
Nonchronological Backtracking in Stochastic Boolean Satisfiability ∗

Stephen M. Majercik
Bowdoin College

Brunswick ME 04011, USA
smajerci@bowdoin.edu

Abstract

Stochastic Boolean satisfiability (SSAT) is a general-
ization of satisfiability (SAT) that has shown promise as
a vehicle for encoding and competitively solving proba-
bilistic reasoning problems. We extend the theory and en-
hance the applicability ofSSAT-based solution techniques
by 1) establishing theoretical results that allow the incor-
poration of nonchronological backtracking (NCB), and lay
the foundation for the incorporation of learning, into an
SSAT solver, 2) implementingSOLVESSAT-NCB, an NCB-
augmentedSSAT solver, and 3) describing the results of
tests ofSOLVESSAT-NCB on randomly generatedSSAT

problems andSSAT encodings of probabilistic planning
problems. Our experiments indicate that NCB has the po-
tential to boost the performance of anSSAT solver, both
in terms of time, yielding speedups of as much as five or-
ders of magnitude, and space, allowing the solution ofSSAT

problems with larger solution trees. In some cases, however,
NCB can degrade performance. We analyze the reasons for
this behavior, present initial results incorporating a tech-
nique to mitigate this effect, and discuss other approaches
to addressing this problem suggested by our empirical re-
sults.

1. Introduction

Stochastic Boolean satisfiability (SSAT), suggested by
Papadimitriou [15] and explored further by Littman, Majer-
cik & Pitassi [11], is a generalization of satisfiability (SAT)
that is similar to quantified Boolean satisfiability (QSAT).
The ordered variables of the Boolean formula in an SSAT

problem, instead of being existentially or universally quan-
tified, are existentially orrandomlyquantified. Randomly
quantified variables areTruewith a certain probability, and

∗ Appears in theProceedings of the Sixteenth International Confer-
ence on Tools With Artificial Intelligence, pages 498-507, IEEE Press,
2004.

an SSAT instance is satisfiable with some probability that
depends on the ordering of and interplay between the exis-
tential and randomized variables. The goal is to choose val-
ues for the existentially quantified variables that maximize
the probability of satisfying the formula.

Like QSAT, SSAT is PSPACE-complete, so it is theoret-
ically possible to transform many probabilistic planning and
reasoning problems of great practical interest into SSAT in-
stances; e.g. plan evaluation, best polynomial-horizon plan,
and Bayesian inferencing [11]. While such theoretically
guaranteed translations are not always practical, previous
work has shown that, in some cases, the transformation, and
the solution of the resulting SSAT instance, can be done ef-
ficiently, providing an alternative approach to solving the
original problem that is competitive with other techniques.

Majercik & Littman [12] showed that a probabilis-
tic, partially observable, finite-horizon, contingent plan-
ning problem can be encoded as an SSAT instance such
that the solution to the SSAT instance yields a con-
tingent plan with the highest probability of reaching
a goal state. They have used this approach to imple-
ment ZANDER, a probabilistic contingent planner com-
petitive with three other leading approaches: techniques
based on partially observable Markov decision processes,
GRAPHPLAN-based approaches, and partial-order plan-
ning approaches [12]. Notably,ZANDER achieves this com-
petitive level using a relatively naı̈ve SSAT solver that
does not attempt to adapt many of the advanced fea-
tures that make today’s state-of-the-artSAT solvers so
efficient.

SSAT has also shown promise in the development of al-
gorithms fortrust management(TM) systems. TM systems
are application-independent infrastructures that can enforce
access control policies within and between organizations
to protect sensitive resources from access by unauthorized
agents. State-of-the-art TM systems have significant limita-
tions, e.g. difficulty in expressing partial trust, and a lack
of fault tolerance that can lead to interruptions of service.
Freudenthal and Karamcheti have shown that stochastic sat-
isfiability can form the basis of a TM system that addresses

these limitations [5], and work is in progress to develop ef-
ficient solution techniques for the SSAT problems generated
by such a system.

Roth [16] showed that the problem of belief net infer-
encing can be reduced to MAJSAT, a type of SSAT problem.
Thus, in principle, an SSAT solver could solve the inferenc-
ing problem by solving the MAJSAT encoding of that prob-
lem. That this approach would be anefficientalternative
to standard belief net inferencing algorithms is supported
by recent work describing a DPLL-based approach to solv-
ing belief net inferencing problems that provides the same
time and space performance guarantees as state-of-the-art
exact algorithms and, in some cases, achieves an exponen-
tial speedup over existing algorithms [2, 1].

Thus, a more efficient SSAT solver would potentially
give us better solution methods for a number of interesting,
practical problems. In addition, the development of such a
solver would be valuable for the insights it might provide
into solving probabilistic reasoning problems, in general,
and otherPSPACE-complete problems, such as QSAT.

The SSAT solver that forms the basis of the plannerZAN-
DER [12] is essentially the same as the solver described by
Littman, Majercik & Pitassi [11]. This solver is an extension
of the Davis-Putnam-Logemann-LovelandSAT solver [4],
adapting unit propagation, pure variable elimination, and
variable ordering heuristics to the SSAT framework. Lack-
ing, however, are features, such as nonchronological back-
tracking, learning, and literal watching, that have been prof-
itably incorporated intoSAT [3, 14] and QSAT [8, 9, 10, 6]
solvers. In this paper, we describe how nonchronologi-
cal backtracking (NCB) can be incorporated into an SSAT

solver. In Section 2, we describe the stochastic satisfiabil-
ity problem. In Section 3, we present the theoretical results
that allow the incorporation of NCB into an SSAT solver. In
Section 4, we describe empirical results obtained by apply-
ing SOLVESSAT-NCB, an NCB-augmented SSAT solver, to
randomly generated SSAT problems and SSAT encodings of
probabilistic planning problems. In the last section, we dis-
cuss further work.

