e. those
sampled from the 3 simplest generative models. For HSHC,
we let the K in the top-K scheme run from 1 to 3. So we in
fact tested three versions of the algorithm. We will refer to
them using HSHC1, HSHC2, and HSHC3. The algorithms
were implemented in Java and all experiments were run on
a Pentium 4 PC with a clock rate of 2.26 GHz.

To measure the quality of the learned models, a testing
set Dt of 5,000 records were sampled from each genera-
tive model. The log score logPl(Dt) of each learned model
and the log score logPo(Dt) of the corresponding original
model were computed. Let Nt be the number records in
Dt in general. Note that as Nt goes to infinity the average
log score difference (logPo(Dt) − logPl(Dt))/Nt tends to
KL(Po, Pl), the KL divergence of the probability distribu-
tion of manifest variables in the learned model from that of
manifest variables in the original model. We hence refer to
it as empirical KL divergence. It is a good measure of the
quality of the learned model.

The empirical divergences between the learned models
and the original models are shown in Figure 4. We see that

 0.01

 6 8 10 12 14 16 18

E
m

pi
ric

al
 K

L

Problem Size

shc
hshc3
hshc2
hshc1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 6 8 10 12 14 16 18

T
im

e
(h

rs
)

Problem Size

shc
hshc3
hshc2
hshc1

Figure 4. Model quality and time statistics.

some of the models reconstructed by HSHC1 are of poor
quality in two of the five cases. However, all the models
reconstructed by HSHC2 and HSHC3 match the genera-
tive models extremely well in terms of distribution over the
manifest variables. The structures of these models are either
identical or very similar to the structures of the generative
models. The structure of the model produced by HSHC3
for the model shown at the top of 3 is shown at the bottom
of the same figure. The two structures are very similar.

Time statistics are shown in Figure 4. We see that HSHC
is much more efficiently than SHC and it scales up fairly
well. In another experiment involving the HLC model
shown in Figure 1, SHC was 22 times faster than DHC.

5.2 Experiments with real-world data

The training set of the COIL Challenge 2000 data con-
sists of 5,822 customer records. Each records consists of 86
attributes, containing socio-demographic information (At-
tributes 1-43) and insurance product ownerships (Attributes
44-86). The task is to learn a model and use it to predict
who would buy caravan (mobile home) insurance polices.

For our experiments, we selected Attributes 4,5,43 and
44-86. Attribute values were merged so that there are at
least 30 cases for each value. Thereafter, the attributes have
2 to 9 values. In the resultant data set, there are fewer than
10 cases where Attributes 50, 60, 71 and 81 take nonzero
values. Those attributes were therefore excluded from fur-
ther analysis. This leaves us with 42 attributes.

We analyzed the data set using HSHC. Again the top-
K scheme was used, with K being 1, 5, 10, and 20. The
running times and the BIC scores of the resulting models
are shown in the following table:

K 1 5 10 20

Time (hrs) 51 99 121 169
BIC -52,522 -51,625 -51,465 -51,592

The best model was found in the case of K=10. We
denote the model by M10. The structure of the model is
shown in Figure 5, which is interesting in a number of ways.
For example, in the data set, there is a pair of variables for
each type of insurance policy, standing respectively for the
amount of contribution and the number of policies; In M10,

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)

1082-3409/04 $20.00 © 2004 IEEE

h0(5)

v59:
C

ontr.fire

v80:
N

um
.fire

h3(2)

v55:
C

ontr.life

v76:
N

um
.life

h4(2)

v57:
C

ontr.
fam

ily
accidents

v78:
N

um
.

fam
ily

accidents

h5(2)

v56:
C

ontr.
private

accident

v77:
N

um
.

private
accident

h6(2)

v44:
C

ontr.private
3rd

party

v65:
N

um
.

private
3rd

party

h7(2)

v63:
C

ontr.property

v84:
N

um
.

property

h8(4)

h9(2)

v54:
C

ontr.
m

oped

v75:
N

um
.m

oped

h10(2)

v70:
N

um
.

m
otorcycle

v49:
C

ontr.m
otorcycle

h11(2)

v83:
N

um
.

bicycle

v62:
C

ontr.bicycle

h12(3)

v47:
C

ontr.car

v68:
N

um
.car

v86:
N

um
.

m
obile

hom
e

h13(2)

v64:
C

ontr.
socialsecurity

v85:
N

um
.

socialsecurity

h14(2)

v61:
C

ontr.
boat

v82:
N

um
.

boat

h1(2)

v45:
C

ontr.
3rd

party
(firm

)

v66:
N

um
.

