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Abstract 
 

Finding meaningful phrases in a document has been 
studied in various information retrieval systems in order 
to improve the performance. Many previous statistical 
phrase-finding methods had a different aim such as 
document classification. Some are hybridized with 
statistical and syntactic grammatical methods; others use 
correlation heuristics between words. We propose a new 
phrase-finding algorithm that adds correlated words one 
by one to the phrases found in the previous stage, 
maintaining high correlation within a phrase. Our results 
indicate that our algorithm finds more meaningful 
phrases than an existing algorithm. Furthermore, the 
previous algorithm could be improved by applying 
different correlation functions. 
 
1. Introduction 

 

Statistical phrase finding algorithms are mainly used for 
improving the performance of information retrieval 
[6,7,12,21]. There are three main approaches: syntactic 
[13], statistical [15], and hybridized [9]. Our research 
mainly focuses on the statistical approach, which does not 
need any grammatical knowledge and has easy 
adaptability to other languages. Statistical phrase-finding 
approaches have been used for expanding vector 
dimensions in clustering multiple documents [21,22], or 
finding more descriptive or important/meaningful phrases 
[1,2]. This paper compares previous statistical approaches 
and attempts to find meaningful phrases in a document. 

Ahonen et al [1], Zamir and Etzioni [23], and Chan [2] 
introduced phrase-finding algorithms. Ahonen’s algorithm 
depends on conditional probability and needs a fixed 
maximum phrase length. We suspect that the use of two 
parameters – a threshold to remove less descriptive 
phrases in the generating stage and a threshold for the 
maximum phrase length – are too strict. Zamir and Etzioni 
[23] introduced a fast algorithm, but it uses only 
frequency information. Chan’s algorithm [2] improved the 
performance by using correlation information within a 
phrase. However, Chan’s algorithm can generate non-
existing phrases and is vulnerable to synthetic data. 

The definition of meaningful is unique to each 
individual. So, we define a phrase as more meaningful if it 
is meaningful to the most people. We let each individual 

define his or her own definition of meaningful. We 
propose a variable-length phrase finding algorithm (VPF), 
which finds more meaningful variable-length phrases. 
VPF is designed to remove the maximum length of 
phrases in Ahonen’s algorithm, and fix the problem in 
Chan’s algorithm – the details will be explained in next 
section. VPF adds correlated words one by one to the 
phrases made in the previous stage, maintaining high 
correlation within a phrase. VPF also applies pruning to 
remove less meaningful phrases at the end. VPF not only 
show higher performance but also is more robust and has 
lower time complexity than Chan’s algorithm. The main 
contributions are: 
 

• We proposed a variable-length phrase-finding 
algorithm (VPF) that is designed for finding 
meaningful phrases; 

• The time complexity remains as O(N) where N is the 
size of the input sequence under a specified condition; 

• This algorithm does not need any user-specified 
parameters such as a phrase length; 

• The algorithm achieves further improved performance 
by pruning less meaningful phrases; 

• More meaningful phrases than previous methods are 
found and the improvement in performance is 
statistically significant. 

 

The rest of this paper is as follows: Section 2 presents 
related work regarding statistical phrase-finding methods; 
Section 3 provides detailed description of our variable-
length phrase-finding algorithm (VPF) and describes the 
desirable properties of correlation functions and lists all 
correlation functions we used; Section 4 discusses about 
experiment; Section 5 presents and analyzes our results; 
Section 6 summarizes our work. 

 

2. Related research 
 

There are two main approaches to finding phrases. The 
first is related to clustering documents and retrieving 
documents that most likely match the user’s information 
need. This research focuses on which words and phrases 
are more important in clustering documents. The other 
attempts to find phrases meaningful to human users.  

Wu and Gunopulos [22] examined the usefulness of 
phrases as terms in vector-based document classification. 
They used statistical techniques to extract phrases from 



documents whose document frequency (df) is larger than 
or at least equal to a predefined threshold. Fagan [7] 
selected phrases having a document frequency of at least 
55 and a high co-occurrence in the same sentence. Mitra 
et al. [15] collected all pairs of non-function words that 
occur contiguously in at least 25 documents. Turpin and 
Moffat [21] used Mitra’s method for statistical phrases for 
vector-space retrieval. Since the aim of these approaches 
is to find the significant words or phrases among 
documents, this method could remove meaningful phrases 
in a document. Furthermore, only two-word phrases are 
considered, whereas ours has no limitation in phrase 
length. 