2. Stochastic Satisfiability

An SSAT problemΦ = Q1v1 . . . Qnvnφ is specified by
1) a prefix Q1v1 . . .Qnvn that orders a set ofn Boolean
variablesV = {v1, . . . , vn} and specifies the quantifierQi

associated with each variablevi, and 2) amatrix that is a
Boolean formula constructed from these variables.1 More
specifically, the prefixQ1v1 . . .Qnvn associates a quanti-
fier Qi, either existential (∃i) or randomized (

Rπi

i), with the
variablevi. The value of an existentially quantified variable

1 NCB in SSAT is similar to NCB in QSAT, and, to make the simi-
larities clear, we have adapted the terminology and notation used by
Giunchiglia, Narizzano & Tacchella for NCB in QSAT [9].

can be set arbitrarily by a solver, but the value of a randomly
quantified variable is determined stochastically byπi, an ar-
bitrary rational probability that specifies the probability that
vi will be True. In this paper, we will usex1, x2, . . . for ex-
istentially quantified variables andy1, y2, . . . for randomly
quantified variables.

The matrixφ is assumed to be in conjunctive normal
form (CNF), i.e. a set ofm conjuncted clauses, where each
clause is a set of distinct disjuncted literals. Aliteral l is ei-
ther a variablev (apositiveliteral) or its negation−v (aneg-
ative literal). For a literall, |l| is the variablev underlying
that literal andl is the “opposite” ofl, i.e. if l is v, l is −v;
if l is −v, l is v; A literal l is True if it is positive and|l|
has the valueTrue, or if it is negative and|l| has the value
False. A literal is existential(randomized) if |l| is exis-
tentially (randomly) quantified. The probability that a ran-
domly quantified variablev has the valueTrue (False)
is denotedPr[v] (Pr[−v]). The probability that a random-
ized literall isTrue is denotedPr[l]. As in aSAT problem,
a clause is satisfied if at least one literal isTrue, and unsat-
isfied, orempty, if all its literals areFalse. The formula is
satisfied if all its clauses are satisfied.

The solution of an SSAT instance is an assignment of
truth values to the existentially quantified variables that
yields the maximum probability of satisfaction, denoted
Pr[Φ]. Since the values of existentially quantified variables
can be made contingent on the values of randomly quanti-
fied variables that appear earlier in the prefix, the solution
is, in general, atree that specifies the optimal assignment
to each existentially quantified variablexi for each possi-
ble instantiation of the randomly quantified variables that
precedexi in the prefix. A simple example will help clar-
ify this idea before we definePr[Φ] formally. Suppose we
have the following SSAT problem:

∃x1,

R0.7y1, ∃x2{{x1, y1}, {x1, y1}, {y1, x2}, {y1, x2}}.

The form of the solution is a noncontingent assignment for
x1 plus two contingent assignments forx2, one for the case
wheny1 isTrue and one for the case wheny1 isFalse. In
this problem,x1 should be set toTrue (if x1 isFalse, the
first two clauses become{{y1}, {y1}}, which specify that
y1 must be bothTrue andFalse), andx2 should be set to
True (False) if y1 is False(True). Since it is possible
to satisfy the formula for both values ofy1, Pr[Φ] = 1.0.
If we add the clause{y1, x2} to this instance, however, the
maximum probability of satisfaction drops to 0.3:x1 should
still be set toTrue, and wheny1 is False, x2 should still
be set toTrue. Wheny1 is True, however, we have the
clauses{{x2}, {x2}}, which insist on contradictory values
for x2. Hence, it is possible to satisfy the formula only when
y1 is False, and, sincePr[−y1] = 0.3, the probability of
satisfaction,Pr[Φ], is 0.3.

We will need the following additional notation to define

Pr[Φ] formally. A partial assignmentα of the variablesV
is a sequence ofk ≤ n literalsl1; l2; . . . ; lk such that no two
literals inα have the same underlying variable. Givenli and
lj in an assignmentα, i < j implies that the assignment to
|li| was made before the assignment to|lj |. A positive (neg-
ative) literalv (−v) in an assignmentα indicates that the
variablev has the valueTrue (False). The notationΦ(α)
denotes the SSAT problemΦ′ remaining when the partial as-
signmentα has been applied toΦ (i.e. clauses withTrue
literals have been removed from the matrix,False literals
have been removed from the remaining clauses in the ma-
trix, and all variables and associated quantifiers not in the
remaining clauses have been removed from the prefix) and
φ(α) denotesφ′, the matrix remaining whenα has been ap-
plied. Similarly, given a set of literalsL, such that no two
literals in L have the same underlying variable, the nota-
tion Φ(L) denotes the SSAT problemΦ′ remaining when
the assignments indicated by the literals inL have been ap-
plied toΦ, andφ(L) denotesφ′, the matrix remaining when
the assignments indicated by the literals inL have been ap-
plied. A literal l 6∈ α is activeif some clause inφ(α) con-
tainsl; otherwise it isinactive.

Given an SSAT problemΦ, the maximum probability of
satisfaction ofφ, denotedPr[Φ], is defined according to the
following recursive rules:

1. If φ contains an empty clause,Pr[Φ] = 0.0.

2. If φ is the empty set of clauses,Pr[Φ] = 1.0.

3. If the leftmost quantifier in the prefix ofΦ is existen-
tial and the variable thus quantified isv, thenPr[Φ] =
max(Pr[Φ(v)], P r[Φ(−v)]).

4. If the leftmost quantifier inφ is randomized and
the variable thus quantified isv, then Pr[Φ] =
(Pr[Φ(v)] × Pr[v]) + (Pr[Φ(−v)] × Pr[−v]).

