
Identifying Variable-Length Meaningful Phrases with Correlation Functions

Hyoung-rae Kim and Philip K. Chan
Department of Computer Sciences, Florida Institute of Technology

hokim@fit.edu, pkc@cs.fit.edu

Abstract

Finding meaningful phrases in a document has been
studied in various information retrieval systems in order
to improve the performance. Many previous statistical
phrase-finding methods had a different aim such as
document classification. Some are hybridized with
statistical and syntactic grammatical methods; others use
correlation heuristics between words. We propose a new
phrase-finding algorithm that adds correlated words one
by one to the phrases found in the previous stage,
maintaining high correlation within a phrase. Our results
indicate that our algorithm finds more meaningful
phrases than an existing algorithm. Furthermore, the
previous algorithm could be improved by applying
different correlation functions.

1. Introduction

Statistical phrase finding algorithms are mainly used for
improving the performance of information retrieval
[6,7,12,21]. There are three main approaches: syntactic
[13], statistical [15], and hybridized [9]. Our research
mainly focuses on the statistical approach, which does not
need any grammatical knowledge and has easy
adaptability to other languages. Statistical phrase-finding
approaches have been used for expanding vector
dimensions in clustering multiple documents [21,22], or
finding more descriptive or important/meaningful phrases
[1,2]. This paper compares previous statistical approaches
and attempts to find meaningful phrases in a document.

Ahonen et al [1], Zamir and Etzioni [23], and Chan [2]
introduced phrase-finding algorithms. Ahonen’s algorithm
depends on conditional probability and needs a fixed
maximum phrase length. We suspect that the use of two
parameters – a threshold to remove less descriptive
phrases in the generating stage and a threshold for the
maximum phrase length – are too strict. Zamir and Etzioni
[23] introduced a fast algorithm, but it uses only
frequency information. Chan’s algorithm [2] improved the
performance by using correlation information within a
phrase. However, Chan’s algorithm can generate non-
existing phrases and is vulnerable to synthetic data.

The definition of meaningful is unique to each
individual. So, we define a phrase as more meaningful if it
is meaningful to the most people. We let each individual

define his or her own definition of meaningful. We
propose a variable-length phrase finding algorithm (VPF),
which finds more meaningful variable-length phrases.
VPF is designed to remove the maximum length of
phrases in Ahonen’s algorithm, and fix the problem in
Chan’s algorithm – the details will be explained in next
section. VPF adds correlated words one by one to the
phrases made in the previous stage, maintaining high
correlation within a phrase. VPF also applies pruning to
remove less meaningful phrases at the end. VPF not only
show higher performance but also is more robust and has
lower time complexity than Chan’s algorithm. The main
contributions are:

• We proposed a variable-length phrase-finding
algorithm (VPF) that is designed for finding
meaningful phrases;

• The time complexity remains as O(N) where N is the
size of the input sequence under a specified condition;

• This algorithm does not need any user-specified
parameters such as a phrase length;

• The algorithm achieves further improved performance
by pruning less meaningful phrases;

• More meaningful phrases than previous methods are
found and the improvement in performance is
statistically significant.

The rest of this paper is as follows: Section 2 presents
related work regarding statistical phrase-finding methods;
Section 3 provides detailed description of our variable-
length phrase-finding algorithm (VPF) and describes the
desirable properties of correlation functions and lists all
correlation functions we used; Section 4 discusses about
experiment; Section 5 presents and analyzes our results;
Section 6 summarizes our work.

2. Related research

There are two main approaches to finding phrases. The
first is related to clustering documents and retrieving
documents that most likely match the user’s information
need. This research focuses on which words and phrases
are more important in clustering documents. The other
attempts to find phrases meaningful to human users.

Wu and Gunopulos [22] examined the usefulness of
phrases as terms in vector-based document classification.
They used statistical techniques to extract phrases from

documents whose document frequency (df) is larger than
or at least equal to a predefined threshold. Fagan [7]
selected phrases having a document frequency of at least
55 and a high co-occurrence in the same sentence. Mitra
et al. [15] collected all pairs of non-function words that
occur contiguously in at least 25 documents. Turpin and
Moffat [21] used Mitra’s method for statistical phrases for
vector-space retrieval. Since the aim of these approaches
is to find the significant words or phrases among
documents, this method could remove meaningful phrases
in a document. Furthermore, only two-word phrases are
considered, whereas ours has no limitation in phrase
length.

Croft, et al. [6] describe an approach where phrases
identified in natural language queries are used to build
structured queries for a probabilistic retrieval model and
showed that using phrases could improve performance.
They used tf*idf (Term Frequency Inverse Document
Frequency) information for a similarity measure. Croft [4]
segmented a document’s text using a number of phrase
separators such as verbs, numbers, dates, title words,
format changes, etc. Next, his method checks the
candidate phrases to see if they are syntactically correct.
Finally, the occurrence frequency of the remaining phrases
is checked. Our paper mainly focuses on a statistical
approach without introducing a syntactic method. We use
simple phrase separators (i.e., stop-words and non-
alphabet characters), which generalizes our method
independent from a certain language.