Croft, et al. [6] describe an approach where phrases 
identified in natural language queries are used to build 
structured queries for a probabilistic retrieval model and 
showed that using phrases could improve performance. 
They used tf*idf  (Term Frequency Inverse Document 
Frequency) information for a similarity measure. Croft [4] 
segmented a document’s text using a number of phrase 
separators such as verbs, numbers, dates, title words, 
format changes, etc. Next, his method checks the 
candidate phrases to see if they are syntactically correct. 
Finally, the occurrence frequency of the remaining phrases 
is checked. Our paper mainly focuses on a statistical 
approach without introducing a syntactic method. We use 
simple phrase separators (i.e., stop-words and non-
alphabet characters), which generalizes our method 
independent from a certain language. 

Gokcay and Gokcay [9] used statistically extracted 
keywords and phrases for title generation. Their statistical 
method used grammatical information of tags and 
sentences, but it is hard to determine a sentence without 
grammatical information. They used the cosine correlation 
function for comparing the similarity of two words. Our 
research experimentally shows which correlation functions 
are better than others in terms of measuring word 
correlation.  

Ahonen’s method [1] finds all possible combinations 
of words within a fixed window using Mannila and 
Toivonen’s [14] algorithm. Suppose the window size is 6 
and the string in that window is “abcdef”. Their algorithm 
generates all possible cases: “ab”, “bc”, “cd”, “de”, “ef”, 
“abc”, “bcd”,… “bcdef”, “abcdef”. Then, it computes the 
conditional probability for the weight of those phrases. A 
phrase “abc” has two possible weights from P(“c”| “ab”) 
and P(“bc”| “a”), from which the higher value is chosen. 
They also allowed gaps within a phrase. Even with the 
algorithm’s exhaustive examination, its performance is, as 
will be shown later, lower than our method. 

Zamir’s algorithm [23] uses only frequency 
information. They collect neither too frequent nor too rare 
phrases. This method needs two user-defined parameters: 
one for removing too rare or too frequent words and the 

other for selecting phrases out of all possible phrases. 
However, our method does not need any parameters. 

Chan’s phrase-finding algorithm [2] calculates the 
correlation values of all pairs. The main drawback of this 
method resides in its incompleteness. Suppose there is a 
string S=“abaxbxaxxbxaxxxb…xxbbxbxbxxbxxxb…”, 
where ‘a’ and ‘b’ represent words, and ‘x’ represents any 
word. If all correlations between ‘a’ and ‘b’ with 1 
through 4 distances, and correlations between ‘b’ and ‘b’ 
with 1 through 4 distances have values higher than the 
threshold, Chan’s algorithm will generate a word “abbbb” 
that does not exist in the string. These cases are very 
unlikely to happen in a normal article such as newspaper 
or journal article. But web pages contain lists of similar 
product names or tables that just arrange a few different 
repeating words many times. We experienced these non-
existing words in our experiment such as “test pass test”, 
“student test pass”, “teach assist teach class”, etc. Another 
disadvantage of Chan’s algorithm is that it requires a user-
defined maximum phrase length. Chan [2] implemented 
the algorithm in time O(D2), where D is the number of 
distinct words, while our implementation consumes O(N), 
where N is the size of an input sequence. 

 

3. Variable-length phrases 
 

Our algorithm consists of two components: the main 
algorithm and the correlation function. In preparation for 
VPF, we extract words from a web page visited by the 
user, filter them through a stop list, and stem them 
[1,2,8,23]. Other phrase-finding algorithms also require 
these pre-processing steps. 

 

3.1. VPF Algorithm 
 

Our algorithm adds words one by one to the phrases found 
in a previous stage – each stage corresponds to each 
recursion in the VPF algorithm. One might insist that each 
phrase P{m} of length m has the form P{m-1}w, where w 
is one word and P{m-1} is a phrase of length m-1. Since 
the phrase P{m-1}w is defined by the correlation between 
P{m-1} and w, it is possible that the correlation exists 
between a non-phrase P{m-1} and a word w. That is, 
P{m-1} is not a phrase, but can be extended into a phrase 
of length m. If this is possible, it is also possible that even 
if there exists a phrase, P{m}, in a document, the phrase 
P{m} could not be generated because P{m-1} does not 
exist. For example, there exists a phrase “wireless 
powerful computer” in a web page. But, since “wireless 
powerful” is not a phrase, it is possible that the phrase 
could not be generated. However, if the phrase is 
meaningful/important enough, the sub phrases “wireless 
powerful” and “powerful computer” will be generated. 
Next, “computer” will be added to “wireless powerful”. 
To relieve this problem, we calculate the threshold once at 



the beginning – this means the threshold is consistent. If 
the correlation value of “wireless powerful” is lower than 
the value of “wireless powerful computer” then the shorter 
phrase will be removed at a pruning stage.  

