Nonchronological Backtracking in Stochastic Boolean Sasifiability *

Stephen M.

Majercik

Bowdoin College
Brunswick ME 04011, USA
smajerci@bowdoin.edu

Abstract

Stochastic Boolean satisfiabilityS§AT) is a general-
ization of satisfiability $AT) that has shown promise as
a vehicle for encoding and competitively solving proba-
bilistic reasoning problems. We extend the theory and en-
hance the applicability oSsAaT-based solution techniques
by 1) establishing theoretical results that allow the incor
poration of nonchronological backtracking (NCB), and lay
the foundation for the incorporation of learning, into an
SSAT solver, 2) implementin§oLVESSAT-NCB, an NCB-
augmentedSsAT solver, and 3) describing the results of
tests of SOLVESSAT-NCB on randomly generate®sAT
problems andSsAT encodings of probabilistic planning
problems. Our experiments indicate that NCB has the po-
tential to boost the performance of &sAT solver, both
in terms of time, yielding speedups of as much as five or-
ders of magnitude, and space, allowing the solutio84T
problems with larger solution trees. In some cases, however
NCB can degrade performance. We analyze the reasons fo
this behavior, present initial results incorporating a lec
nique to mitigate this effect, and discuss other approaches
to addressing this problem suggested by our empirical re-
sults.

1. Introduction

Stochastic Boolean satisfiability $8T), suggested by
Papadimitriou [15] and explored further by Littman, Majer-
cik & Pitassi [11], is a generalization of satisfiabilitgAT)
that is similar to quantified Boolean satisfiability $@r).
The ordered variables of the Boolean formula in 816
problem, instead of being existentially or universally gua
tified, are existentially orandomlyquantified. Randomly
guantified variables afEr ue with a certain probability, and

* Appears in theProceedings of the Sixteenth International Confer-
ence on Tools With Atrtificial Intelligenceages 498-507, IEEE Press,

2004.

[

an SBAT instance is satisfiable with some probability that
depends on the ordering of and interplay between the exis-
tential and randomized variables. The goal is to choose val-
ues for the existentially quantified variables that maxaniz
the probability of satisfying the formula.

Like QsAT, SsAT is PSPACE-complete, so it is theoret-
ically possible to transform many probabilistic plannimgla
reasoning problems of great practical interest insaSin-
stances; e.g. plan evaluation, best polynomial-horizan pl
and Bayesian inferencing [11]. While such theoretically
guaranteed translations are not always practical, previou
work has shown that, in some cases, the transformation, and
the solution of the resultings\T instance, can be done ef-
ficiently, providing an alternative approach to solving the
original problem that is competitive with other techniques

Majercik & Littman [12] showed that a probabilis-
tic, partially observable, finite-horizon, contingent mpla
ning problem can be encoded as asA$ instance such
that the solution to the $T instance yields a con-
tingent plan with the highest probability of reaching
a goal state. They have used this approach to imple-
ment ZANDER, a probabilistic contingent planner com-
petitive with three other leading approaches: techniques
based on partially observable Markov decision processes,
GRAPHPLAN-based approaches, and partial-order plan-
ning approaches [12]. NotablgaANDER achieves this com-
petitive level using a relatively naives&T solver that
does not attempt to adapt many of the advanced fea-
tures that make today’s state-of-the-aAT solvers so
efficient.

SSAT has also shown promise in the development of al-
gorithms fortrust managemern{M) systems. TM systems
are application-independentinfrastructures that caareaf
access control policies within and between organizations
to protect sensitive resources from access by unauthorized
agents. State-of-the-art TM systems have significantdimit
tions, e.g. difficulty in expressing partial trust, and aklac
of fault tolerance that can lead to interruptions of service
Freudenthal and Karamcheti have shown that stochastic sat-
isfiability can form the basis of a TM system that addresses

these limitations [5], and work is in progress to develop ef- can be set arbitrarily by a solver, but the value of a randomly

ficient solution techniques for thes&T problems generated
by such a system.

Roth [16] showed that the problem of belief net infer-
encing can be reduced toASAT, a type of SAT problem.
Thus, in principle, an SAT solver could solve the inferenc-
ing problem by solving the MJisAT encoding of that prob-
lem. That this approach would be a&fficientalternative

guantified variable is determined stochasticallytyan ar-
bitrary rational probability that specifies the probalgittiat
v; Will be Tr ue. In this paper, we will use, x-, . . . for ex-
istentially quantified variables and, -, . . . for randomly
guantified variables.

The matrix¢ is assumed to be in conjunctive normal
form (CNF), i.e. a set ofn. conjuncted clauses, where each

to standard belief net inferencing algorithms is supported clause is a set of distinct disjuncted literalslit&ral [is ei-
by recent work describing a DPLL-based approach to solv- ther a variable (apositiveliteral) or its negation-v (aneg-
ing belief net inferencing problems that provides the same ative literal). For a literall, |I| is the variablev underlying
time and space performance guarantees as state-of-the-athat literal and is the “opposite” of,, i.e. if L is v, | is —v;
exact algorithms and, in some cases, achieves an exponerif [is —v, [is v; A literal [is Tr ue if it is positive and|!|

tial speedup over existing algorithms [2, 1].
Thus, a more efficient $AT solver would potentially

has the valu@r ue, or if it is negative andl| has the value
Fal se. A literal is existential(randomizedl if |I| is exis-

give us better solution methods for a number of interesting, tentially (randomly) quantified. The probability that a fan
practical problems. In addition, the development of such adomly quantified variable has the valu@r ue (Fal se)
solver would be valuable for the insights it might provide is denotedPr[v] (Pr[—v]). The probability that a random-

into solving probabilistic reasoning problems, in general
and otheSPACE-complete problems, such as@r.
The AT solver that forms the basis of the planaen -

ized literall is Tr ue is denotedPr[l]. As in asAT problem,
a clause is satisfied if at least one literalrsue, and unsat-
isfied, orempty if all its literals areFal se. The formulais

DER[12] is essentially the same as the solver described bysatisfied if all its clauses are satisfied.