These rules express the intuition that a solver can select
the value for an existentially quantified variable that yields
the subproblem with the higher probability of satisfaction,
whereas a randomly quantified variable forces the solver to
take the weighted average of the two possible results. (As
an aside, we note that any QSAT instance can be solved by
transforming it into an SSAT instance—replace the univer-
sal quantifiers with randomized quantifiers—and checking
whetherPr[Φ] = 1.0.)

There are simplifications that allow an algorithm imple-
menting this recursive definition to avoid the often infeasi-
ble task of enumerating all possible assignments. Of course,
if the empty set of clauses, or an empty clause, is reached
before a complete assignment is made, the solver can im-
mediately return 1.0, or 0.0, respectively. Further efficien-
cies are gained by interrupting the normal left-to-right eval-
uation of quantifiers to take advantage ofunit andpure lit-
erals. A literall is unit if it is the only literal in some clause.
Then:

• If l is existential, setting|l| such thatl is False im-
mediately produces an empty clause andPr[Φ] = 0.0,
so the solver should always choose the forced value,
andPr[Φ] = Pr[Φ(l)].

• If l is randomized, setting|l| such thatl is False im-
mediately produces an empty clause andPr[Φ] = 0.0,
so the solver should always choose the forced value,
and the probability of satisfaction must be reduced by
the probability of the forced value of the randomized
variable; i.e.Pr[Φ] = Pr[Φ(l)] × Pr[l].

A literal l is pure if l is active andl is inactive. Then:

• If l is existential, setting the value of|l| to disagree
with l will falsify some literals in some clauses. Fal-
sifying a literal in a clause makes it more likely that
that clause will become empty, leading to a probabil-
ity of satisfaction of 0.0, and so decreases (or leaves
the same) the probability of satisfaction of the for-
mula. The probability of satisfaction will be great-
est when the value of|l| is set to agree withl, re-
gardless of whether the assignment is made now or
when|l| is encountered in the normal left-to-right eval-
uation of quantifiers (whenl will still be pure), so
Pr[Φ] = Pr[Φ(l)].

• If l is randomized, there is no comparable simplifica-
tion. Setting a pure randomized variable contrary to its
sign in the formula can still yield a probability of sat-
isfaction greater than 0.0, and this must be taken into
account when computing the maximum probability of
satisfaction.

For additional details, see [11].
Thresholdingcan also boost efficiency [11]. Threshold-

ing computeslow andhigh thresholds for the probability of
satisfaction at each node in the solution tree. These thresh-
olds delimit an interval outside of which it is not necessary
to compute the exact value of the probability of satisfaction.
Given a partial assignmentα at a node, the solver can re-
turn “failure” if it establishes thatPr[Φ(α)] is less than the
low threshold, or “success” if it establishes thatPr[Φ(α)]
is greater than or equal to the high threshold. These thresh-
olds sometimes allow the solver to avoid exploring the other
value of a variable after it has explored the first value. In or-
der to clarify the effect of NCB, we use only a very simpli-
fied version of thresholding in the SSAT solvers described
in this paper: if the first branch of an existential variable re-
turns a probability of satisfaction of 1.0, the solver can leave
the other branch unexplored since the highest possible prob-
ability of satisfaction has already been attained.

These simplifications—unit and pure literals, and sim-
plified thresholding—modify the rules given above for de-
terminingPr(Φ), but we omit a restatement of the modi-
fied rules for the sake of brevity. These modified rules are

the basis for the following SSAT algorithm. For the sake of
brevity, we omit the details of solution tree construction,in-
dicating that onlyPr[Φ] is returned. It is important to note,
however, that the implementations of all SSAT algorithms
in this paper construct and return the optimal solution tree
as well, the size of which can be exponential in the num-
ber of randomized variables.

SOLVESSAT(Φ)
if φ contains an empty clause: return0.0;
if φ is the empty set of clauses: return1.0;
if somel is an existential unit literal:

return SOLVESSAT(Φ(l));
if somel is a randomized unit literal:

return SOLVESSAT(Φ(l)) × Pr[l];
if somel is an existential pure literal:

return SOLVESSAT(Φ(l));
if the leftmost quantifier inΦ is existential and the

variable thus quantified isv:
if l is the literal corresponding to the first value

of v explored and SOLVESSAT(Φ(l)) = 1.0:
return 1.0;

else:
returnmax(SOLVESSAT(Φ(v)),

SOLVESSAT(Φ(−v)));
if the leftmost quantifier inΦ is randomized and the

variable thus quantified isv:
return SOLVESSAT(Φ(v)) × Pr[v]+

SOLVESSAT(Φ(−v)) × Pr[−v];

3. Nonchronological Backtracking

In the immediately preceding SSAT algorithm, it is al-
most always necessary to explore both branches of a vari-
able v that is not unit or pure, the sole exception arising
whenv is existential andPr(Φ(v)) = 1.0. We will refer
to the subtree resulting from the first value ofv explored as
the left branchof v, and the subtree resulting from the sec-
ond value explored as theright branchof v. The goal of
nonchronological backtracking (NCB) is to avoid exploring
the right branch of a variablev whenever it can be deter-
mined that changing the value ofv would not change the re-
sult obtained in the left branch. NCB does this by computing
a reasonwhenever the current subproblemΦ′ is determined
to be unsatisfied or satisfied. Roughly, a reason is a collec-
tion of literals that is responsible forPr(Φ′). This reason is
modified as the algorithm backtracks. At any point, the ab-
sence of a literall in a reason indicates that the right branch
of |l| will return the same probability of satisfaction as the
left branch, allowing the algorithm to avoid exploring the
right branch. We will provide an example later in this sec-
tion.