Our algorithm receives a sequence of words as input 
and returns meaningful phrases. It combines words into 
phrases until it generates no more phrases. Figure 1 
illustrates the pseudo code for the variable-length phrase-
finding algorithm (VPF). It uses four main variables – List, 
SEQ, Corr, and Fitness. The List variable stores all 
collected phrases in a Hash attribute. Each element 
(phrase) of the Hash attribute keeps correlation value in 
sim attribute and the position list in posi attribute. VPF 
first makes a linked list (SEQ) with an input example. 
Each word and word position are stored in each node in 
the linked list. Then, all 1-gram distinct words are stored 
in List[1].Hash. Corr is a chosen correlation function and 
Fitness is a function that measures whether a phrase is 
valid or not. The List , SEQ, Corr and Fitness are passed 
to BeSpecific procedure and this finds all phrases. Once 
the phrases are acquired, they are pruned. The pruning 
process simply removes all sub-phrases that have a sim 
value lower than the sim value of the super-phrases. 

The BeSpecific procedure receives six parameters: List 
that stores all phrases; L which is the length of phrases 
(initial value is 2); thre which keeps the calculated 
threshold value differentiating “strong” relations from 
“weak” relations (initialized to 0); SEQ which stores the 
linked list; Corr and Fitness. BeSpecific recursively 
creates new sequences by removing nodes that are not in 
the Hash table generated in the previous stage, and also by 
removing consecutive nodes whose lengths are shorter 
than L. Since it removes words that are not in the Hash 
table generated in the previous stage, there can be gaps 
between nodes. Once the new sequence is generated, it 
collects all L-grams having no gaps from the sequence. 
The threshold is calculated when L=2 only once by 
averaging all correlation values between the first and 
second word in each element in List[2].Hash. The for loop 
removes any element with low correlation values (sim) 
from Hash. The sim property of p keeps the correlation 
between a sub phrase, p[1..L-1], and the last word, p[L], 
where p is a phrase consisting of L words. For example, if 
p=“computer science seminar”, then p[1..n-1]=“computer 
science” and p[n]=“seminar”. The Intersection counts all 
adjacent points based on the distance. The intersection 
between the positions of p[1..L-1] and p[L] becomes the 
positions of p. The BeSpecific procedure recursively 
increases the phrase length L until Hash become empty. 
We can also apply various correlation functions in the 
place of Corr. The Fitness function gets the frequency of 
a phrase as an input and returns true or false. We use a 
simple Fitness function that returns false if the input is 0 
and true otherwise. 

In order to improve the phrase-selection accuracy, we 
need to calculate for each word the percentage that a word 
can come before any other words and the percentage that 
the word can come after any other words, called pre-
percentage and post-percentage respectively. The idea is 
that if a word occurred at the end of a sequence, then this 
word lose his one chance to come before any other words, 
so we adjust the pre-percentage of the word by deducting 
one from the number of occurrences of the word. The 
post-percentage is vice versa. We can view a string S[1..n] 
of n consecutive words as two sub strings, Spre=S[1..n-1] 
and Spost=S[2..n]. Pre- and post-percentage of w can be 
computed in time O(1), when we know all the positions 
where w occurred: 

wpre-percentage= Frequency of w in Spre / |Spre| 
wpost-percentage= Frequency of w in Spost / |Spost|. 

 
Input: Example– a sequence of words 
Output: Collected phrases 
Function VPF (Example) return phrases 
 SEQ– linked list, each node has a word and a 

position.  
 List– array of Hash table, each word in a Hash 

has sim and posi attributes. 
 Corr- a correlation function 
 Fitness- a function that measures whether a 

phrase is valid or not 
1.  SEQ←linked list made by the input Example 
2.  List[1].Hash←store all 1-grams, each word 

keeps its positions 
3.  BeSpecific(List, 2, 0, SEQ, Corr, Fitness) 
4.  Prune phrases in the List 
5.  Return all phrases in the List 
End Function 
 
Input: List- store array of Hash table 
 L- length of phrase, initialized to 2 
 thre- threshold value, initialized to 0 
 SEQ- linked list, the size reduces every 

iteration 
BeSpecific(List, L, thre, SEQ, Corr, Fitness) 
1.  if List[L-1].Hash is empty then stop 
2.  SEQ←remove nodes that are not in the List[L-

1].Hash and also remove consecutive nodes 
which length is shorter than L 

3.  List[L].Hash←Collect all L-grams from SEQ 
4.  if L=2 then thre←Average correlation across 

all words in List[2].Hash 
5.  for each p in List[L].Hash do 
6.    A ← pre-percentage of p[1..L-1] 
7.    B ← post-percentage of p[L] 
8.    p.sim←Corr(A,B,A∩B) 
9.    remove any p for which p.sim is lower then 

thre 
10.   p.posi←Intersection of p[1..L-1].posi and 

p[n].posi with distance of L-2 
11.   remove any p for which Fitness(p.posi) 

does not satisfy 
12. BeSpecific(List, L+1, thre, SEQ, Corr, 

Fitness) 
End Procedure 

Figure 1. VPF algorithm 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Example of VPF 

The most expensive part in the BeSpecific procedure 
will be scanning a sequence when L is 2. Even though the 
BeSpecific is called L times, as L increases the size of the 
sequence decreases drastically. The Corr function has 
O(T) time complexity, where T is the position length. But, 
as T increases the number of element in a Hash decrease. 
We, therefore, can claim that the time complexity of VPF 
in general case is roughly: O(S), where S is the sequence 
size. 