Gokcay and Gokcay [9] used statistically extracted
keywords and phrases for title generation. Their statistical
method used grammatical information of tags and
sentences, but it is hard to determine a sentence without
grammatical information. They used the cosine correlation
function for comparing the similarity of two words. Our
research experimentally shows which correlation functions
are better than others in terms of measuring word
correlation.

Ahonen’s method [1] finds all possible combinations
of words within a fixed window using Mannila and
Toivonen’s [14] algorithm. Suppose the window size is 6
and the string in that window is “abcdef”. Their algorithm
generates all possible cases: “ab”, “bc”, “cd”, “de”, “ef”,
“abc”, “bcd”,… “bcdef”, “abcdef”. Then, it computes the
conditional probability for the weight of those phrases. A
phrase “abc” has two possible weights from P(“c”| “ab”)
and P(“bc”| “a”), from which the higher value is chosen.
They also allowed gaps within a phrase. Even with the
algorithm’s exhaustive examination, its performance is, as
will be shown later, lower than our method.

Zamir’s algorithm [23] uses only frequency
information. They collect neither too frequent nor too rare
phrases. This method needs two user-defined parameters:
one for removing too rare or too frequent words and the

other for selecting phrases out of all possible phrases.
However, our method does not need any parameters.

Chan’s phrase-finding algorithm [2] calculates the
correlation values of all pairs. The main drawback of this
method resides in its incompleteness. Suppose there is a
string S=“abaxbxaxxbxaxxxb…xxbbxbxbxxbxxxb…”,
where ‘a’ and ‘b’ represent words, and ‘x’ represents any
word. If all correlations between ‘a’ and ‘b’ with 1
through 4 distances, and correlations between ‘b’ and ‘b’
with 1 through 4 distances have values higher than the
threshold, Chan’s algorithm will generate a word “abbbb”
that does not exist in the string. These cases are very
unlikely to happen in a normal article such as newspaper
or journal article. But web pages contain lists of similar
product names or tables that just arrange a few different
repeating words many times. We experienced these non-
existing words in our experiment such as “test pass test”,
“student test pass”, “teach assist teach class”, etc. Another
disadvantage of Chan’s algorithm is that it requires a user-
defined maximum phrase length. Chan [2] implemented
the algorithm in time O(D2), where D is the number of
distinct words, while our implementation consumes O(N),
where N is the size of an input sequence.

3. Variable-length phrases

Our algorithm consists of two components: the main
algorithm and the correlation function. In preparation for
VPF, we extract words from a web page visited by the
user, filter them through a stop list, and stem them
[1,2,8,23]. Other phrase-finding algorithms also require
these pre-processing steps.

3.1. VPF Algorithm

Our algorithm adds words one by one to the phrases found
in a previous stage – each stage corresponds to each
recursion in the VPF algorithm. One might insist that each
phrase P{m} of length m has the form P{m-1}w, where w
is one word and P{m-1} is a phrase of length m-1. Since
the phrase P{m-1}w is defined by the correlation between
P{m-1} and w, it is possible that the correlation exists
between a non-phrase P{m-1} and a word w. That is,
P{m-1} is not a phrase, but can be extended into a phrase
of length m. If this is possible, it is also possible that even
if there exists a phrase, P{m}, in a document, the phrase
P{m} could not be generated because P{m-1} does not
exist. For example, there exists a phrase “wireless
powerful computer” in a web page. But, since “wireless
powerful” is not a phrase, it is possible that the phrase
could not be generated. However, if the phrase is
meaningful/important enough, the sub phrases “wireless
powerful” and “powerful computer” will be generated.
Next, “computer” will be added to “wireless powerful”.
To relieve this problem, we calculate the threshold once at

the beginning – this means the threshold is consistent. If
the correlation value of “wireless powerful” is lower than
the value of “wireless powerful computer” then the shorter
phrase will be removed at a pruning stage.

Our algorithm receives a sequence of words as input
and returns meaningful phrases. It combines words into
phrases until it generates no more phrases. Figure 1
illustrates the pseudo code for the variable-length phrase-
finding algorithm (VPF). It uses four main variables – List,
SEQ, Corr, and Fitness. The List variable stores all
collected phrases in a Hash attribute. Each element
(phrase) of the Hash attribute keeps correlation value in
sim attribute and the position list in posi attribute. VPF
first makes a linked list (SEQ) with an input example.
Each word and word position are stored in each node in
the linked list. Then, all 1-gram distinct words are stored
in List[1].Hash. Corr is a chosen correlation function and
Fitness is a function that measures whether a phrase is
valid or not. The List , SEQ, Corr and Fitness are passed
to BeSpecific procedure and this finds all phrases. Once
the phrases are acquired, they are pruned. The pruning
process simply removes all sub-phrases that have a sim
value lower than the sim value of the super-phrases.