3rd
party

(firm
)

h2(2)

v48:
C

ontr.
delivery

van

v69:
N

um
.

delivery
van

h15(2)

h16(2)

v46:
C

ontr.
3rd

party
(agriculture)

v67:
N

um
.

3rd
party

(agriculture)

h17(2)

v58:
C

ontr.
disability

v79:
N

um
.disability

h18(2)

v72:
N

um
.

trailer

v51:
C

ontr.
trailer

h19(2)

v53:
C

ontr.agriculturalm
achines

v74:
N

um
.

agriculturalm
achines

h20(3)

v73:
N

um
.tractor

v52:
C

ontr.tractor

h21(9)

v05:
C

ustom
er

m
ain

type

v43:
Purchasing

pow
er

class

v04:
A

vg
age

Figure 5. HLC model found for the COIL Challenge 2000 data.

there is a latent variable for each such pair. Moreover, all
agriculture-related attributes are under one latent variable,
namely h15; all vehicle-related attributes are under the la-
tent variable h8; and so on. One might argue the model
structure is not completely in accord with the structure of
the domain. We have considered a number of possible im-
provements. None of them have given rise to a better model.

In COIL Challenge 2000, there is a test set of 4,000 that
contains 238 caravan policy owns. The prediction task re-
quires participants to identify a subset of 800 that contains
as many caravan policy owners as possible. Random se-
lection results in 42 policy owners, while the best entry
contains 121. Selection based on M10 gives 110. This is
good performance considering that HSHC aims at optimiz-
ing BIC score rather than classification error.

For the sake of comparison, we also ran GES on the
training set to obtain a Bayesian network without latent
variables. The network is intuitively less appealing than
M10, as one can naturally imagine. When it is used to guide
the prediction task, only 83 policy owners were selected.
More details will be given in a longer version of this paper.

6 Conclusions

We have developed a search-based algorithm for learning
HLC models. The algorithm is not fast enough for online
applications, but it can used in applications such as COIL
Challenge 2000 to analyze data offline.

Our results with the COIL Challenge 2000 data should
have given the reader a hint about why learning HLC mod-
els is interesting from the viewpoint of application. Good
results have also been obtained in an application in tradi-
tional Chinese medicine. More details will be given in sep-

arate papers.

Acknowledgements

We thank Finn V. Jensen and Gytis Karciauskas for valuable
discussions. Research was partially supported Hong Kong
Research Grants Council under grant HKUST6088/01E
and Grant Agency of the Czech Republic under Grant
201/02/1269.

References

[1] D. Connolly (1993). Constructing hidden variables in
Bayesian networks via conceptual learning. ICML-93, 65-
72.

[2] N. Friedman (1997). Learning belief networks in the pres-
ence of missing values and hidden variables. ICML-97, 125-
133.

[3] P. F. Lazarsfeld, and N. W. Henry(1968). Latent structure
analysis. Boston: Houghton Mifflin.

[4] C. Meek (1997). Graphical models: Selection causal and
statistical models. Ph.D. Thesis, Carnegie Mellon University.

[5] J. Pearl (pearl88). Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference Morgan Kaufmann
Publishers, Palo Alto.

[6] G. Schwarz (1978). Estimating the dimension of a model.
Annals of Statistics, 6(2), 461-464.

[7] P. van er Putten and M. van Someren (eds.) (2002). COIL
Challenge 2000: The insurance company case. Sentient Ma-
chine Research, Amsterdam.

[8] N. L. Zhang (2002). Hierarchical latent class models for clus-
ter analysis. AAAI-02, 230-237.

Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004)

1082-3409/04 $20.00 © 2004 IEEE