For example, in Figure 2 we have an input string S = 
“abcdabefbcdghabcd,” in which each letter represents a 
word. The correlation function simply returns the 
frequency of a phrase using a threshold value of 1.5. 
List[1].Hash contains all distinct words. List[2].Hash 
originally contains all possible 2-word phrases, then 
removes any phrase that occur less than 2 times, resulting 
in {“ab”, “bc”, “cd”}. We remove all words that are not in 
the List[2].Hash from the 1st SEQ resulting in 2nd SEQ. 
List[3].Hash contains all 3-word phrases, and then remove 
“cda” and “dab” because they occur only once. When we 
came to BeSpecific for the 3rd time, we removed “*abc*” 
from the 3rd SEQ, because their consecutive length is less 
than 4 – the size of L increases every time we come to 
BeSpecific. When we run the 4th BeSpecific, we can 
remove all phrases (“abcda” and “bcdab”) in List[5].Hash, 
because they occur only once. Since the 5th Hash is empty, 
the BeSpecific stops. After the BeSpecific, the List keeps 
{“ab”, “bc”, “cd”, “abc”, “bcd”, “abcd”}. Suppose the 
pruning removes all sub-phrases that have a sim value 
lower than or equal to the sim value of the super-phrases. 
The occurrences of phrases are: “ab”-3, “bc”-3, “cd”-3, 
“abc”-2, “bcd”-3, and “abcd”-2. We remove “bc” and 
“cd” because “abc” subsumes them and has equal 

frequency. “abc” is removed by “abcd” with the same 
reason. The final returned phrases are {“ab”, “bcd”, 
“abcd”}. 

 

3.2. Correlation Functions 
 

The VPF algorithms build phrases; and correlation 
functions actually calculate the weight of a phrase. The 
correlation functions are important in terms of selecting 
more meaningful phrases. The VPF is able to cooperate 
with many different existing correlation functions, and it 
can be hard to choose one correlation function out of 
many. In this section, we describe several key properties 
of a good correlation function. Much of the statistical 
work in building multi-word features focuses on co-
occurrence [3,17]. All correlation measures are not 
equally good at capturing the dependencies between 
different events [20]. It is because each correlation 
function biases toward different individual event 
probabilities and joint probabilities. Piatetsky-Shapiro 
[16] has proposed three key properties that a good 
correlation function, F, for events A and B should satisfy: 
 

P1: if A and B are statistically independent, 
then F is 0; 
P2: F monotonically increases with P(A,B) when 
P(A) and P(B) remain the same; 
P3: if P(A) (or P(B)) increases when the rest 
of the parameters (P(A,B) and P(B) (or P(A))) 
remain unchanged, then F monotonically 
decreases.  

 

Statistical independence can be measured by the 
determinant operator, where Det (A,B) = A∩B×A�∩B� − 
A∩B�×A�∩B. Thus, a singular diagram is independent 
when its determinant is equal to zero [19]. Another 
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important operation in finding phrases is distinguishing 
between positive and negative correlations (P4). 
Measuring their cross product ratio (CPR) can assess the 
significance of the correlation between A and B [17] and 
is defined as: 

)',(),'(
)','(),(

log),(log
BAPBAP
BAPBAP

BACRP =
 

Negative correlation has a negative log CPR value. P4 is 
that F can distinguish positive and negative correlation of 
A and B. Since positive correlation is much more 
important than negative correlation in finding phrases, we 
only measured the change of correlation values over 
positive correlation. 

Tan et al. [20] illustrated those properties and extended 
them to each of the existing measures to determine if the 
existing measure satisfies the properties required [11]. 
Some of these properties have been extensively 
investigated in the data mining literature [10,19,20]. We 
examined 32 correlation functions of properties and 
cooperated them with phrase-finding algorithms. A 
complete list of the correlation functions to be examined 
in this study is given in Table 6 in Appendix A.  

 

4. Experiments 
 

4.1. Evaluation Data and Procedures 
 

We use five New York Times articles and five Web pages 
collected from our department server. We use web pages 
to test, because contents in a web page differ from the 
content found in normal article. The data used in this 
study is accessible at 
http://my.fit.edu/~hokim/conference/phrase/dataset.pdf. 
The article size was about 2 pages and we asked 10 
human subjects, other than the authors, to read the 10 
articles. Each article contains about 1,300 words - 720 
words after removing stop-words. Since we assigned 6 as 
a threshold of maximum phrases length for Ahonen’s and 
Chan’s, the total possible number of phrases for each 
article is approximately 3600 (=720×5). Of the 10 
subjects, 4 were graduate students from a department of 
computer sciences and 6 were undergraduates with 
various majors.  