Littman, Majercik & Pitassi [11]. This solver is an extensio
of the Davis-Putnam-Logemann-Lovelagdr solver [4],

The solution of an SAT instance is an assignment of
truth values to the existentially quantified variables that

adapting unit propagation, pure variable elimination, and yields the maximum probability of satisfaction, denoted

variable ordering heuristics to thes&r framework. Lack-

Pr[®]. Since the values of existentially quantified variables

ing, however, are features, such as nonchronological back-can be made contingent on the values of randomly quanti-

tracking, learning, and literal watching, that have beexi-pr
itably incorporated intsAT [3, 14] and BAT [8, 9, 10, 6]

fied variables that appear earlier in the prefix, the solution
is, in general, dree that specifies the optimal assignment

solvers. In this paper, we describe how nonchronologi- to each existentially quantified variahle for each possi-

cal backtracking (NCB) can be incorporated into asn$

ble instantiation of the randomly quantified variables that

solver. In Section 2, we describe the stochastic satisfiabil preceder; in the prefix. A simple example will help clar-
ity problem. In Section 3, we present the theoretical result ify this idea before we defin@r[®] formally. Suppose we

that allow the incorporation of NCB into ars&T solver. In

Section 4, we describe empirical results obtained by apply-

ing SOLVESSAT-NCB, an NCB-augmentedsarT solver, to
randomly generateds3\T problems and SAT encodings of
probabilistic planning problems. In the last section, we di
cuss further work.

2. Stochastic Satisfiability

An SSAT problem® = Qqv; ... Qnv,¢ is specified by
1) aprefix Qiv1 ... Q,v, that orders a set ofi Boolean
variablesV = {vy,...,v,} and specifies the quantifi€};
associated with each variablg, and 2) amatrix that is a
Boolean formula constructed from these variaBlégore
specifically, the prefb@Q,v; ... Q,v, associates a quanti-
fier Q;, either existentialy;) or randomizedd "), with the
variablev;. The value of an existentially quantified variable

1 NCB in SsAT is similar to NCB in (BAT, and, to make the simi-
larities clear, we have adapted the terminology and neotaiged by
Giunchiglia, Narizzano & Tacchella for NCB in ST [9].

have the following SAT problem:

oy, 8Ty, Feo{{my, 1}, {o0, 71}, {yn, 22}, {71, 72})

The form of the solution is a noncontingent assignment for
x1 plus two contingent assignments for, one for the case
wheny, is Tr ue and one for the case whenis Fal se. In
this problem;z; should be settdr ue (if z; isFal se, the
first two clauses becomig{y, }, {71} }, which specify that
y1 must be botfTr ue andFal se), andx, should be set to
True (Fal se)if y, is Fal se(Tr ue). Since it is possible
to satisfy the formula for both values gf, Pr[®] = 1.0.
If we add the clauséyr, 22 } to this instance, however, the
maximum probability of satisfaction drops to 023:should
still be set toTr ue, and wheny; is Fal se, x5 should still
be set toTr ue. Wheny; is Tr ue, however, we have the
clauses{{Zz}, {x=2}}, which insist on contradictory values
for z. Hence, itis possible to satisfy the formula only when
y1 is Fal se, and, sincePr[—y;] = 0.3, the probability of
satisfaction Pr[®], is 0.3.

We will need the following additional notation to define

Pr[®] formally. A partial assignment of the variables”

is asequence &f < n literalsly; lo;. . . ; [, such that no two
literals ina have the same underlying variable. Giveand

l; in an assignment, 1 < j implies that the assignment to
;| was made before the assignmenfit¢. A positive (neg-
ative) literalv (—v) in an assignment indicates that the
variablev has the valu@r ue (Fal se). The notationb(«)
denotes the §AT problemd’ remaining when the partial as-
signmenta has been applied t@ (i.e. clauses witAlr ue
literals have been removed from the matfa| se literals

have been removed from the remaining clauses in the ma-

e If [is existential, settingl| such that is Fal se im-
mediately produces an empty clause &hd®] = 0.0,
so the solver should always choose the forced value,
andPr[®] = Pr[®(1)].

e If [is randomized, settind| such that is Fal se im-
mediately produces an empty clause &hd®] = 0.0,
so the solver should always choose the forced value,
and the probability of satisfaction must be reduced by
the probability of the forced value of the randomized
variable; i.e.Pr[®] = Pr[®(l)] x Pr[l].

trix, and all variables and associated quantifiers not in theA literal [is pureif [is active and is inactive. Then:

remaining clauses have been removed from the prefix) and

¢(a) denoteg)’, the matrix remaining when has been ap-
plied. Similarly, given a set of literal&, such that no two

literals in L have the same underlying variable, the nota-

tion ®(L) denotes the $AT problem®’ remaining when
the assignments indicated by the literaldiilhave been ap-
plied to®, and¢(L) denotes’, the matrix remaining when
the assignments indicated by the literald.ilhave been ap-
plied. A literall ¢ « is activeif some clause in(«) con-
tains/; otherwise it isnactive

Given an SAT problem®, the maximum probability of
satisfaction ofp, denotedPr|®], is defined according to the
following recursive rules:

1. If ¢ contains an empty clausy[®] = 0.0.
2. If ¢ is the empty set of clauseBy[®] = 1.0.

3. If the leftmost quantifier in the prefix @b is existen-
tial and the variable thus quantifieckisthen Pr[®] =
max(Pr[®(v)], Pr[®(—v)]).