The BeSpecific procedure receives six parameters: List
that stores all phrases; L which is the length of phrases
(initial value is 2); thre which keeps the calculated
threshold value differentiating “strong” relations from
“weak” relations (initialized to 0); SEQ which stores the
linked list; Corr and Fitness. BeSpecific recursively
creates new sequences by removing nodes that are not in
the Hash table generated in the previous stage, and also by
removing consecutive nodes whose lengths are shorter
than L. Since it removes words that are not in the Hash
table generated in the previous stage, there can be gaps
between nodes. Once the new sequence is generated, it
collects all L-grams having no gaps from the sequence.
The threshold is calculated when L=2 only once by
averaging all correlation values between the first and
second word in each element in List[2].Hash. The for loop
removes any element with low correlation values (sim)
from Hash. The sim property of p keeps the correlation
between a sub phrase, p[1..L-1], and the last word, p[L],
where p is a phrase consisting of L words. For example, if
p=“computer science seminar”, then p[1..n-1]=“computer
science” and p[n]=“seminar”. The Intersection counts all
adjacent points based on the distance. The intersection
between the positions of p[1..L-1] and p[L] becomes the
positions of p. The BeSpecific procedure recursively
increases the phrase length L until Hash become empty.
We can also apply various correlation functions in the
place of Corr. The Fitness function gets the frequency of
a phrase as an input and returns true or false. We use a
simple Fitness function that returns false if the input is 0
and true otherwise.

In order to improve the phrase-selection accuracy, we
need to calculate for each word the percentage that a word
can come before any other words and the percentage that
the word can come after any other words, called pre-
percentage and post-percentage respectively. The idea is
that if a word occurred at the end of a sequence, then this
word lose his one chance to come before any other words,
so we adjust the pre-percentage of the word by deducting
one from the number of occurrences of the word. The
post-percentage is vice versa. We can view a string S[1..n]
of n consecutive words as two sub strings, Spre=S[1..n-1]
and Spost=S[2..n]. Pre- and post-percentage of w can be
computed in time O(1), when we know all the positions
where w occurred:

wpre-percentage= Frequency of w in Spre / |Spre|
wpost-percentage= Frequency of w in Spost / |Spost|.

Input: Example– a sequence of words
Output: Collected phrases
Function VPF (Example) return phrases
 SEQ– linked list, each node has a word and a

position.
 List– array of Hash table, each word in a Hash

has sim and posi attributes.
 Corr- a correlation function
 Fitness- a function that measures whether a

phrase is valid or not
1. SEQ←linked list made by the input Example
2. List[1].Hash←store all 1-grams, each word

keeps its positions
3. BeSpecific(List, 2, 0, SEQ, Corr, Fitness)
4. Prune phrases in the List
5. Return all phrases in the List
End Function

Input: List- store array of Hash table
 L- length of phrase, initialized to 2
 thre- threshold value, initialized to 0
 SEQ- linked list, the size reduces every

iteration
BeSpecific(List, L, thre, SEQ, Corr, Fitness)
1. if List[L-1].Hash is empty then stop
2. SEQ←remove nodes that are not in the List[L-

1].Hash and also remove consecutive nodes
which length is shorter than L

3. List[L].Hash←Collect all L-grams from SEQ
4. if L=2 then thre←Average correlation across

all words in List[2].Hash
5. for each p in List[L].Hash do
6. A ← pre-percentage of p[1..L-1]
7. B ← post-percentage of p[L]
8. p.sim←Corr(A,B,A∩B)
9. remove any p for which p.sim is lower then

thre
10. p.posi←Intersection of p[1..L-1].posi and

p[n].posi with distance of L-2
11. remove any p for which Fitness(p.posi)

does not satisfy
12. BeSpecific(List, L+1, thre, SEQ, Corr,

Fitness)
End Procedure

Figure 1. VPF algorithm

Figure 2. Example of VPF

The most expensive part in the BeSpecific procedure
will be scanning a sequence when L is 2. Even though the
BeSpecific is called L times, as L increases the size of the
sequence decreases drastically. The Corr function has
O(T) time complexity, where T is the position length. But,
as T increases the number of element in a Hash decrease.
We, therefore, can claim that the time complexity of VPF
in general case is roughly: O(S), where S is the sequence
size.

For example, in Figure 2 we have an input string S =
“abcdabefbcdghabcd,” in which each letter represents a
word. The correlation function simply returns the
frequency of a phrase using a threshold value of 1.5.
List[1].Hash contains all distinct words. List[2].Hash
originally contains all possible 2-word phrases, then
removes any phrase that occur less than 2 times, resulting
in {“ab”, “bc”, “cd”}. We remove all words that are not in
the List[2].Hash from the 1st SEQ resulting in 2nd SEQ.
List[3].Hash contains all 3-word phrases, and then remove
“cda” and “dab” because they occur only once. When we
came to BeSpecific for the 3rd time, we removed “*abc*”
from the 3rd SEQ, because their consecutive length is less
than 4 – the size of L increases every time we come to
BeSpecific. When we run the 4th BeSpecific, we can
remove all phrases (“abcda” and “bcdab”) in List[5].Hash,
because they occur only once. Since the 5th Hash is empty,
the BeSpecific stops. After the BeSpecific, the List keeps
{“ab”, “bc”, “cd”, “abc”, “bcd”, “abcd”}. Suppose the
pruning removes all sub-phrases that have a sim value
lower than or equal to the sim value of the super-phrases.
The occurrences of phrases are: “ab”-3, “bc”-3, “cd”-3,
“abc”-2, “bcd”-3, and “abcd”-2. We remove “bc” and
“cd” because “abc” subsumes them and has equal

frequency. “abc” is removed by “abcd” with the same
reason. The final returned phrases are {“ab”, “bcd”,
“abcd”}.