Given an SSAT problemΦ, we say that a partial assign-
mentα satisfiesΦ with probabilityp iff Pr[Φ(α)] = p. A

reasonR ⊆ {l|l is in α} is a subset of the literals in a partial
assignmentα and is a reason forPr[Φ(α)] = p iff for every
set of literalsR′ that agrees withα on R, Pr[Φ(R′)] = p.
We say that reasonR′ agreeswith α onR (R′ ∼R α) if the
following conditions are met:

1. Each literall′ ∈ R′ is either inα or is inactive inΦ(α).

2. If Pr[Φ(α)] < 1.0, then every literal inR is also in
R′.

3. If Pr[Φ(α)] = 1.0 then:

(a) Every randomized literal inR is also inR′.

(b) For every existential literall ∈ R′, l 6∈ R.

SupposeR ⊆ {l|l is in α} is a reason forPr[Φ(α)] = p.
If 0 < p <= 1.0, we will refer to R as a SAT reason;
if p = 0.0, we will refer to R as an UNSAT reason. Us-
ing the terminology of Giunchiglia, Narizzano & Tacchella
for NCB in QSAT [9], we will refer to backjumping with
a SAT reason assolution-directedbackjumping, and back-
jumping with an UNSAT reason asconflict-directedback-
jumping.

Given an SSAT problemΦ and a partial assignmentα,
a reason is created whenφ(α) contains an empty clause
(Pr[Φ] = 0.0) or whenφ(α) is the empty set of clauses
(Pr[Φ] = 1.0):

C1. If φ(α) contains an empty clauseC, R = {l|l ∈ C′} is
a reason forPr[Φ(α)] = 0.0, whereC′ is the clause in
φ, the matrix ofΦ, that has, at this point, become the
empty clauseC.

C2. If φ(α) is the empty set of clauses,R = {l|l ∈
α ∧ l is randomized} is a reason forPr[Φ(α)] = 1.0.
Note thatR can sometimes be reduced further (thereby
increasing the likely effectiveness of that reason) by
eliminating literals fromR which are not necessary for
satisfiability.

Let us try to provide some intuition behind these rules. A
reason is created at the end of a path in the solution tree; at
this point the solver will begin to backtrack in order to cal-
culate the impact of changing the value of any variable that
appears in the partial assignmentα leading to the current
leaf, and whose second value has not yet been explored.
Roughly speaking, we want to include a literall from the
current assignmentα in the reason only if changing the
value of the underlying variable|l| could have an impact
on the result obtained at that leaf.

The solver can choose the best value for an existential
variable, so it needs to check the other value of such a vari-
able only if that value might lead to ahigher probability
of satisfaction. For a randomized variable, the solver must
take the weighted average of the two probabilities of sat-
isfaction resulting from setting that variable to each possi-
ble value, so the solver needs to check the other value of the

variable both to see if that value will lead to ahigherprob-
ability of satisfaction or if it will lead to alower probability
of satisfaction.

Thus, if the probability of satisfaction at a leaf is1.0, the
solver does not need to check the other value of existen-
tial variables in the assignment, butdoesneed to check the
other value of any randomized variable to see if it will lower
the probability of satisfaction. Thus, the literals correspond-
ing to these randomized variables should be in a SAT rea-
son, subject to two important qualifications. First, the solver
does not need to includeall the randomized literals in the
current assignment in the reason; any subset of the random-
ized literals that satisfies all those clauses not satisfied by
some existential literal is sufficient. Second, existential lit-
erals may be drawn into the reason as the solver backtracks
if they were indirectly responsible for the value of a ran-
domized variable whose literal is in the reason.

If the probability of satisfaction at a leaf is 0.0, there will
be a clause which has just become empty that is responsi-
ble for this. The solver needs to check the other value of any
existentialor randomized variable that was initially in this
clause to see if the probability of satisfaction of 0.0 can be
improved, either by making a better choice in the case of an
existential variable, or by discovering that the other stochas-
tically determined value of a randomized variable leads to a
probability of satisfaction greater than 0.0. Thus,all the lit-
erals in the assignment that were responsible for the empty
clause should be in an UNSAT reason. And, like the case
for a SAT reason, other literals may be drawn into the reason
while backtracking if they are found to be indirectly respon-
sible for the variable values that led to the empty clause.

These intuitions underly the following rules for modify-
ing reasons as the algorithm backtracks. LetΦ be an SSAT

problem,l a literal,α; l an assignment forΦ, andR a rea-
son forPr[Φ(α; l)] = p.

M1. If l is an existential literal, then:

(a) if l 6∈ R, thenR is a reason forPr[Φ(α)] = p.

(b) if l ∈ R, then:

i. if p = 1.0, then R \ {l} is a reason for
Pr[Φ(α)] = p.

ii. if l is unit, then there will be a clauseC such
that l ∈ C and for eachl′ ∈ C, if l′ 6= l,
l′ ∈ α. Then(R ∪ {l′|l′ ∈ C} \ {l, l}) is a
reason forPr[Φ(α)] = p.

iii. if l is not unit,l ∈ R′, andR′ is a reason for
Pr[Φ(α; l)] = p′, then(R ∪ R′) \ {l, l} is a
reason forPr[Φ(α)] = max(p, p′).

M2. If l is a randomized literal, then:

(a) if l 6∈ R, thenR is a reason forPr[Φ(α)] = p.

(b) if l ∈ R, then:

i. if l is unit, then there will be a clauseC such
that l ∈ C and for eachl′ ∈ C, if l′ 6= l,
l′ ∈ α. Then(R ∪ {l′|l′ ∈ C} \ {l, l}) is a
reason forPr[Φ(α)] = p × Pr[l].

ii. if l is not unit,l ∈ R′, andR′ is a reason for
Pr[Φ(α; l)] = p′, then(R ∪ R′) \ {l, l} is
a reason forPr[Φ(α)] = p × Pr[l] + p′ ×
Pr[l].

iii. if l is not unit,l 6∈ R′, andR′ is a reason for
Pr[Φ(α; l)] = p′, but p = p′, thenR′ is a
reason forPr[Φ(α)] = p.