4. If the leftmost quantifier ing is randomized and
the variable thus quantified is, then Pr[®] =
(Pr(®(v)] x Prv]) + (Pr[®(—v)] x Pr[=v]).

e If [is existential, setting the value ¢ff to disagree
with [will falsify some literals in some clauses. Fal-
sifying a literal in a clause makes it more likely that
that clause will become empty, leading to a probabil-
ity of satisfaction of 0.0, and so decreases (or leaves
the same) the probability of satisfaction of the for-
mula. The probability of satisfaction will be great-
est when the value off| is set to agree with, re-
gardless of whether the assignment is made now or
whenl|!| is encountered in the normal left-to-right eval-
uation of quantifiers (whem will still be pure), so
Pr[®] = Pr[®(1)].

e If [is randomized, there is no comparable simplifica-
tion. Setting a pure randomized variable contrary to its
sign in the formula can still yield a probability of sat-
isfaction greater than 0.0, and this must be taken into
account when computing the maximum probability of
satisfaction.

For additional details, see [11].

Thresholdingcan also boost efficiency [11]. Threshold-

ing computesow andhighthresholds for the probability of

These rules express the intuition that a solver can selecisatisfaction at each node in the solution tree. These thresh

the value for an existentially quantified variable that g¢el

olds delimit an interval outside of which it is not necessary

the subproblem with the higher probability of satisfaction to compute the exact value of the probability of satisfactio
whereas a randomly quantified variable forces the solver toGiven a partial assignment at a node, the solver can re-
take the weighted average of the two possible results. (Asturn “failure” if it establishes thaPr[®(«)] is less than the

an aside, we note that anys@r instance can be solved by
transforming it into an SAT instance—replace the univer-

low threshold, or “success” if it establishes that[® ()]
is greater than or equal to the high threshold. These thresh-

sal quantifiers with randomized quantifiers—and checking olds sometimes allow the solver to avoid exploring the other

whetherPr{®] = 1.0.)

value of a variable after it has explored the first value. i or

There are simplifications that allow an algorithm imple- der to clarify the effect of NCB, we use only a very simpli-

menting this recursive definition to avoid the often infeasi

fied version of thresholding in thes&T solvers described

ble task of enumerating all possible assignments. Of coursein this paper: if the first branch of an existential varialde r
if the empty set of clauses, or an empty clause, is reachedurns a probability of satisfaction of 1.0, the solver caavie
before a complete assignment is made, the solver can imthe other branch unexplored since the highest possible prob

mediately return 1.0, or 0.0, respectively. Further efficie
cies are gained by interrupting the normal left-to-rigrdlev
uation of quantifiers to take advantageuniit andpure lit-
erals. A literall is unitif it is the only literal in some clause.
Then:

ability of satisfaction has already been attained.

These simplifications—unit and pure literals, and sim-

plified thresholding—modify the rules given above for de-
termining Pr(®), but we omit a restatement of the modi-
fied rules for the sake of brevity. These modified rules are

the basis for the following $AT algorithm. For the sake of
brevity, we omit the details of solution tree construction,
dicating that onlyPr[®] is returned. It is important to note,
however, that the implementations of alb& algorithms

reasonk C {l|lis in a} is a subset of the literals in a partial
assignment and is a reason faPr[®(«a)] = p iff for every
set of literalsR’ that agrees witlx on R, Pr[®(R’)] = p.
We say that reasoR’ agreeswith a on R (R’ ~g «) if the

in this paper construct and return the optimal solution tree following conditions are met:

as well, the size of which can be exponential in the num-

ber of randomized variables.

SOLVESSAT(®)
if ¢ contains an empty clause: retur;
if ¢ is the empty set of clauses: retur;
if somel is an existential unit literal:
return DLVESSAT(P(1));
if somel is a randomized unit literal:
return DLVESSAT(®(1)) x Prli];
if somel is an existential pure literal:
return DLVESSAT(®(1));
if the leftmost quantifier inb is existential and the
variable thus quantified is.
if [is the literal corresponding to the first value
of v explored and BLVESSAT(®(1)) = 1.0:
return 1.0;
else:
returnmax(SOLVESSAT(®(v)),
SOLVESSAT(®(—v)));
if the leftmost quantifier inb is randomized and the
variable thus quantified is:
return DLVESSAT(®(v)) x Prv]+
SOLVESSAT(®(—v)) x Pr[—v];

3. Nonchronological Backtracking

In the immediately precedings3T algorithm, it is al-

most always necessary to explore both branches of a vari-

able v that is not unit or pure, the sole exception arising
whenw is existential andPr(®(v)) = 1.0. We will refer

to the subtree resulting from the first valuevoéxplored as
theleft branchof v, and the subtree resulting from the sec-
ond value explored as thigght branchof v. The goal of
nonchronological backtracking (NCB) is to avoid exploring
the right branch of a variable whenever it can be deter-
mined that changing the value ofvould not change the re-

1. Eachliteral’ € R’ is either ina oris inactive in®(«).

2. If Pr[®(a)] < 1.0, then every literal inR is also in
R'.

3. If Pr[®(«)] = 1.0 then:
(a) Every randomized literal iR is also inR’.
(b) For every existential literdle R, ¢ R.

SupposeR C {l|lisina} is a reason folPr[®(«)] = p.
If 0 < p <= 1.0, we will refer to R as a SAT reason;
if p = 0.0, we will refer to R as an UNSAT reason. Us-
ing the terminology of Giunchiglia, Narizzano & Tacchella
for NCB in QsAT [9], we will refer to backjumping with
a SAT reason asolution-directecbackjumping, and back-
jumping with an UNSAT reason anflict-directedback-
jumping.

Given an SAT problem® and a partial assignment,
a reason is created whef{«) contains an empty clause
(Pr[®] = 0.0) or wheng¢(«a) is the empty set of clauses
(Pr[®] = 1.0):

C1. If ¢(c) contains an empty claugg, R = {I|l € C'} is
areason foPr[®(«)] = 0.0, whereC” is the clause in
¢, the matrix of®, that has, at this point, become the
empty clause”.