We asked the 10 human subjects to choose their top 10 
meaningful phrases for each article or Web page. One 
might insist that the results will be different depending on 
how 10 humans are chosen. If all volunteers have the 
same background the matching rate will be higher than the 
normal case. However, since we are not comparing the 
algorithm with humans, but comparing among algorithms, 
it does not matter how we chose the 10 volunteers. 
Furthermore, since the algorithm finds phrases statistically 
that cover general human meaningfulness, we choose 10 
human subjects arbitrarily. 

The instruction that we gave them were: 

Identify the top 10 "meaningful/important" 
phrases for each article. 
Phrases are defined as two or more adjacent 
words that are meaningful, for example, 
"computer science," "florida institute of 
technology," ... The definition of meaningful 
is up to you. 

 

We will measure the number of matches between the 
human subjects’ selections and different correlation 
functions’ selections as well as different phrase-finding 
algorithms. 

We also count average matching of humans – in this 
case, we divided the sum by 9. There are cases for the 
human or algorithm to select less than 10 phrases. In order 
to be fair in these cases, we use an additional adjustment 
function. We also attempt to prevent a measure from 
being scored 1 by finding one phrase and having one 
matched phrase by chance – the results are too sensitive. 
We, therefore, decided to give a lower incentive as a 
measure finds fewer phrases 20% at the most. For 
example, if there are 5 matches out of 10, the number of 
matching is 5×1/10. If there are 5 matches out of 9, then 
we assigned 5×1/9. But, if there are 5 matches out of 8, 
then we assigned 5×1/8.5. The generalized formula is: 

f

m

−+
=

102
2

8
 f)(m,function  Adjustment

 

, where m is the number of matched words and f is the 
number of selected words. 

We also applied different correlation functions to 
Ahonen’s algorithm to see if the difference of the 
performance depended on the correlation functions. 
Ahonen used two different correlation functions: 
conditional probability (Confidence, F11) for filtering 
phrases and mutual confidence (F32) for ordering the 
collected phrases determining which phrase is more 
important than the other. Since he used fixed user-defined 
threshold (0.2) for filtering the phrases, we only varied the 
correlation function used for ordering phrases. 

 
4.2. Evaluation Criteria 

 
We evaluate the meaningfulness of phrases. We believe 
the closer a match comes to our set of human-selected 
phrases, the better the phrase-finding algorithm is in terms 
of finding meaningful phrases. To evaluate the correlation 
functions for each phrase-finding algorithm, we have two 
evaluation criteria: the number of exact matches and the 
number of simple matches. We have 128 methods (4 
algorithms × 32 correlation functions) – the 4 algorithms 
are VPF, Chan’s, Ahonen’s, and Ahonen’s with gap, and 
the correlation functions F1 through F32 are in Appendix 
A. 



Table 1. With pruning vs. without pruning 
Avg. across humans and articles Ratio of Rank Method 
With-pruning Without-pruning Improv. 

1 VPF_F25 0.933 0.883 5.7% 
2 VPF_F16 0.920 0.866 6.2% 
3 VPF_F28 0.912 0.871 4.7% 
4 VPF_F8 0.824 0.707 16.5% 
5 VPF_F10 0.819 0.825 -0.7% 
6 VPF_F29 0.814 0.810 0.5% 
7 VPF_F27 0.812 0.796 2.0% 
8 VPF_F24 0.812 0.758 7.1% 
9 VPF_F13 0.772 0.666 15.9% 

10 VPF_F26 0.726 0.683 6.3% 
 
The number of exact matches of a method is measured 

by the percentage of the matches between the human’s and 
a method’s. We count each match with a human’s and 
then average the 10 compared results. This counting 
approach assigns more weights to the more meaningful 
words – more meaningful word means that they were 
selected by more human subjects. If a phrase is selected 
by several human subjects, every match is counted. 
Therefore, finding more popular phrases increases the 
matching average. The number of matches will be very 
low, because only 10 phrases selected by a method and a 
human respectively are going to be compared. 

The number of simple matches counts the matched 
phrases against the list collected by all human (i.e., the 
union of the words from the 10 human subjects). The list 
will be less then 100 because some phrases can overlap. 
Simple match is not directly related to finding more 
meaningful phrases, because this count removes the 
popularity information. We count this only to support the 
result of the exact match. 