Pure literals are not mentioned in these rules since they will
never appear in a reason. A pure literal will never appear
in a newly-created reason: SAT reasons are composed en-
tirely of randomized literals, and a pure literal in an assign-
ment is always existential. (As discussed earlier, there isno
pure literal rule for randomized variables.) UNSAT reasons
are composed of theFalse literals that have produced an
empty clause; it could not be the case that one of these lit-
erals was pure when the assignment to its underlying vari-
able was made, since a variable assignment induced by the
pure literal rule never makes an active literalFalse. And,
it is easy to show by induction that the rules for modify-
ing reasons will never introduce a pure literal into a reason
after it has been created.

The incorporation of these rules into the SOLVESSAT al-
gorithm to produce the augmented SSAT solution algorithm
SOLVESSAT-NCB closely follows the rules as stated and
we omit a detailed description of the algorithm due to lack
of space. The example in Figure 1, however, illustrates the
operation of the NCB-augmented SSAT solver on the fol-
lowing SSAT problem:

∃x1,

R0.7y1, ∃x2, ∃x3 {{x1, y1, x2}, {x1, y1, x2, x3},
{x1, x2, x3}, {x1, x2, x3}}.

At the first (left-most) leaf, reached via the assign-
ment x1; y1; x2; x3, the formula is unsatisfied, i.e.
(Pr[Φ(x1; y1; x2; x3) = 0.0) and SOLVESSAT-NCB cre-
ates an UNSAT reason composed of the literals in the as-
signment that made the clause{x1, x2, x3} empty, i.e.
{x1, x2, x3}, (RuleC1) and backtracks to thex3 node (i.e.
the point at which a value is about to be assigned tox3). The
assignmentx3 = True was forced sincex3 was unit, so
the algorithm does not explorex3 = False, and we have
Pr[Φ(x1; y1; x2)] = 0.0. The literals that forced this as-
signment (i.e.x1; x2 in the clause{x1, x2, x3}) are sub-
stituted for x3 in the reason, making the current reason
{x1, x2} (RuleM1(b)iii).

At the x2 node, SOLVESSAT-NCB must explore the
right branch ofx2 (i.e. x2 = True) sincex2 = False)
wasnot forced andx2 is in the current reason. Settingx2 to
True forcesx3 to be set toTrue, and the formula is satis-
fied: Pr[Φ(x1; y1; x2; x3) = 1.0. Here, SOLVESSAT-NCB

{{x1, y1, x2}, {x1, y1, x2, x3}, {x1, x2, x3}, {x1, x2, x3}}
/

/ x1 = False
/

{{y1, x2, x3}, {x2, x3}, {x2, x3}}
/

/ y1 = False
/

{{x2, x3}, {x2, x3}, {x2, x3}}
/ \

/ x2 = False \ x2 = True
/ \

{{x3}, {x3}} {{x3}}
\ \
\ x3 = True \ x3 = True
\ \
{{}} {}

Figure 1. NCB can prevent useless explo-
ration of subtrees in the solution tree

creates an empty reason{}, since existential variables are
ignored in the creation of SAT reasons andy1 = False
is not necessary for the satisfaction of any of the clauses
(Rule C2). Backtracking to thex3 node in this branch,
x3 = True was forced sincex3 was unit, so the al-
gorithm does not explorex3 = False, and we have
Pr[Φ(x1; y1; x2) = 1.0. (Note, however, that even if this
were not the case, SOLVESSAT-NCB would not explore the
other branch sincex3 is not in the current reason and the
reason would remain the same, as indicated by RuleM1(a).)

When SOLVESSAT-NCB returns to thex2 node, it picks
the best value ofx2 (True) since x2 is existential, and
we havePr[Φ(x1; y1)] = 1.0. The solver forms a new
reason{x1} by combining the{x1, x2} reason from the
x2 = False branch and the empty reason{} from the
x2 = True branch and deletingx2 (RuleM1(b)iv).

Normally, at they1 node, the solver would need to ex-
plore they1 = True branch, but, sincey1 is not in the cur-
rent reason SOLVESSAT-NCB does not explore this branch
and the reason remains the same (RuleM2(a)). The ab-
sence ofy1 from the reason means that the probability of
the y1 = True branch would be the same as that of the
y1 = False branch (Pr[Φ(x1; y1)] = Pr[Φ(x1; y1)] =
1.0), so the probability of satisfaction is not reduced due to
the randomized variable and we havePr[Φ(x1)] = 1.0.

Backtracking to the x1 node at the root,
SOLVESSAT-NCB, according to the reason, would need
to explore thex1 = True branch (sincex1 is in the cur-
rent reason). But, the fact thatx1 is an existential variable

andPr[Φ(x1)] = 1.0 allows the algorithm to avoid this ad-
ditional work (simplified thresholding). For the sake of
completeness, we note that RuleM1(b)i would remove lit-
eralx1 from the reason.

4. Experimental Results

We tested SOLVESSAT and SOLVESSAT-NCB on ran-
domly generated SSAT problems and on SSAT encodings
of probabilistic planning problems. All tests were run on a
1.8GHz Pentium 4 with 1GB RAM running Red Hat Linux
7.3.

We generated random problems using a fixed-clausek-
SSAT model similar to thek-QSAT Model A of Gent and
Walsh [7]. We specifyn, the number of variables,m, the
number of clauses,l, the number of literals in each clause,k,
the number of sequences of similarly quantified variables in
the prefix, andb, the number of variables in each sequence
of similar quantifiers. A clause is generated by randomly se-
lecting a variablel times, discarding duplicates, and negat-
ing it with probability 0.5. Duplicate clauses are discarded.