C2. If ¢(«a) is the empty set of clause®z = {I|l <

a A lis randomizeflis a reason foPr[®(a)] = 1.0.
Note thatR can sometimes be reduced further (thereby
increasing the likely effectiveness of that reason) by
eliminating literals fromR which are not necessary for

satisfiability.

Let us try to provide some intuition behind these rules. A
reason is created at the end of a path in the solution tree; at
this point the solver will begin to backtrack in order to cal-
culate the impact of changing the value of any variable that
appears in the partial assignmentieading to the current

sult obtained in the left branch. NCB does this by computing leaf, and whose second value has not yet been explored.

a reasorwhenever the current subprobldrhis determined

Roughly speaking, we want to include a liteidrom the

to be unsatisfied or satisfied. Roughly, a reason is a collec-current assignment in the reason only if changing the

tion of literals that is responsible fd?r(®’). This reason is

modified as the algorithm backtracks. At any point, the ab-

sence of a literal in a reason indicates that the right branch
of |{] will return the same probability of satisfaction as the
left branch, allowing the algorithm to avoid exploring the
right branch. We will provide an example later in this sec-
tion.

Given an SAT problem®, we say that a partial assign-
menta satisfiesP with probabilityp iff Pr[®(a)] = p. A

value of the underlying variablg| could have an impact
on the result obtained at that leaf.

The solver can choose the best value for an existential
variable, so it needs to check the other value of such a vari-
able only if that value might lead to laigher probability
of satisfaction. For a randomized variable, the solver must
take the weighted average of the two probabilities of sat-
isfaction resulting from setting that variable to each poss
ble value, so the solver needs to check the other value of the

if 1 is unit, then there will be a claugé such
that/ € C and foreach’ € C, if I # [,
I" € a.Then(RU{l'|l' € C}\ {,1})isa
reason forPr[®(a)] = p x Prll].

if 7is not unit,l € R’, andR’ is a reason for
Pr[®(a;1)] = p/, then(RU R') \ {l,1} is
a reason folP’r[®(«)] = p x Pr[l] + p’ x
Pr[l].

if 7is notunit,l ¢ R’, andR’ is a reason for
Pr[®(a;1)] = p/, butp = p/, thenR' is a
reason fotPr|{®(a)] = p.

variable both to see if that value will lead tdhagher prob- i.
ability of satisfaction or if it will lead to dower probability
of satisfaction.

Thus, if the probability of satisfaction at a leaflis), the
solver does not need to check the other value of existen- ii.
tial variables in the assignment, liwesneed to check the
other value of any randomized variable to see if it will lower
the probability of satisfaction. Thus, the literals copesd-
ing to these randomized variables should be in a SAT rea- iii.
son, subject to two important qualifications. First, theveol
does not need to includdl the randomized literals in the
currentassignment in the reason; any subset of the randoml-:ure literals are not mentioned in these rules since thay wil
ized literals that satisfies all those clauses not satisfied b .) . y
some existential literal is sufficient. Second, existdtitia Never appear in a reason..A pure literal will never appear
erals may be drawn into the reason as the solver backtrack n a newly-created reason: SAT reasons are composed en-

if they were indirectly responsible for the value of a ran- r;:(eam(i)s]c ;?vr\]/goggx?g[gﬁirgls(’ :sngisczl;rsi!ltiglilenratzsslj:g
domized variable whose literal is in the reason. Y ’ .

If the probability of satisfaction at a leaf is 0.0, therelwil pure literal rule for randomized variables.) UNSAT reasons

be a clause which has just become empty that is responsi-are composed of theal se literals that have produced an

ble for this. The solver needs to check the other value of anyempty clause; it could not be_the case th_at one of t_hese “F’
. . . . L .~ .~ “erals was pure when the assignment to its underlying vari-
existentialor randomized variable that was initially in this

clause to see if the probability of satisfaction of 0.0 can be able was made, since a variable assignment induced by the

) . . o pure literal rule never makes an active litefFall se. And,
improved, either by making a better choice in the case of an:, . : ! .
; : . ? . it is easy to show by induction that the rules for modify-
existential variable, or by discovering that the other st
: . . . ing reasons will never introduce a pure literal into a reason
tically determined value of a randomized variable leads to a :
- . . . after it has been created.
probability of satisfaction greater than 0.0. Thak the lit- . . _
. . . The incorporation of these rules into theISYESSAT al-
erals in the assignment that were responsible for the empty_ . . .
X : gorithm to produce the augmented& solution algorithm
clause should be in an UNSAT reason. And, like the case
. ; SOLVESSAT-NCB closely follows the rules as stated and
for a SAT reason, other literals may be drawn into the reason

. T o we omit a detailed description of the algorithm due to lack
while backtracking if they are found to be indirectly respon L :
. ! of space. The example in Figure 1, however, illustrates the
sible for the variable values that led to the empty clause.

These intuitions underly the following rules for modify- operation of the NCB-augmenteds&r solver on the fol-

. : lowi lem:
ing reasons as the algorithm backtracks. ¢die an SAT owing SSAT problem
problem,/ a literal, ;I an assignment fob, andR a rea-
son forPr[®(a;)] = p.

3331,80'724173@73333 {{x_hma]'?}a{xlaylvx_?va%}a
{$17x27x3}a{w17x27x_3}}'
At the first (left-most) leaf, reached via the assign-

ment Z1;y1;T2;x3, the formula is unsatisfied, i.e.
(Pr[®(Z1;Y1;T2; 23) = 0.0) and DLVESSAT-NCB cre-

M1. If [is an existential literal, then:
(a) ifl € R, thenR is areason foPr[®(«)] = p.

(b) ifl € R, then:

i. if p = 1.0, thenR \ {i} is a reason for

Pri®(a)] = p.

ii. if [is unit, then there will be a claugeé such
that! € C and for each’ € C, if I’ # I,
I € a. Then(RU{I'lll € CY\ {l,1})isa
reason forPr[®(a)] = p.

jii. if 7is notunit,l € R, andR’ is a reason for
Pr(®(a;1)] =9/, then(RUR')\ {l,l} isa
reason forPr[®(«)] = max(p,p’).