3.2. Correlation Functions

The VPF algorithms build phrases; and correlation
functions actually calculate the weight of a phrase. The
correlation functions are important in terms of selecting
more meaningful phrases. The VPF is able to cooperate
with many different existing correlation functions, and it
can be hard to choose one correlation function out of
many. In this section, we describe several key properties
of a good correlation function. Much of the statistical
work in building multi-word features focuses on co-
occurrence [3,17]. All correlation measures are not
equally good at capturing the dependencies between
different events [20]. It is because each correlation
function biases toward different individual event
probabilities and joint probabilities. Piatetsky-Shapiro
[16] has proposed three key properties that a good
correlation function, F, for events A and B should satisfy:

P1: if A and B are statistically independent,
then F is 0;
P2: F monotonically increases with P(A,B) when
P(A) and P(B) remain the same;
P3: if P(A) (or P(B)) increases when the rest
of the parameters (P(A,B) and P(B) (or P(A)))
remain unchanged, then F monotonically
decreases.

Statistical independence can be measured by the
determinant operator, where Det (A,B) = A∩B×A�∩B� −
A∩B�×A�∩B. Thus, a singular diagram is independent
when its determinant is equal to zero [19]. Another

Pruning ab
bc
cd
abc
bcd
abcd

Phrases in the List

Suppose, the pruning removes all sub-
phrases that have a sim value lower than or
equal to the sim value of the super-phrases

ab
bcd
abcd

Phrases returned

a
b
c
d
e
f
g
h

List[2].
Hash

ab
bc
cd
da
be
ef
fb
dg
gh
ha

ab
bc
cd

abc
bcd
cda
dab

abc
bcd

abcd
bcda
cdab

abcd a
b
c
d
a
b
*
a
b
c
*
a
b
c
d

a
b
c
d
a
b
*
a
b
c
d

a
b
c
d
a
b
*

abcda
bcdab

1st BeSpecific(L=2)

a
b
c
d
a
b
e
f
a
b
.
.
.

SEQ
List[3].
Hash SEQ

List[4].
Hash SEQ

List[5].
Hash SEQ

2nd BeSpecific(L=3) 3rd BeSpecific(L=4) 4th BeSpecific(L=5)

List[1].
Hash

Input
SEQ
a
b
c
d
a
b
e
f
b
c
d
g
h
a
b
c
d

important operation in finding phrases is distinguishing
between positive and negative correlations (P4).
Measuring their cross product ratio (CPR) can assess the
significance of the correlation between A and B [17] and
is defined as:

)',(),'(
)','(),(

log),(log
BAPBAP
BAPBAP

BACRP =

Negative correlation has a negative log CPR value. P4 is
that F can distinguish positive and negative correlation of
A and B. Since positive correlation is much more
important than negative correlation in finding phrases, we
only measured the change of correlation values over
positive correlation.

Tan et al. [20] illustrated those properties and extended
them to each of the existing measures to determine if the
existing measure satisfies the properties required [11].
Some of these properties have been extensively
investigated in the data mining literature [10,19,20]. We
examined 32 correlation functions of properties and
cooperated them with phrase-finding algorithms. A
complete list of the correlation functions to be examined
in this study is given in Table 6 in Appendix A.

4. Experiments

4.1. Evaluation Data and Procedures

We use five New York Times articles and five Web pages
collected from our department server. We use web pages
to test, because contents in a web page differ from the
content found in normal article. The data used in this
study is accessible at
http://my.fit.edu/~hokim/conference/phrase/dataset.pdf.
The article size was about 2 pages and we asked 10
human subjects, other than the authors, to read the 10
articles. Each article contains about 1,300 words - 720
words after removing stop-words. Since we assigned 6 as
a threshold of maximum phrases length for Ahonen’s and
Chan’s, the total possible number of phrases for each
article is approximately 3600 (=720×5). Of the 10
subjects, 4 were graduate students from a department of
computer sciences and 6 were undergraduates with
various majors.

We asked the 10 human subjects to choose their top 10
meaningful phrases for each article or Web page. One
might insist that the results will be different depending on
how 10 humans are chosen. If all volunteers have the
same background the matching rate will be higher than the
normal case. However, since we are not comparing the
algorithm with humans, but comparing among algorithms,
it does not matter how we chose the 10 volunteers.
Furthermore, since the algorithm finds phrases statistically
that cover general human meaningfulness, we choose 10
human subjects arbitrarily.

The instruction that we gave them were:

Identify the top 10 "meaningful/important"
phrases for each article.
Phrases are defined as two or more adjacent
words that are meaningful, for example,
"computer science," "florida institute of
technology," ... The definition of meaningful
is up to you.

We will measure the number of matches between the
human subjects’ selections and different correlation
functions’ selections as well as different phrase-finding
algorithms.

We also count average matching of humans – in this
case, we divided the sum by 9. There are cases for the
human or algorithm to select less than 10 phrases. In order
to be fair in these cases, we use an additional adjustment
function. We also attempt to prevent a measure from
being scored 1 by finding one phrase and having one
matched phrase by chance – the results are too sensitive.
We, therefore, decided to give a lower incentive as a
measure finds fewer phrases 20% at the most. For
example, if there are 5 matches out of 10, the number of
matching is 5×1/10. If there are 5 matches out of 9, then
we assigned 5×1/9. But, if there are 5 matches out of 8,
then we assigned 5×1/8.5. The generalized formula is:

f

m

−+
=

102
2

8
 f)(m,function Adjustment

, where m is the number of matched words and f is the
number of selected words.