Assembling a good set of randomly generated SSAT test
problems is difficult. There are more parameters to vary in
an SSAT problem than in aSAT problem; in addition to the
number of variables, clauses, and literals per clause, one
needs to generate a prefix. As noted in Section 2, chang-
ing this prefix can have a significant impact on the diffi-
culty of the problem even when the rest of the problem re-
mains the same. Our goal was to test SOLVESSAT-NCB on
problems of increasing difficult by increasing the number of
clauses, holding other parameters constant. In many cases,
however, this produced a relatively sharp transition in diffi-
culty, below which problems were “too easy” and the bene-
fit of NCB was obscured by its overhead, and above which
problems were “too hard” and in most cases could not be
solved in a reasonable amount of time with or without NCB.
We empirically generated a set of problems that avoided
this phenomenon; the result of running SOLVESSAT and
SOLVESSAT-NCB on these problems is shown in Figure 2.

NCB greatly improved the efficiency of the SOLVESSAT

algorithm, decreasing the median number of nodes visited
and the median solution time by approximately three or-
ders of magnitude on larger problems (as high as five or-
ders of magnitude in some problems). Just as important,
SOLVESSAT-NCB was able to solve larger problems. Re-
call that all of the algorithms described in this paper return
the solution tree as well as the optimal probability of sat-
isfaction. As the number of clauses in the test problems
increases, the average size of the solution tree increases
as well. SOLVESSAT-NCB was able to solve a number of
larger problems that SOLVESSAT could not solve due to in-
sufficient memory (e.g. 39 out of the 100 100-clause prob-

(a) Number of nodes visited

(b) Solution time in CPU secs

Figure 2. 10 blocks of 8 similarly quanti-
fied variables starting with ∃, 6 literals per
clause, 100 problems at each clause level.
Pr[Φ] scaled so top of graph is 1.0 and bot-
tom is 0.0

lems, which are not shown in the results since SOLVESSAT

was unable to solve more than half of them).

In order to investigate the impact of NCB on the solu-
tion of problems in which the probability of satisfaction is
farther away from 1.0, we attempted to create a set of prob-
lems that, as the number of clauses was increased, did not
become too large too solve before the average probability of
satisfaction began to decline. This turned out to be difficult
for the size of problems in the initial test set so, to investi-
gate the behavior of NCB asPr[Φ] decreases, we generated
a set of smaller problems in which the averagePr[Φ] de-
creases before the problems become too large to solve. The
results (Figure 3) indicate that SOLVESSAT-NCB becomes
less effective asPr[Φ] decreases. Analysis indicated that
this was due to an increase in SAT reason size (Figure 4(a)).
Intuitively, when there are more clauses (constraints) it be-
comes more difficult to choose values for existential vari-

(a) Number of nodes visited

(b) Solution time in CPU secs

Figure 3. 10 blocks of 4 similarly quanti-
fied variables starting with ∃, 4 literals per
clause, 100 problems at each clause level.
Pr[Φ] scaled so top of graph is 1.0 and bot-
tom is 0.0

ables such that all paths in the tree of assignments result
in satisfaction (and an overallPr[Φ] of 1.0). An increas-
ing number of clauses rely on randomized literals for satis-
faction, producing a lowerPr[Φ] and increasing the num-
ber of randomized variables that must be included in a SAT
reason. As the average SAT reason size increases, the ef-
fectiveness of these reasons decreases, both because more
literals are included in the initial SAT reason, and because
the larger initial reason makes it more likely that the algo-
rithm will backtrack through a randomized unit literallu in
the reason and need to add to the reason all the literals that
forced the value oflu (RuleM2(b)i).

Larger SAT reasons have a powerful effect because, even
though a lowerPr[Φ] tends to reduce the number of SAT
reasons, the percentage of SAT reasons never falls below
approximately 90% and so dominates the overall average
reason size. In fact, the overall average reason size is an ex-

(a)

(b)

Figure 4. (a) Average reason size for prob-
lems in Figure 3. Pr[Φ] scaled so top of graph
is 1.0 and bottom is 0.0 (b) Average reason
size as percentage of number of variables for
all problems in Figs. 2 and 3

cellent predictor of the effectiveness of NCB in these prob-
lems. Figure 4(b) plots the average reason size as a per-
centage of number of variables (ARSPV) against the per-
cent change in solution time for the individual problems in
Figs. 2 and 3. (The data points at−140% change in solution
time are data points for problems that could not be solved
by SOLVESSAT due to insufficient memory, but could be
solved by SOLVESSAT-NCB.) If the ARSPV has a value
of approximately 15% or less, then NCB will be benefi-
cial; otherwise, the cost of NCB will outweigh its benefit.
Furthermore, tests indicated that this statistic retains its pre-
dictive power even if calculated after only a few reasons
have been created. We modified SOLVESSAT-NCB to cal-
culate the ARSPV after 10 SAT reasons had been created
and “turn off” NCB if the value of the ARSPV was greater
than 15. In all but a handful of problems (out of 2000), the
modified algorithm used NCB only when doing so would

Prob- Hori- SOL-SSAT SOL-SSAT SOL-SSAT

lem zon NCB NCB-USR
G5 9 1.3e8 9.0e7 9.0e7

10 9.2e8 6.5e8 6.5e8
CR 8 2.1e7 1.6e7 1.6e7

9 1.4e8 1.0e8 1.0e8
TI 14 2.2e7 2.2e7 2.2e7

15 6.4e7 6.4e7 6.4e7
SR 14 4.1e7 4.1e7 4.1e7

15 1.2e8 1.2e8 1.2e8
M5 15 2.0e7 2.0e7 2.0e7

16 4.3e7 4.3e7 4.3e7

(a) Number of nodes visited

Prob- Hori- SOL-SSAT SOL-SSAT SOL-SSAT

lem zon NCB NCB-USR
G5 9 176.3 174.5 147.6

10 1193.2 1332.2 1069.9
CR 8 30.8 53.3 33.5

9 215.1 364.9 229.2
TI 14 27.6 60.7 37.5

15 82.2 186.1 114.0
SR 14 51.5 86.4 67.0

15 153.0 263.7 202.2
M5 15 34.2 60.2 42.1

16 73.4 120.2 91.3

(b) Solution time in CPU secs

G5 = GO-5
CR = COFFEE-ROBOT

TI = T IGER

SR = SHIP-REJECT

M5 = MEDICAL-5ILL

Figure 5. SOLVESSAT-NCB does not improve
performance significantly on a set of SSAT en-
codings of probabilistic contingent planning
problems.