M2. If [is a randomized literal, then:

(@) ifl € R, thenR is areason foPr[®(«)] = p.
(b) ifl € R, then:

ates an UNSAT reason composed of the literals in the as-
signment that made the claude:;,z2,Z3} empty, i.e.
{71,732, 3}, (RuleC1) and backtracks to the; node (i.e.

the point at which a value is about to be assignecijoThe
assignment:s = Tr ue was forced since:s was unit, so

the algorithm does not explong = Fal se, and we have
Pr[®(z1;91;T2)] = 0.0. The literals that forced this as-
signment (i.eZ7; T3 in the clause{x;, x5, 23}) are sub-
stituted forzs in the reason, making the current reason
{71,Z2} (RuleM1(b)iii).

At the x5 node, ®LVESSAT-NCB must explore the
right branch ofx, (i.e. zo = True) sincexy = Fal se)
wasnotforced andr, isin the current reason. Setting to
Tr ue forceszs to be set tolr ue, and the formula is satis-
fied: Pr[®(Z1; 71; x2; x3) = 1.0. Here, SLVESSAT-NCB

{{w_lvma xQ}v{xlayhx—Qa :1:3}’{:1:1’:1:2’:1:3}’{:1:1,1:2’:1:_3}}
/ x1 = Fal se
Hyr, 72, 23}, {22, 73}, {72, T3} }

/ y1 = Fal se

/
{{72, w3}, {w2, w3}, {x2, T3} }
/ \

/ xo = Fal se \ xz2 =True
/ \
{{zs}, {z5}} {{zs}}
\ \
\ x3 =True \ x3 =True
\ \
{{}} {}

Figure 1. NCB can prevent useless explo-
ration of subtrees in the solution tree

creates an empty reasdn, since existential variables are
ignored in the creation of SAT reasons apd= Fal se

andPr[®(z7)] = 1.0 allows the algorithm to avoid this ad-
ditional work (simplified thresholding). For the sake of
completeness, we note that RWH (b)i would remove lit-
eralzy from the reason.

4. Experimental Results

We tested SLVESSAT and DLVESSAT-NCB on ran-
domly generated $AT problems and on $AT encodings
of probabilistic planning problems. All tests were run on a
1.8GHz Pentium 4 with 1GB RAM running Red Hat Linux
7.3.

We generated random problems using a fixed-clause
SsAT model similar to thek-QsAT Model A of Gent and
Walsh [7]. We specifyn, the number of variablesy, the
number of clauses, the number of literals in each clause,
the number of sequences of similarly quantified variables in
the prefix, and, the number of variables in each sequence
of similar quantifiers. A clause is generated by randomly se-
lecting a variabld times, discarding duplicates, and negat-
ing it with probability 0.5. Duplicate clauses are discarde

Assembling a good set of randomly generatsdStest
problems is difficult. There are more parameters to vary in
an SSAT problem than in &AT problem; in addition to the
number of variables, clauses, and literals per clause, one

is not necessary for the satisfaction of any of the clausesneeds to generate a prefix. As noted in Section 2, chang-

(Rule C2). Backtracking to thers node in this branch,
r3 = True was forced sincers was unit, so the al-
gorithm does not explores Fal se, and we have
Pr[®(Z71;91; 22) = 1.0. (Note, however, that even if this
were not the case,(BVESSAT-NCB would not explore the
other branch sinces is not in the current reason and the
reason would remain the same, as indicated by Rulén).)

When LVESSAT-NCB returns to the:; node, it picks
the best value ofcy (True) sincez, is existential, and
we havePr[®(z1;71)] = 1.0. The solver forms a new
reason{zy} by combining the{z1,73} reason from the
xo = Fal se branch and the empty reasgf from the
xo = Tr ue branch and deletingz (RuleM1(b)iv).

Normally, at they; node, the solver would need to ex-
plore they; = Tr ue branch, but, sincg; is not in the cur-
rent reason SLVESSAT-NCB does not explore this branch
and the reason remains the same (RJ2(a)). The ab-
sence ofy; from the reason means that the probability of
they; = True branch would be the same as that of the
y1 = Fal se branch @r[®(z;1)] = Pri®(T7m)] =
1.0), so the probability of satisfaction is not reduced due to
the randomized variable and we have[®(z7)] = 1.0.

Backtracking to the x; node at the root,
SOLVESSAT-NCB, according to the reason, would need
to explore ther; = Tr ue branch (sincery is in the cur-
rent reason). But, the fact that is an existential variable

ing this prefix can have a significant impact on the diffi-
culty of the problem even when the rest of the problem re-
mains the same. Our goal was to test. 8E SSAT-NCB on
problems of increasing difficult by increasing the number of
clauses, holding other parameters constant. In many cases,
however, this produced a relatively sharp transition ifi-dif
culty, below which problems were “too easy” and the bene-
fit of NCB was obscured by its overhead, and above which
problems were “too hard” and in most cases could not be
solved in a reasonable amount of time with or without NCB.
We empirically generated a set of problems that avoided
this phenomenon; the result of runnin@IYESSAT and
SOLVESSAT-NCB on these problems is shown in Figure 2.
NCB greatly improved the efficiency of theoBvESSAT
algorithm, decreasing the median number of nodes visited
and the median solution time by approximately three or-
ders of magnitude on larger problems (as high as five or-
ders of magnitude in some problems). Just as important,
SOLVESSAT-NCB was able to solve larger problems. Re-
call that all of the algorithms described in this paper netur
the solution tree as well as the optimal probability of sat-
isfaction. As the number of clauses in the test problems
increases, the average size of the solution tree increases
as well. DLVESSAT-NCB was able to solve a number of
larger problems that@ VESSAT could not solve due to in-
sufficient memory (e.g. 39 out of the 100 100-clause prob-