We also applied different correlation functions to
Ahonen’s algorithm to see if the difference of the
performance depended on the correlation functions.
Ahonen used two different correlation functions:
conditional probability (Confidence, F11) for filtering
phrases and mutual confidence (F32) for ordering the
collected phrases determining which phrase is more
important than the other. Since he used fixed user-defined
threshold (0.2) for filtering the phrases, we only varied the
correlation function used for ordering phrases.

4.2. Evaluation Criteria

We evaluate the meaningfulness of phrases. We believe
the closer a match comes to our set of human-selected
phrases, the better the phrase-finding algorithm is in terms
of finding meaningful phrases. To evaluate the correlation
functions for each phrase-finding algorithm, we have two
evaluation criteria: the number of exact matches and the
number of simple matches. We have 128 methods (4
algorithms × 32 correlation functions) – the 4 algorithms
are VPF, Chan’s, Ahonen’s, and Ahonen’s with gap, and
the correlation functions F1 through F32 are in Appendix
A.

Table 1. With pruning vs. without pruning
Avg. across humans and articles Ratio of Rank Method
With-pruning Without-pruning Improv.

1 VPF_F25 0.933 0.883 5.7%
2 VPF_F16 0.920 0.866 6.2%
3 VPF_F28 0.912 0.871 4.7%
4 VPF_F8 0.824 0.707 16.5%
5 VPF_F10 0.819 0.825 -0.7%
6 VPF_F29 0.814 0.810 0.5%
7 VPF_F27 0.812 0.796 2.0%
8 VPF_F24 0.812 0.758 7.1%
9 VPF_F13 0.772 0.666 15.9%

10 VPF_F26 0.726 0.683 6.3%

The number of exact matches of a method is measured

by the percentage of the matches between the human’s and
a method’s. We count each match with a human’s and
then average the 10 compared results. This counting
approach assigns more weights to the more meaningful
words – more meaningful word means that they were
selected by more human subjects. If a phrase is selected
by several human subjects, every match is counted.
Therefore, finding more popular phrases increases the
matching average. The number of matches will be very
low, because only 10 phrases selected by a method and a
human respectively are going to be compared.

The number of simple matches counts the matched
phrases against the list collected by all human (i.e., the
union of the words from the 10 human subjects). The list
will be less then 100 because some phrases can overlap.
Simple match is not directly related to finding more
meaningful phrases, because this count removes the
popularity information. We count this only to support the
result of the exact match.

Comparison of the results is done using a matched-pair
design [18]. In this design, the top ten phrases in the
ranking generated are compared. The comparison, which
simply identifies if one group of ten phrases is better than
the other, is on the basis of precision in other words the
number of matched phrases. This type of evaluation has
the following advantages: It is realistic in the sense that
many information retrieval systems are interested in the
top group. Traditional recall/precision tables are very
sensitive to the initial rank positions and evaluate entire
rankings [5]. Another advantage is that significance
measures can be readily used.

5. Results and analysis

Before comparing our algorithm with existing methods we
need to decide whether to use pruning or not. After that
we will be able to perform the comparison. In evaluating
our method against related algorithms we use different
scoring methods: exact match and simple match.

5.1. With-pruning vs. Without pruning

The VPF algorithm has a pruning function. The results
differed whether we used the pruning function or not. We
compared them by comparing the top 10 best methods
with exact match (Sec 6.2). By composing the algorithm
and 32 correlation functions (in Appendix A), we
generated 32 methods. We ranked the top 10 methods
using “with pruning” and presented the corresponding
results of “without pruning” next in Table 1. The values
are the average of matches across 10 human subjects and
10 articles. Most methods yielded improved results when
they had been pruned. The top method VPF with F25 had
improved its performance by 5.7%. With pruning is
statistically significantly better than without pruning with
a 95% confidence interval (P=0.004).

5.2. Analysis with Exact Match

Because “with-pruning” achieves a higher matching rate
than “without-pruning”, we decided to use pruning in our
algorithms for the rest of our experiment.

5.2.1. Top 10 methods. The main purpose of the analysis
in this section is to choose the best method. Which
method is the best is the most interesting question. We
averaged the results from 10 articles and 10 human
subjects and sorted by the average to rank all 128
methods. We presented the results in Table 2 and included
the rank, methods used, and the average. Each method
was composed of an algorithm and a correlation function.
Notice that, we also presented the results of previous
methods. Ahonen used correlation function F32. He also
introduced a method with gaps. The row Ahonen_gap
represented the results using Ahonen’s method allowing
gaps within a phrase.

The best method was the combination of VPF and
correlation functions F25 followed by F16 and F28 – all
those three correlation functions satisfied Piatetsky-
Shapiro’s three desirable properties and distinguish
positive from negative correlations. The best method VPF
with F25 matched 0.93 phrases on average with the
phrases selected by a human subject. In the next section
we measured the average number of matching phrases
between human subjects and compared those results to the
results from methods.