Comparison of the results is done using a matched-pair 
design [18]. In this design, the top ten phrases in the 
ranking generated are compared. The comparison, which 
simply identifies if one group of ten phrases is better than 
the other, is on the basis of precision in other words the 
number of matched phrases. This type of evaluation has 
the following advantages: It is realistic in the sense that 
many information retrieval systems are interested in the 
top group. Traditional recall/precision tables are very 
sensitive to the initial rank positions and evaluate entire 
rankings [5]. Another advantage is that significance 
measures can be readily used. 

 

5. Results and analysis 
 

Before comparing our algorithm with existing methods we 
need to decide whether to use pruning or not. After that 
we will be able to perform the comparison. In evaluating 
our method against related algorithms we use different 
scoring methods: exact match and simple match.  

 

5.1. With-pruning vs. Without pruning 
 

The VPF algorithm has a pruning function. The results 
differed whether we used the pruning function or not. We 
compared them by comparing the top 10 best methods 
with exact match (Sec 6.2). By composing the algorithm 
and 32 correlation functions (in Appendix A), we 
generated 32 methods. We ranked the top 10 methods 
using “with pruning” and presented the corresponding 
results of “without pruning” next in Table 1. The values 
are the average of matches across 10 human subjects and 
10 articles. Most methods yielded improved results when 
they had been pruned. The top method VPF with F25 had 
improved its performance by 5.7%. With pruning is 
statistically significantly better than without pruning with 
a 95% confidence interval (P=0.004).  

 

5.2. Analysis with Exact Match 
 

Because “with-pruning” achieves a higher matching rate 
than “without-pruning”, we decided to use pruning in our 
algorithms for the rest of our experiment. 

 
5.2.1. Top 10 methods. The main purpose of the analysis 
in this section is to choose the best method. Which 
method is the best is the most interesting question. We 
averaged the results from 10 articles and 10 human 
subjects and sorted by the average to rank all 128 
methods. We presented the results in Table 2 and included 
the rank, methods used, and the average. Each method 
was composed of an algorithm and a correlation function. 
Notice that, we also presented the results of previous 
methods. Ahonen used correlation function F32. He also 
introduced a method with gaps. The row Ahonen_gap 
represented the results using Ahonen’s method allowing 
gaps within a phrase. 

The best method was the combination of VPF and 
correlation functions F25 followed by F16 and F28 – all 
those three correlation functions satisfied Piatetsky-
Shapiro’s three desirable properties and distinguish 
positive from negative correlations. The best method VPF 
with F25 matched 0.93 phrases on average with the 
phrases selected by a human subject. In the next section 
we measured the average number of matching phrases 
between human subjects and compared those results to the 
results from methods. 

Interestingly, VPF won the top 3. Chan’s algorithm 
occupied the next ranks. Another observation was that the 
correlation functions F25, F16, and F28 that marked high 
rank with VPF also marked high rank with Chan’s. This 
observation implied that the performance also depends on 
the correlation functions. 

 



Table 2. Ranked by average across humans and 
articles – Exact match 
Rank Method Avg. Rank Method Avg. 

1 vpf_F25 0.933 13 ahonen_F6 0.797 
2 vpf_F16 0.920 15 ahonen_F10 0.779 
3 vpf_F28 0.912 15 ahonen_F11 0.779 
4 chans_F16 0.858 15 ahonen_F12 0.779 
5 chans_F25 0.856 15 ahonen_F17 0.779 
6 chans_F29 0.850 15 ahonen_F26 0.779 
7 chans_F28 0.848 20 ahonen_F20 0.774 
8 vpf_F8 0.824 20 ahonen_F23 0.774 
9 vpf_F10 0.819 24 ahonen_F32 0.767 

10 vpf_F29 0.814 105 ahonen_gap_F32 0.452 
 

Table 3. Exact match across humans 
 Avg. across 10 articles 

Human best 1.48 
Human avg. 1.30 

Human worst 1.03 
 
 
 

Unfortunately, Ahonen’s algorithm ranked 24 and 
Ahonen_gap 105. These methods matched 0.767 and 
0.452 numbers of phrases with human subjects 
respectively. The low performance with gap is the same 
phenomenon as shown in [1]. We conducted t-Test (paired 
two sample for means) between VPF with F25 and 
Ahonen with F32. There was a clear statistically 
significant difference between the two methods with 95% 
confidence (P=0.016). Therefore, we can conclude that 
VPF with F25 found statistically significantly more 
meaningful phrases than Ahonen’s previous algorithm.  

Ahonen’s algorithm with other correlation functions 
received higher ranks such as F6, F10, F11, F12, F17, 
F26, and F20 as shown in Table 2. They all ranked 13, 15, 
and 20, which are higher than Ahonen’s original method 
(24). This indicates Ahonen’s algorithm can be improved 
upon by using different correlation functions. 