@ 1e+08 A& ; @ 1e+08 [N PR
= ; = -
L 1e+07 SOLVESSAT o / @ - !
s SOLVESSAT-NCB B o 1e+06 7
D 16406 PI[SAT] —a a A
8 6] 8
&
= Z 10000
= 100000 = Fa u
o - o P a
[am / / o 4
i 10000 £ 100 - N
= o = P *
o] 1000 /,,I = »
= = 1 SOLVESSAT o
< 100 g™ = SOLVESSAT-NCB —=—
a - o PI{SAT] ~a
Ll T w
= 10 == = o0.01
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 100
NUMBER OF CLAUSES NUMBER OF CLAUSES
(a) Number of nodes visited (a) Number of nodes visited
@ 1000 A 100
A A A TSN Ea
= 100 SOLVESSAT 0 s 10 . pes
a SOLVESSAT-NCB -®- a N——
o Pr{SAT] & o ol
w 10 o s
g g 1 ya
= ; = » .
=z 1 ® = a
o g n o 0.1 a
5 o 5 7 - 3
AL o
8 S NS S o SR S) 8
Z 001 - = 0.0 .6/ SOLVESSAT o |
= ’ - =< ..o” BOLVESSAT-NCB =
a ST B =) o Pr{SAT] --a
w e e | w -
= 0.00 = 0.00

1 1
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 100

NUMBER OF CLAUSES NUMBER OF CLAUSES
(b) Solution time in CPU secs (b) Solution time in CPU secs
Figure 2. 10 blocks of 8 similarly quanti- Figure 3. 10 blocks of 4 similarly quanti-
fied variables starting with 3, 6 literals per fied variables starting with 3, 4 literals per
clause, 100 problems at each clause level. clause, 100 problems at each clause level.
Pr[®] scaled so top of graph is 1.0 and bot- Pr[®] scaled so top of graph is 1.0 and bot-
tomis 0.0 tomis 0.0

lems, which are not shown in the results sin@a @ SSAT ables such that all paths in the tree of assignments result
was unable to solve more than half of them). in satisfaction (and an overaftr[®] of 1.0). An increas-

In order to investigate the impact of NCB on the solu- ing number of clauses rely on randomized literals for satis-
tion of problems in which the probability of satisfaction is faction, producing a lowefr[®] and increasing the num-
farther away from 10, we attempted to create a set of prob-ber of randomized variables that must be included in a SAT
lems that, as the number of clauses was increased, did noféason. As the average SAT reason size increases, the ef-
become too large too solve before the average probability offectiveness of these reasons decreases, both because more
satisfaction began to decline. This turned out to be difficul literals are included in the initial SAT reason, and because
for the size of problems in the initial test set so, to investi the larger initial reason makes it more likely that the algo-
gate the behavior of NCB dgT'[(I)] decreases, we generated rithm will backtrack through a randomized unit litegalin

a set of smaller problems in which the averdgd®] de- the reason and need to add to the reason all the literals that
creases before the problems become too large to solve. Théorced the value of, (Rule M2 (b)i).
results (Figure 3) indicate thatb&veE SSAT-NCB becomes Larger SAT reasons have a powerful effect because, even

less effective as”r[®] decreases. Analysis indicated that though a lowerPr[®] tends to reduce the number of SAT

this was due to an increase in SAT reason size (Figure 4(a))reasons, the percentage of SAT reasons never falls below
Intuitively, when there are more clauses (constraintsgit b approximately 90% and so dominates the overall average
comes more difficult to choose values for existential vari- reason size. In fact, the overall average reason size is-an ex

R . Prob- | Hori- | SOL-SSAT | SOL-SSAT | SOL-SSAT
5 a o lem | zon NCB NCB-USR
z 1° e 1 G5 9 1.3e8 9.0e7 9.0e7
7 e | 10 9.2e8 6.5e8 6.5e8
E . CR 8 2.1e7 1.6e7 1.6e7
< 6 o] 9 1.4e8 1.0e8 1.0e8
4oy, Va 1 T 14 2.2e7 2.2e7 2.2e7
T o 15 6.4e7 6.4e7 6.4e7
> 2 J',_AV'GSATREASOPN:[g'AZTE] """ = SR 14 4.1e7 4.1e7 4.1e7
o 15 1.2e8 1.2e8 1.2e8

10 20 30 40 50 60 70 80 90 100 M5 15 2.0e7 2.0e7 2.0e7
NUMBER OF CLAUSES 16 4.3e7 4.3e7 4.3e7

(@)

(a) Number of nodes visited

wn

[y
2 45 Prob- | Hori- | SOL-SSAT | SOL-SSAT | SoOL-SSAT
=l 1 lem | zon NCB NCB-USR
5 % y] G5 9 176.3 1745 147.6
2 3 - el 10 11932 13322 1069.9
& 25 e CR 8 30.8 53.3 335
% 20 % 9 215.1 364.9 229.2
% 15 1 Tl 14 27.6 60.7 375
& 10 g B x x | 15 82.2 186.1 114.0
g 5 Fﬁ 1 SR 14 515 86.4 67.0
g -150 -100 -50 0 50 100 150 15 1530 2637 2022
PERCENT CHANGE IN SOLUTION TIME M5 15 34.2 60.2 42.1
(b) 16 73.4 120.2 91.3

. . (b) Solution time in CPU secs
Figure 4. (a) Average reason size for prob-

lems in Figure 3. Pr[®] scaled so top of graph G5=GO0-5

is 1.0 and bottom is 0.0 (b) Average reason CR = COFFEEROBOT
size as percentage of number of variables for Tl = TIGER

all problems in Figs. 2 and 3 SR = $HIP-REJECT

M5 = MEDICAL-5ILL

Figure 5. SOLVESSAT-NCB does not improve
performance significantly on aset of SSAT en-
codings of probabilistic contingent planning
problems.