Interestingly, VPF won the top 3. Chan’s algorithm
occupied the next ranks. Another observation was that the
correlation functions F25, F16, and F28 that marked high
rank with VPF also marked high rank with Chan’s. This
observation implied that the performance also depends on
the correlation functions.

Table 2. Ranked by average across humans and
articles – Exact match
Rank Method Avg. Rank Method Avg.

1 vpf_F25 0.933 13 ahonen_F6 0.797
2 vpf_F16 0.920 15 ahonen_F10 0.779
3 vpf_F28 0.912 15 ahonen_F11 0.779
4 chans_F16 0.858 15 ahonen_F12 0.779
5 chans_F25 0.856 15 ahonen_F17 0.779
6 chans_F29 0.850 15 ahonen_F26 0.779
7 chans_F28 0.848 20 ahonen_F20 0.774
8 vpf_F8 0.824 20 ahonen_F23 0.774
9 vpf_F10 0.819 24 ahonen_F32 0.767

10 vpf_F29 0.814 105 ahonen_gap_F32 0.452

Table 3. Exact match across humans
 Avg. across 10 articles

Human best 1.48
Human avg. 1.30

Human worst 1.03

Unfortunately, Ahonen’s algorithm ranked 24 and
Ahonen_gap 105. These methods matched 0.767 and
0.452 numbers of phrases with human subjects
respectively. The low performance with gap is the same
phenomenon as shown in [1]. We conducted t-Test (paired
two sample for means) between VPF with F25 and
Ahonen with F32. There was a clear statistically
significant difference between the two methods with 95%
confidence (P=0.016). Therefore, we can conclude that
VPF with F25 found statistically significantly more
meaningful phrases than Ahonen’s previous algorithm.

Ahonen’s algorithm with other correlation functions
received higher ranks such as F6, F10, F11, F12, F17,
F26, and F20 as shown in Table 2. They all ranked 13, 15,
and 20, which are higher than Ahonen’s original method
(24). This indicates Ahonen’s algorithm can be improved
upon by using different correlation functions.

5.2.2. Comparing with human subjects. To see the
average number of matches among human subjects is
interesting and also provides insight into interpreting the
average number of matching by the algorithm. For
instance, if an algorithm matches 1 on average and the
human matches 7, then the performance of the algorithm
is almost negligible no matter how much higher its
performance is compared to others.

We presented the best, average, and worst matching
human results in Table 3. The results told us that only 1.3
phrases out of 10 picked by a human subject matched with
the phrases picked by the others on average. This is not an
unrealistic result. Considering that each document has
approximately 1,300 words, more than 7779 possible
phrase combinations exist and each person has a different
background, matching 1.3 phrases out of 10 on average is

Table 4. Ranked by average across humans and
articles – Simple match
Rank Method Avg. Rank Method Avg.

1 vpf_F28 3.696 12 ahonen_F10 3.195
2 vpf_F25 3.689 12 ahonen_F11 3.195
3 vpf_F13 3.672 12 ahonen_F12 3.195
4 vpf_F8 3.656 12 ahonen_F17 3.195
5 vpf_F27 3.575 12 ahonen_F26 3.195
5 vpf_F24 3.575 17 ahonen_F6 3.181
7 vpf_F21 3.377 23 ahonen_F2 3.025
8 vpf_F29 3.342 24 ahonen_F20 3.018
9 vpf_F16 3.321 24 ahonen_F22 3.018

10 chans_F29 3.282 24 ahonen_F23 3.018
22 chans_F25 3.053 33 ahonen_F32 2.934

 118 ahonen_gap_F32 1.755

Table 5. Simple match across humans
 Avg. across 10 articles

Human best 6.3
Human avg. 5.6

Human worst 4.7

 a extraordinarily reasonable result. Our method achieved
a result (0.93), which was close to the typical human
result. We also conducted a t-Test with the human average
and VPF with F25. The human subjects’ average was
statistically significantly better than the best result
obtained by the algorithm with a 95% confidence interval
(P=0.02). It would be interesting to see if the worst case
of human matching was higher than the algorithm’s. The
answer was no. It was not statistically significantly better
than the machine’s. This result indicates that human
matching is better than the matching of algorithms in
general but not always.

5.3. Analysis with Simple Match

This simple match count showed similar ranking to the
exact match. VPF with F28 followed by F25 and F13 had
the top matching rates: 3.70, 3.69, and 3.67 respectively
as shown in Table 4. Since simple match uses a list of
meaningful phrases by taking the union of phrases
selected by the 10 human subjects, average number of
matching phrases is higher than the average by exact
match. Chan’s with F25 ranked 22 (3.05 matching rate),
Ahonen without gap ranked 33 (2.93), and Ahonen with
gap ranked 118 (1.76) out of 128. Chan’s original method
ranked 22 (3.053). These results also told us VPF found
more phrases than Ahonen’s and Chan’s. The result from
simple match also indicated that Ahonen’s algorithm
could be improved by incorporating different correlation
functions.

We also attempted to compare the methods’ results
with the results from humans. Human matched the list 5.6
out of 10 on average; the best and worst cases are 6.3 and

4.7 as shown in Table 5. The result 3.69 of method VPF
with F25, which was the highest score with exact match,
was quite significant considering that we only used the
statistical information.