 

5.2.2. Comparing with human subjects. To see the 
average number of matches among human subjects is 
interesting and also provides insight into interpreting the 
average number of matching by the algorithm. For 
instance, if an algorithm matches 1 on average and the 
human matches 7, then the performance of the algorithm 
is almost negligible no matter how much higher its 
performance is compared to others. 

We presented the best, average, and worst matching 
human results in Table 3. The results told us that only 1.3 
phrases out of 10 picked by a human subject matched with 
the phrases picked by the others on average. This is not an 
unrealistic result. Considering that each document has 
approximately 1,300 words, more than 7779 possible 
phrase combinations exist and each person has a different 
background, matching 1.3 phrases out of 10 on average is 

Table 4. Ranked by average across humans and 
articles – Simple match 
Rank Method Avg. Rank Method Avg. 

1 vpf_F28 3.696 12 ahonen_F10 3.195 
2 vpf_F25 3.689 12 ahonen_F11 3.195 
3 vpf_F13 3.672 12 ahonen_F12 3.195 
4 vpf_F8 3.656 12 ahonen_F17 3.195 
5 vpf_F27 3.575 12 ahonen_F26 3.195 
5 vpf_F24 3.575 17 ahonen_F6 3.181 
7 vpf_F21 3.377 23 ahonen_F2 3.025 
8 vpf_F29 3.342 24 ahonen_F20 3.018 
9 vpf_F16 3.321 24 ahonen_F22 3.018 

10 chans_F29 3.282 24 ahonen_F23 3.018 
22 chans_F25 3.053 33 ahonen_F32 2.934 

   118 ahonen_gap_F32 1.755 
 

Table 5. Simple match across humans 
 Avg. across 10 articles 

Human best 6.3 
Human avg. 5.6 

Human worst 4.7 
 

 a extraordinarily reasonable result. Our method achieved 
a result (0.93), which was close to the typical human 
result. We also conducted a t-Test with the human average 
and VPF with F25. The human subjects’ average was 
statistically significantly better than the best result 
obtained by the algorithm with a 95% confidence interval 
(P=0.02). It would be interesting to see if the worst case 
of human matching was higher than the algorithm’s. The 
answer was no. It was not statistically significantly better 
than the machine’s. This result indicates that human 
matching is better than the matching of algorithms in 
general but not always. 
 

5.3. Analysis with Simple Match 
 

This simple match count showed similar ranking to the 
exact match. VPF with F28 followed by F25 and F13 had 
the top matching rates: 3.70, 3.69, and 3.67 respectively 
as shown in Table 4. Since simple match uses a list of 
meaningful phrases by taking the union of phrases 
selected by the 10 human subjects, average number of 
matching phrases is higher than the average by exact 
match. Chan’s with F25 ranked 22 (3.05 matching rate), 
Ahonen without gap ranked 33 (2.93), and Ahonen with 
gap ranked 118 (1.76) out of 128. Chan’s original method 
ranked 22 (3.053). These results also told us VPF found 
more phrases than Ahonen’s and Chan’s. The result from 
simple match also indicated that Ahonen’s algorithm 
could be improved by incorporating different correlation 
functions.  

We also attempted to compare the methods’ results 
with the results from humans. Human matched the list 5.6 
out of 10 on average; the best and worst cases are 6.3 and 



4.7 as shown in Table 5. The result 3.69 of method VPF 
with F25, which was the highest score with exact match, 
was quite significant considering that we only used the 
statistical information. 

 
 6. Conclusions 
 
We proposed a variable-length phrase-finding 

algorithm, which find more meaningful phrases – VPF – 
than older methods – Ahonen’s and Chan’s algorithms. 
We also coordinated these algorithms with 32 different 
correlation functions. They regenerate sequences 
recursively with the words selected in the previous stage 
and search for increased length of phrases in time O(N), 
where N is the page size. Since our algorithm uses average 
as a threshold and stops when the length of phrases does 
not increase, no user-defined parameter is required.  

In order to choose the best method, we conducted an 
experiment by asking 10 human subjects to select 10 
phrases from 10 different articles. We compared the 
number of matching phrases chosen by a method to those 
phrases chosen by 10 human subjects. By comparing the 
top 10 best measures (matched-pair design [18]), we 
observed that when we add pruning, the algorithm (VPF) 
had improved performance. 

We concluded that VPF with F25 found a statistically 
significantly greater number of meaningful phrases than 
Ahonen’s previous method. We suspect the filtering stage 
of Ahonen’s algorithm filtered many meaningful phrases 
out or their weighting scheme using the length of a phrase 
and tightness [1] distracted the correlation value of a 
phrase. Interestingly, the correlation functions F25 and 
F28 were both included in the top 10 in both exact match 
and simple match. This result indicates the correlation 
functions F25 and F28 had higher matching rates than the 
other correlation functions. These two correlation 
functions both satisfied desirable properties for phrases. 
We can also improve Ahonen’s algorithm by 
incorporating correlation functions F10, F11, F12, F17, 
F26, F6, and F20. Those functions resulted in a higher 
match of average scores for both exact match and simple 
match experiments. 