reduce the solution time, and the slight overhead of creat-
ing 10 reasons and checking the ARSPV value was negligi-
ble. We are conducting additional tests to determine if the
value of this critical point is constant over a broad range of
SSAT problems. Also, we conjecture that generating and us-
ing only UNSAT reasons when the critical ARSPV value is
exceeded would be better than turning off NCB entirely, and
we are currently testing this idea.

We also tested our algorithms on SSAT encodings of five
probabilistic planning problems [12], varying the plan hori-
zon. In most of the problems, NCB was able to reduce

the number of nodes visited only modestly (or not at all)
(Figure 5(a)) and the overhead of NCB degraded perfor-
mance (Figure 5(b)). Furthermore, the ARSPV value was
not predictive of NCB effectiveness in these problems. The
poor performance of NCB on these problems was surpris-
ing in light of the effectiveness of NCB in solving structured
SAT problems [3] and structured QSAT problems [9] (al-
though Giunchiglia, Narizzano & Tacchella [9] report some
instances in which the overhead associated with NCB out-
weighs its benefits). Our analysis suggests three possible
reasons for this poor performance, based on the character-
istics of the SSAT encoding that result from the structure
of the planning problem and the particular way the plan-
ning problem is translated into an SSAT instance. (There are
multiple ways to encode planning problems as SSAT prob-
lems [13], and it is possible that another type of SSAT en-
coding would allow NCB to be more effective. More im-
portantly, however, our analysis suggests that the character-
istics of these SSAT problems that make them resistant to
NCB are peculiar to planning problem encodings and not
necessarily shared by all types of structured SSAT prob-
lems.)

First, the manner in which randomized variables are
used in a plan encoding tends to undermine the effec-
tiveness of solution-directed backjumping. A randomized
variableyi is usually associated with the probabilistic im-
pact of a particular action on a particular fluent (proposition
describing an aspect of the state) under certain condi-
tions. This particular randomized variable typically ap-
pears in only two clauses modeling that action’s effect
under these conditions. If the action is taken and the con-
ditions hold, the active literals in the two clauses look
like: {yi, xj}, {yi, xj}, wherexj is the variable represent-
ing the fluent the action will affect. Eitheryi andxj will
both beTrue or both beFalse. In either case,yi will be
necessary for any satisfying assignment that is an exten-
sion of this partial assignment. If the action is not taken,
or if not all the conditions hold, both clauses will be sat-
isfied andyi becomes irrelevant (since it appears in only
these two clauses) and is never even considered in the so-
lution tree. In effect, it is removed in advance from any
possible SAT reason. Since almost every randomized vari-
able in a satisfying assignment is necessary for satisfaction
and so must be included in the reason, the time spent try-
ing to reduce the size of a SAT reason is wasted. We tested
SOLVESSAT-NCB-USR, a version of SOLVESSAT-NCB
in which all the randomized literals from a satisfying as-
signment are included in the SAT reason (the “unre-
duced” SAT reason). SOLVESSAT-NCB-USR was faster
than SOLVESSAT-NCB, outperforming SOLVESSAT on the
GO-5 problems, but the effect of NCB in the other prob-
lems remained disappointing (Figure 5).

The other reasons for the poor performance of NCB have

to do with 1) the fact that most clauses encode a possi-
ble way that an action can change the status of a fluent
from one time step to the next, and 2) the variable order-
ing. In these encodings, variables represent actions, obser-
vations, fluents, and the uncertainty associated with action
outcomes. There is a set of these variables for each time
step in the planning problem, tagged with a time index in-
dicating what time step of the plan they are associated with.
These variables or ordered such that the randomized vari-
ables that encode the uncertain outcomes of all actions in
all time steps are in the next to inner-most sequence of sim-
ilarly quantified variables in the ordering, and the existen-
tial variables representing all the fluents in all time stepsare
in the inner-most sequence of similarly quantified variables
in the ordering. Within these last two blocks the variable or-
dering respects the time indices; variables with earlier time
indices appear earlier in the ordering. These characteristics
of the encoding have two consequences.

First, the values of almost all the fluent variables in the
last block are set through the application of the unit lit-
eral rule. This is reflected empirically in a high ratio of unit
literals to split variables (variables where both values are
explored) in the solution process for these problems. This
means that the values of almost all of these variables are
forced; the other value will not be explored, even in the
absence of NCB. Thus, NCB provides no benefit. Further-
more, all the literals that were responsible for making these
literals unit will be added to the reason as the solver back-
tracks (RulesM1(b)(ii) andM2(b)(i)), lessening further the
likelihood that large backjumps will occur. This is partic-
ularly relevant for UNSAT reasons, which, when first cre-
ated, tend to be composed mostly of fluent literals.

Second, SAT reasons are composed of the randomized
literals that are necessary for that particular satisfyingas-
signment. But, since almost all the randomized variables are
in a single block in the quantifier ordering, SAT reasons will
tend to be composed of literals that are close to each other
in the ordering, thus lessening the potential for large back-
jumps.

Note that some of the structure we have just described is
due to the fact that these are encodings for partially observ-
able planning problems. Even the GO-5 problem, which
is completely observable, was encoded using the SSAT en-
coding framework for partially observable problems. Com-
pletely observable problems can be encoded with a variable
ordering that intersperses the randomized variables encod-
ing the uncertainty and the existential variables encoding
fluents more evenly throughout the quantifier ordering. We
are currently exploring whether NCB would be more effec-
tive on SSAT encodings of such problems.