cellent predictor of the effectiveness of NCB in these prob-
lems. Figure 4(b) plots the average reason size as a per-
centage of number of variables (ARSPV) against the per-
cent change in solution time for the individual problems in
Figs. 2 and 3. (The data points-at 40% change in solution
time are data points for problems that could not be solved
by SoLVESSAT due to insufficient memory, but could be reduce the solution time, and the slight overhead of creat-
solved by ®LVESSAT-NCB.) If the ARSPV has a value ing 10 reasons and checking the ARSPV value was negligi-
of approximately 15% or less, then NCB will be benefi- ble. We are conducting additional tests to determine if the

cial; otherwise, the cost of NCB will outweigh its benefit. Vvalue of this critical point is constant over a broad range of

Furthermore, tests indicated that this statistic retaggrie- ~ SSAT problems. Also, we conjecture that generating and us-
dictive power even if calculated after only a few reasons ing only UNSAT reasons when the critical ARSPV value is
have been created. We modifiedISESSAT-NCB to cal- exceeded would be better than turning off NCB entirely, and

culate the ARSPV after 10 SAT reasons had been createdve are currently testing this idea.

and “turn off” NCB if the value of the ARSPV was greater We also tested our algorithms o & encodings of five
than 15. In all but a handful of problems (out of 2000), the probabilistic planning problems [12], varying the planihor
modified algorithm used NCB only when doing so would zon. In most of the problems, NCB was able to reduce

the number of nodes visited only modestly (or not at all) to do with 1) the fact that most clauses encode a possi-
(Figure 5(a)) and the overhead of NCB degraded perfor- ble way that an action can change the status of a fluent
mance (Figure 5(b)). Furthermore, the ARSPV value was from one time step to the next, and 2) the variable order-
not predictive of NCB effectiveness in these problems. The ing. In these encodings, variables represent actionsy-obse
poor performance of NCB on these problems was surpris-vations, fluents, and the uncertainty associated with @actio
ing in light of the effectiveness of NCB in solving structdre outcomes. There is a set of these variables for each time
SAT problems [3] and structured 2T problems [9] (al- step in the planning problem, tagged with a time index in-
though Giunchiglia, Narizzano & Tacchella [9] report some dicating what time step of the plan they are associated with.
instances in which the overhead associated with NCB out-These variables or ordered such that the randomized vari-
weighs its benefits). Our analysis suggests three possiblebles that encode the uncertain outcomes of all actions in
reasons for this poor performance, based on the characterall time steps are in the next to inner-most sequence of sim-
istics of the SAT encoding that result from the structure ilarly quantified variables in the ordering, and the existen
of the planning problem and the particular way the plan- tial variables representing all the fluents in all time stefes
ning problem is translated into ars8r instance. (There are in the inner-most sequence of similarly quantified variable
multiple ways to encode planning problems a&prob- in the ordering. Within these last two blocks the variable or
lems [13], and it is possible that another type &fa$ en- dering respects the time indices; variables with earliaeti
coding would allow NCB to be more effective. More im- indices appear earlier in the ordering. These charadterist
portantly, however, our analysis suggests that the ctexract of the encoding have two consequences.

istics of these SAT problems that make them resistant to

NCB are peculiar to planning problem encodings and not First, the values of almost all the fluent variables in the
necessarily shared by all types of structuresh&prob- |ast block are set through the application of the unit lit-
lems.) eral rule. This is reflected empirically in a high ratio of uni
First, the manner in which randomized variables are literals to split variables (variables where both values ar
used in a plan encoding tends to undermine the effec-explored) in the solution process for these problems. This
tiveness of solution-directed backjumping. A randomized means that the values of almost all of these variables are
variabley; is usually associated with the probabilistic im- forced; the other value will not be explored, even in the
pact of a particular action on a particular fluent (propositi ~ absence of NCB. Thus, NCB provides no benefit. Further-
describing an aspect of the state) under certain condi-more, all the literals that were responsible for making ¢hes
tions. This particular randomized variable typically ap- literals unit will be added to the reason as the solver back-
pears in only two clauses modeling that action’s effect tracks (Ruledv1(b)(ii) andM2(b)(i)), lessening further the
under these conditions. If the action is taken and the con-likelihood that large backjumps will occur. This is partic-
ditions hold, the active literals in the two clauses look ularly relevant for UNSAT reasons, which, when first cre-
like: {wi, z;}, {vi,T;}, wherez; is the variable represent- ated, tend to be composed mostly of fluent literals.
ing the fluent the action will affect. Eithey; andz; will
both beTr ue or both beFal se. In either casey; will be Second, SAT reasons are composed of the randomized
necessary for any satisfying assignment that is an extenditerals that are necessary for that particular satisfyasg
sion of this partial assignment. If the action is not taken, signment. But, since almost all the randomized variables ar
or if not all the conditions hold, both clauses will be sat- in a single block in the quantifier ordering, SAT reasons will
isfied andy; becomes irrelevant (since it appears in only tend to be composed of literals that are close to each other
these two clauses) and is never even considered in the soin the ordering, thus lessening the potential for large back
lution tree. In effect, it is removed in advance from any jumps.
possible SAT reason. Since almost every randomized vari-
able in a satisfying assignment is necessary for satisfacti - Ngte that some of the structure we have just described is
and so must be included in the reason, the time spent try-qe 1o the fact that these are encodings for partially observ
ing to reduce the size of a SAT reason is wasted. We tested, o planning problems. Even the GO-5 problem, which
SOLVESSAT-NCB-USR, a version of SLVESSAT-NCB 5 completely observable, was encoded using thet®n-
in which all the randomized literals from a satisfying as- ¢oding framework for partially observable problems. Com-
signment are included in the SAT reason (the “unre- etely observable problems can be encoded with a variable
duced” SAT reason). GLVESSAT-NCB-USR was faster gering that intersperses the randomized variables encod
than SLVESSAT-NCB, outperforming BLVESSATONthe g the uncertainty and the existential variables encoding
GO-5 problems, but the effect of NCB in the other prob- f,ents more evenly throughout the quantifier ordering. We
lems remained disappointing (Figure 5). are currently exploring whether NCB would be more effec-
The other reasons for the poor performance of NCB havetive on SSAT encodings of such problems.