 6. Conclusions

We proposed a variable-length phrase-finding

algorithm, which find more meaningful phrases – VPF –
than older methods – Ahonen’s and Chan’s algorithms.
We also coordinated these algorithms with 32 different
correlation functions. They regenerate sequences
recursively with the words selected in the previous stage
and search for increased length of phrases in time O(N),
where N is the page size. Since our algorithm uses average
as a threshold and stops when the length of phrases does
not increase, no user-defined parameter is required.

In order to choose the best method, we conducted an
experiment by asking 10 human subjects to select 10
phrases from 10 different articles. We compared the
number of matching phrases chosen by a method to those
phrases chosen by 10 human subjects. By comparing the
top 10 best measures (matched-pair design [18]), we
observed that when we add pruning, the algorithm (VPF)
had improved performance.

We concluded that VPF with F25 found a statistically
significantly greater number of meaningful phrases than
Ahonen’s previous method. We suspect the filtering stage
of Ahonen’s algorithm filtered many meaningful phrases
out or their weighting scheme using the length of a phrase
and tightness [1] distracted the correlation value of a
phrase. Interestingly, the correlation functions F25 and
F28 were both included in the top 10 in both exact match
and simple match. This result indicates the correlation
functions F25 and F28 had higher matching rates than the
other correlation functions. These two correlation
functions both satisfied desirable properties for phrases.
We can also improve Ahonen’s algorithm by
incorporating correlation functions F10, F11, F12, F17,
F26, F6, and F20. Those functions resulted in a higher
match of average scores for both exact match and simple
match experiments.

The performance of our method varied depending on
the articles selected. We currently do not understand the
reason for the variance in performance over different
articles. We assume it is due to the intrinsic characteristics
of an article, because the human subjects’ results are also
different depending on the articles. Phrases in VPF grow
backwards; however, in the future we will devise an
algorithm that grows both forwards and backwards.

7. References

1. H. Ahonen, O. Heinonen, M. Klemettinen, and A.I. Verkamo,
Applying Data Mining Techniques for Descriptive Phrase Extraction in

Digital Document Collections, In Proc. of the Advances in Digital
Libraries Conference, 1998
2. P.K. Chan, A non-invasive learning approach to building web user
profiles, In KDD-99 Workshop on Web Usage Analysis and User
Profiling, 7-12, 1999.
3. L. Chen and K. Sycara, Webmate: A personal agent for browsing
and searching, In Proc. 2nd Intl. Conf. Autonomous Agents, pp. 132-
139, 1998.
4. W.B. Croft, (editor), Advances in Information Retrieval: Recent
Research from the Center for Intelligent Information Retrieval,
Massachusetts, Kluwer Academic Publishers, pp. 243, 2000.
5. W.B. Crotf and R. Das, Experiments with Query Acquisition and
Use in Document Retrieval Systems, In Proc. of 13th ACM SIGIR, 1989.
6. W.B. Croft, H.R. Turtle, and D.D. Lewis, The use of phrases and
structured queries in information retrieval, In Proc. of ACM SIGIR, pp.
32-45, 1991.
7. J.L. Fagan, Automatic phrase indexing for document retrieval, In
Proc. of the Tenth Annual ACM SIGIR Conference on Research &
Development in Information Retrieval, pp. 91-101, 1987.
8. W.B. Frakes and R. Baeza-Yates, Information Retrieval: Data
Structures and Algorithms, Prentice-Hall, 1992.
9. D. Gokcay and E. Gokcay, Generating titles for paragraphs using
statistically extracted keywords and phrases, Systems, Man and
Cybernetics, 1995. 'Intelligent Systems for the 21st Century'., IEEE
International Conference on, Volume: 4 , 22-25 Oct. 1995
10. R. Hilderman and H. Hamilton, Evaluation of interestingness
measures for ranking discovered knowledge. In Proc. Of the 5th
Pacific-Asia Conference on Knowledge Discovery and Data Mining,
2001.
11. M. Kamber and R. Shinghal, Evaluating the interestingness of
characteristic rules. In Proc. Of the Second Int’l Conference on
Knowledge Discovery and Data Mining, Pages 263-266, Portland,
Oregon, 1996.
12. H. Kim and P.K. Chan, Learning implicit user interest hierarchy
for context in personalization. In Proc. of International Conference on
Intelligent User Interfaces, 101-108, 2003.
13. E.F. Lima and J.O. Pedersen, Phrase Recognition and expansion
for short, precision-biased queries based on a query log, In Proc. of
SIGIR, 1999.
14. H. Mannila and H. Toivonen, Discovering generalized episodes
using minimal occurrences, In Proc. of Knowledge Discovery and Data
Mining, 1996.
15. M. Mitra, C. Buckley, A. Singhal, and C. Cardie, An Analysis of
Statistical and Syntactic Phrases, In Proc. of RIAO-97, 5th International
Conference, 1997.
16. G. Piatetsky-Shapiro, Discovery, analysis and presentation of
strong rules. In G. Piatetsky-Shapiro and W. Frawley, editors, In Proc.
of Knowledge Discovery in Database, pages 2299-248. MIT Press,
Cambridge, MA, 1991.
17. R. Rosenfeld, Adaptive Statistical Language Modeling: A
Maximum Entropy Approach, PhD thesis, Computer Science, Carnegie
Mellon University, Pittsburgh, PA, 1994.
18. S.E. Robertson, The methodology of information retrieval
experiment, In: Sparck Jones, editor, Information Retrieval Experiment,
London: Butterworths, 9-31, 1981.
19. P. Tan and V. Kumar, Interestingness Measure for Association
Patterns: A Perspective*, In Proc. of KDD, 2000.
20. P. Tan, V. Kumar and J. Srivastava, Selecting the Right
Interestingness Measure for Association Patterns. In Porc. of ACM
SIGKDD, 2002.
21. A. Turpin and A. Moffat, Statistical phrases for vector-space
information retrieval. In Proc. of SIGIR, pp. 309-310, 1999.