The performance of our method varied depending on 
the articles selected. We currently do not understand the 
reason for the variance in performance over different 
articles. We assume it is due to the intrinsic characteristics 
of an article, because the human subjects’ results are also 
different depending on the articles. Phrases in VPF grow 
backwards; however, in the future we will devise an 
algorithm that grows both forwards and backwards. 
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Appendix A 

Table 6. Correlation functions 
 Name Formula 

1 φ-coefficient (CE) (AB - (A × B)) / Sqr(A × B × (1 - A) × (1 - B)) 

2 Goodman-Kruskal’s (MAX(AB, AB�) + MAX(A�B, A�B�) + MAX(AB, A�B) + MAX(AB�, A�B�)  
- MAX(A, A�) - MAX(B, B�))  /  (2 - MAX(A, A�) - MAX(B, B�)) 

3 Odds ratio (OR) D((AB × A�B�), (AB� × A�B)) 

4 Yule’s Q (YQ) (AB × A�B� - AB� × A�B) / (AB × A�B� + AB� × A�B) 

5 Yule’s Y (YY) (Sqr(AB × A�B�) - Sqr(AB� × A�B)) / (Sqr(AB × A�B�) + Sqr(AB� × A�B)) 

6 Kappa (k) (KP) (AB + A�B� - (A × B) - (A� × B�)) / (1 - (A × B) - (A� × B�)) 

7 Mutual Information (M) 
(AB × log2(AB / (A × B)) + AB� × log2(AB� / (A × B�))  

+ A�B × log2(A�B / (A� × B)) + A�B� × log2(A�B� / (A� × B�)))  
/ (MIN(-(A × log2(A) + A� × log2(A�)), -(B × log2(B) + B� × log2(B�)))) 

8 J-Measure MAX(AB × log2(P(B|A) / B) + AB� × log2(P(B�|A) / B�), AB × log2(P(A|B) / A) + A�B × log2(P(A�|B) / A�)) 

9 Gini index (G) MAX(A(pow(P(B|A),2) + pow(P(B�|A),2)) + A�(pow(P(B|A�),2) + pow(P(B�|A�),2)) - pow(B,2) - pow(B�,2),  
B(pow(P(A|B), 2) + pow(P(A�|B), 2)) + B�(pow(P(A|B�), 2) + pow(P(A�|B�), 2)) - pow(A, 2) - pow(A�, 2)) 

10 Support AB 

11 Confidence (c) MAX(P(B|A), P(A|B)) 

12 Laplace (L) MAX((100 × AB + 1) / (100 × A + 2), (100 × AB + 1) / (100 × B + 2)) 

13 Conviction (CV) MAX((A × B�) / AB�, (B × A�) / A�B) 

14 Interest (IT) AB / (A × B) 

15 Cosine (IS) AB / Sqr(A × B) 

16 Piatetsky-Shapiro’s (PS) AB - A × B 

17 Certainty Factor (CF) MAX((P(B|A) - B) / (1 - B), (P(A|B) - A) / (1 - A)) 

18 Added Value (AV) MAX(P(B|A) - B, P(A|B) – A) 

19 Collective strength (S) ((AB + A�B�) / (A × B + A� × B�)) × ((1 - A × B - A� × B�) / (1 - AB - A�B�)) 

20 Jaccard AB / (A + B - AB) 

21 Klosgen (KL) Sqr(AB) × MAX(P(B|A) - B, P(A|B) - A) 

22 MI Log2(AB / (A × B)) 

23 STC_MIN MIN(P(B|A), P(A|B)) 

24 EMI AB × log(AB / (A × B)) + AB� × log(AB� / (A × B�))  
 + A�B × log(A�B / (A� × B)) + A�B� × log(A�B� / (A� × B�)) 

25 AEMI AB × log(AB/ A × B) - AB� × log(AB�/ A × B�)  
- A�B × log(A�B/ A� × B) + A�B� × log(A�B�/ A� × B�) 

26 dMAX AB × MAX(P(B|A), P(A|B)) 

27 dMI AB × log2(AB / (A × B)) 

28 AEMI3 AB × log(AB/ A × B) - AB� × log(AB�/ A × B�) - A�B × log(A�B/ A� × B) 

29 dMIN AB × MIN(P(B|A), P(A|B)) 

30 dMIN2 1 + AB × log(MIN(P(B|A), P(A|B))) 

31 NegativeCosine (1 - AB) / Sqr((1 - A) × (1 - B)) 

32 MutualConfidence (AB / A + AB / B) / 2 

 