5. Further Work

We described theoretical results that allow the incor-
poration of nonchronological backtracking into a stochas-
tic satisfiability solver. Empirical results using an NCB-
augmented SSAT solver based on this work indicate that
the benefits of NCB are not as easy to realize in SSAT as
QSAT. We described two responses to this problem in the
preceding section; here we describe some alternatives cur-
rently under investigation that might allow us to realize the
full potential of NCB.

A reduction in the overhead associated with NCB would
make this technique more widely applicable, and we are ex-
ploring a more efficient way of creating and manipulating
reasons using bit vectors.

A SAT reason can be any subset of those randomized lit-
erals that are necessary for the satisfaction of some clause.
Choosing that subset with the aim of minimizing its size
may not be the best strategy. Analysis of our empirical re-
sults indicates that, where there are choices, a criterion that
favors randomized literals that appear in clauses with fewer
existential literals may improve the efficiency of NCB, since
such literals will have less of a tendency to pull existen-
tial literals into the reason during backtracking. The poor
performance of NCB on SSAT encodings of planning prob-
lems, in which most clauses have at most one randomized
literal, lends support to this notion.

In the absence of unit and pure literals, the algorithm
considers both values of the next variable in the prefix.
Since the order in which the algorithm considers variables
in a block of similarly quantified variables does not affect
the answer, problems with larger blocks of similarly quan-
tified variables afford the opportunity to introduce selection
heuristics that might improve the performance of NCB.

We suspect, however, that the full benefit of NCB can-
not be realized in a solver that uses NCB alone.Learn-
ing, or recording the reasons as they are created in or-
der to prevent the solver from rediscovering them in other
branches of the computation, has been used to significantly
enhance the performance benefits obtained from reason cre-
ation in bothSAT [3] and QSAT [8] solvers and has the po-
tential to greatly improve the effectiveness of NCB in an
SSAT solver. UNSAT reasons can be recorded as additional
clauses that prevent partial assignments leading to unsatisfi-
ability; recording SAT reasons is not as straightforward. We
are currently developing the infrastructure to support learn-
ing in SOLVESSAT-NCB.

Acknowledgments:We thank the anonymous reviewers for
their helpful comments.

References

[1] F. Bacchus, S. Dalmao, and T. Pitassi. Algorithms and com-
plexity results for #sat and Bayesian inference. InProceed-
ings of The 44th Annual IEEE Symposium on Foundations of
Computer Science (FOCS-2003), pages 340–351, 2003.

[2] F. Bacchus, S. Dalmao, and T. Pitassi. Value elimination:
Bayesian inference via backtracking search. InProceedings
of the Nineteenth Annual Conference on Uncertainty in Arti-
ficial Intelligence (UAI-2003), pages 20–28, 2003.

[3] R. J. Bayardo, Jr. and R. C. Schrag. Using CSP look-
back techniques to solve real-world SAT instances. InPro-
ceedings of the Fourteenth National Conference on Artificial
Intelligence, pages 203–208. AAAI Press/The MIT Press,
1997.

[4] M. Davis, G. Logemann, and D. Loveland. A machine pro-
gram for theorem proving.Communications of the ACM,
5:394–397, 1962.

[5] E. Freudenthal and V. Karamcheti. QTM: Trust manage-
ment with quantified stochastic attributes. Technical Report
TR2003-848, Courant Institute of Mathematical Sciences,
New York University, New York, NY, 2003.

[6] I. Gent, E. Giunchiglia, M. Narizzano, A. Rowley, and
A. Tacchella. Watched data structures for QBF solvers. In
Selected Papers from the Proceedings of the The Sixth Inter-
national Conference on Theory and Applications of Satisfia-
bility Testing (published in Lecture Notes in Computer Sci-
ence #2919). Springer-Verlag, 2003.

[7] I. Gent and T. Walsh. Beyond NP: The QSAT phase transi-
tion. InProceedings of the Sixteenth National Conference on
Artificial Intelligence, pages 648–653. The AAAI Press/The
MIT Press, 1999.

[8] E. Giunchiglia, M. Narizzano, and A. Tacchella. Learning
for quantified Boolean logic satisfiability. InProceedings
of the Eighteenth National Conference on Artificial Intel-
ligence, pages 649–654. The AAAI Press/The MIT Press,
2002.

[9] E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjump-
ing for quantified Boolean logic satisfiability.Artificial In-
telligence, 145(1-2):99–120, 2003.

[10] R. Letz. Lemma and model caching in decision proce-
dures for quantified Boolean formulas. In C. Fermueller and
U. Egly, editors,Proceedings of Tableaux 2002, pages 160–
175, 2002.

[11] M. L. Littman, S. M. Majercik, and T. Pitassi. Stochas-
tic Boolean satisfiability.Journal of Automated Reasoning,
27(3):251–296, 2001.

[12] S. M. Majercik and M. L. Littman. Contingent planning un-
der uncertainty via stochastic satisfiability.Artificial Intelli-
gence, 147:119–162, 2003.

[13] S. M. Majercik and A. P. Rusczek. Faster probabilistic plan-
ning through more efficient stochastic satisfiability problem
encodings. InProceedings of the Sixth International Con-
ference on Artificial Intelligence Planning and Scheduling,
pages 163–172. AAAI Press, 2002.

[14] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Ma-
lik. Chaff: Engineering an efficient SAT solver. InPro-
ceedings of the Thirty-Ninth Design Automation Conference,
2001.

[15] C. H. Papadimitriou. Games against nature.Journal of Com-
puter Systems Science, 31:288–301, 1985.

[16] D. Roth. On the hardness of approximate reasoning.Artifi-
cial Intelligence, 82(1–2):273–302, 1996.