22. H. Wu and D. Gunopulos, Evaluating the Utility of Statistical
Phrases and Latent Semantic Indexing for Text Classification, In Proc.
of IEEE International Conference on Data Mining, 2002.

23. O. Zamir and O. Etzioni, Web document clustering: a feasibility
demonstration. In Proc. of SIGIR, 1998.

Appendix A

Table 6. Correlation functions
 Name Formula

1 φ-coefficient (CE) (AB - (A × B)) / Sqr(A × B × (1 - A) × (1 - B))

2 Goodman-Kruskal’s (MAX(AB, AB�) + MAX(A�B, A�B�) + MAX(AB, A�B) + MAX(AB�, A�B�)
- MAX(A, A�) - MAX(B, B�)) / (2 - MAX(A, A�) - MAX(B, B�))

3 Odds ratio (OR) D((AB × A�B�), (AB� × A�B))

4 Yule’s Q (YQ) (AB × A�B� - AB� × A�B) / (AB × A�B� + AB� × A�B)

5 Yule’s Y (YY) (Sqr(AB × A�B�) - Sqr(AB� × A�B)) / (Sqr(AB × A�B�) + Sqr(AB� × A�B))

6 Kappa (k) (KP) (AB + A�B� - (A × B) - (A� × B�)) / (1 - (A × B) - (A� × B�))

7 Mutual Information (M)
(AB × log2(AB / (A × B)) + AB� × log2(AB� / (A × B�))

+ A�B × log2(A�B / (A� × B)) + A�B� × log2(A�B� / (A� × B�)))
/ (MIN(-(A × log2(A) + A� × log2(A�)), -(B × log2(B) + B� × log2(B�))))

8 J-Measure MAX(AB × log2(P(B|A) / B) + AB� × log2(P(B�|A) / B�), AB × log2(P(A|B) / A) + A�B × log2(P(A�|B) / A�))

9 Gini index (G) MAX(A(pow(P(B|A),2) + pow(P(B�|A),2)) + A�(pow(P(B|A�),2) + pow(P(B�|A�),2)) - pow(B,2) - pow(B�,2),
B(pow(P(A|B), 2) + pow(P(A�|B), 2)) + B�(pow(P(A|B�), 2) + pow(P(A�|B�), 2)) - pow(A, 2) - pow(A�, 2))

10 Support AB

11 Confidence (c) MAX(P(B|A), P(A|B))

12 Laplace (L) MAX((100 × AB + 1) / (100 × A + 2), (100 × AB + 1) / (100 × B + 2))

13 Conviction (CV) MAX((A × B�) / AB�, (B × A�) / A�B)

14 Interest (IT) AB / (A × B)

15 Cosine (IS) AB / Sqr(A × B)

16 Piatetsky-Shapiro’s (PS) AB - A × B

17 Certainty Factor (CF) MAX((P(B|A) - B) / (1 - B), (P(A|B) - A) / (1 - A))

18 Added Value (AV) MAX(P(B|A) - B, P(A|B) – A)

19 Collective strength (S) ((AB + A�B�) / (A × B + A� × B�)) × ((1 - A × B - A� × B�) / (1 - AB - A�B�))

20 Jaccard AB / (A + B - AB)

21 Klosgen (KL) Sqr(AB) × MAX(P(B|A) - B, P(A|B) - A)

22 MI Log2(AB / (A × B))

23 STC_MIN MIN(P(B|A), P(A|B))

24 EMI AB × log(AB / (A × B)) + AB� × log(AB� / (A × B�))
 + A�B × log(A�B / (A� × B)) + A�B� × log(A�B� / (A� × B�))

25 AEMI AB × log(AB/ A × B) - AB� × log(AB�/ A × B�)
- A�B × log(A�B/ A� × B) + A�B� × log(A�B�/ A� × B�)

26 dMAX AB × MAX(P(B|A), P(A|B))

27 dMI AB × log2(AB / (A × B))

28 AEMI3 AB × log(AB/ A × B) - AB� × log(AB�/ A × B�) - A�B × log(A�B/ A� × B)

29 dMIN AB × MIN(P(B|A), P(A|B))

30 dMIN2 1 + AB × log(MIN(P(B|A), P(A|B)))

31 NegativeCosine (1 - AB) / Sqr((1 - A) × (1 - B))

32 MutualConfidence (AB / A + AB / B) / 2