5. Further Work References

. . . 1
We described theoretical results that allow the incor- [1]

poration of nonchronological backtracking into a stochas-

tic satisfiability solver. Empirical results using an NCB-
augmented SAT solver based on this work indicate that 2]
the benefits of NCB are not as easy to realize §xSas

QsAT. We described two responses to this problem in the
preceding section; here we describe some alternatives cur-
rently under investigation that might allow us to realize th 3]
full potential of NCB.

A reduction in the overhead associated with NCB would
make this technique more widely applicable, and we are ex-
ploring a more efficient way of creating and manipulating
reasons using bit vectors.

A SAT reason can be any subset of those randomized lit-
erals that are necessary for the satisfaction of some clause [5]
Choosing that subset with the aim of minimizing its size
may not be the best strategy. Analysis of our empirical re-
sults indicates that, where there are choices, a critehian t
favors randomized literals that appear in clauses with fewe [6]
existential literals may improve the efficiency of NCB, snc
such literals will have less of a tendency to pull existen-
tial literals into the reason during backtracking. The poor
performance of NCB on $AT encodings of planning prob-
lems, in which most clauses have at most one randomized
literal, lends support to this notion. [7]

In the absence of unit and pure literals, the algorithm
considers both values of the next variable in the prefix.
Since the order in which the algorithm considers variables
in a block of similarly quantified variables does not affect
the answer, problems with larger blocks of similarly quan-
tified variables afford the opportunity to introduce select
heuristics that might improve the performance of NCB.

We suspect, however, that the full benefit of NCB can- [9]
not be realized in a solver that uses NCB alobearn-
ing, or recording the reasons as they are created in or-
der to prevent the solver from rediscovering them in other [10]
branches of the computation, has been used to significantly
enhance the performance benefits obtained from reason cre-
ation in bothsAT [3] and sAT [8] solvers and has the po-
tential to greatly improve the effectiveness of NCB in an [11]
SsAT solver. UNSAT reasons can be recorded as additional
clauses that prevent partial assignments leading to @fisati
ability; recording SAT reasons is not as straightforward. W [12]
are currently developing the infrastructure to suppontiea
ing in SOLVESSAT-NCB.

[13]

Acknowledgments:We thank the anonymous reviewers for
their helpful comments.

F. Bacchus, S. Dalmao, and T. Pitassi. Algorithms and-com
plexity results for #sat and Bayesian inference Pinceed-
ings of The 44th Annual IEEE Symposium on Foundations of
Computer Science (FOCS-200Bages 340-351, 2003.

F. Bacchus, S. Dalmao, and T. Pitassi. Value elimination
Bayesian inference via backtracking searchPtaceedings

of the Nineteenth Annual Conference on Uncertainty in Arti-
ficial Intelligence (UAI-2003)pages 20-28, 2003.

R. J. Bayardo, Jr. and R. C. Schrag. Using CSP look-
back techniques to solve real-world SAT instancesPio-
ceedings of the Fourteenth National Conference on Artificia
Intelligence pages 203-208. AAAI Press/The MIT Press,
1997.

4] M. Davis, G. Logemann, and D. Loveland. A machine pro-

gram for theorem proving.Communications of the ACM
5:394-397, 1962.

E. Freudenthal and V. Karamcheti. QTM: Trust manage-
ment with quantified stochastic attributes. Technical Repo

TR2003-848, Courant Institute of Mathematical Sciences,
New York University, New York, NY, 2003.

. Gent, E. Giunchiglia, M. Narizzano, A. Rowley, and
A. Tacchella. Watched data structures for QBF solvers. In
Selected Papers from the Proceedings of the The Sixth Inter-
national Conference on Theory and Applications of Satisfia-
bility Testing (published in Lecture Notes in Computer Sci-
ence #2919)Springer-Verlag, 2003.

I. Gent and T. Walsh. Beyond NP: The QSAT phase transi-
tion. InProceedings of the Sixteenth National Conference on
Artificial Intelligence pages 648-653. The AAAI Press/The
MIT Press, 1999.

] E. Giunchiglia, M. Narizzano, and A. Tacchella. Leamin

for quantified Boolean logic satisfiability. IRroceedings
of the Eighteenth National Conference on Artificial Intel-
ligence pages 649-654. The AAAI Press/The MIT Press,
2002.

E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjoim
ing for quantified Boolean logic satisfiabilityArtificial In-
telligence 145(1-2):99-120, 2003.

R. Letz. Lemma and model caching in decision proce-
dures for quantified Boolean formulas. In C. Fermueller and
U. Egly, editors Proceedings of Tableaux 200@ages 160—
175, 2002.

M. L. Littman, S. M. Majercik, and T. Pitassi. Stochas-
tic Boolean satisfiability.Journal of Automated Reasoning
27(3):251-296, 2001.

S. M. Majercik and M. L. Littman. Contingent planning-un
der uncertainty via stochastic satisfiabili#rtificial Intelli-
gence 147:119-162, 2003.

S. M. Majercik and A. P. Rusczek. Faster probabilistamp
ning through more efficient stochastic satisfiability peshl
encodings. IrProceedings of the Sixth International Con-
ference on Artificial Intelligence Planning and Scheduling
pages 163-172. AAAI Press, 2002.

[14] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Ma-
lik. Chaff: Engineering an efficient SAT solver. [Aro-
ceedings of the Thirty-Ninth Design Automation Confergnce
2001.

[15] C. H. Papadimitriou. Games against natul@urnal of Com-
puter Systems Sciend1:288-301, 1985.

[16] D. Roth. On the hardness of approximate reasonfugifi-
cial Intelligence 82(1-2):273-302, 1996.

