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Abstract 
A new method for optimizing complex functions and 

systems is described that employs Learnable Evolution 
Model (LEM), a form of non-Darwinian evolutionary 
computation guided by machine learning. LEM’s main 
novelties are operators for creating new individuals that 
include hypothesis generation, which learns rules 
indicating subareas in the search space likely containing 
the optimum, and hypothesis instantiation, which  
populates these subareas with new candidate solutions.  
LEM3, the newest and most advanced implementation of 
learnable evolution, is briefly described and 
experimentally compared with other evolutionary 
computation programs on selected function optimization 
problems.  We also describe two specialized LEM-based 
systems for heat exchanger optimization. 

1. Introduction 
Research on intelligent optimization is concerned with 

developing algorithms in which the optimization process 
is guided by an “intelligent agent.” In the Learnable 
Evolution Model (LEM), described in this paper, the role 
of the intelligent agent is played by a machine learning 
program. 

LEM’s evolutionary computation differs from 
conventional evolutionary computation in the way 
innovation is introduced into the process.  In addition to 
conventional blind operators, such as mutation and 
recombination, LEM employs new types of innovation 
operators—hypothesis generation and hypothesis 
instantiation—that create new individuals by taking into 
consideration the properties of the current and possibly 
also past populations. 

Specifically, the hypothesis generation operator 
hypothesizes general rules that differentiate between 
groups of high fitness and low fitness individuals 
(solutions).  These rules delineate sub-areas in the search 
space likely to contain the optimum. Subsequently, the 
hypothesis instantiation operator populates these 
subspaces with proposed new solutions. Multiple 
experiments have confirmed that these operators can 
drastically shorten the evolution length, defined as the 

number of fitness evaluations needed to achieve a desired 
solution. 

Hypothesis generation and instantiation operators are, 
however, computationally more complex than mutations 
and recombinations. Therefore, LEM integrates both 
types of operators—new and conventional ones—in a 
way that seeks to maximize the efficiency and 
effectiveness of the optimization process. It also employs 
other operators for introducing innovation. 

2. Brief Description of LEM3 
LEM3 starts by generating an initial population of 

candidate solutions.  It can generate such solutions 
randomly, load a previously created population from an 
external source, or use a combination of the two methods.  
Solutions in the current population are evaluated 
according to a user-defined fitness function (or objective 
function).  Based on the results of the evaluation, a new 
population of solutions is selected using one of the 
selection methods developed in the field of evolutionary 
computation, e.g. proportional selection, tournament 
selection, etc. 

The next steps introduce innovation into the population 
in one of several ways, depending on what action or 
actions are selected by the LEM3 Control Module.  These 
actions, also called modes of operation, are:  Learn and 
instantiate, Probe, Search locally, Adjust representation, 
and Randomize. Figure 1 presents the top-level algorithm 
underlying LEM3. 

3. LEM3 Actions 

3.1. Learn and Instantiate 

The Learn and Instantiate action is the most important 
novel component of the Learnable Evolution Model.  This 
action creates candidate solutions in three steps:  (1) 
select a training set for the learning program, (2) learn 
from the training set a general hypothesis that 
characterizes subareas likely to contain the optimum, and 
(3) instantiate the hypothesis to create new candidate 
solutions. 

 



 
Figure 1. The LEM3 top level algorithm. 

To determine a training set, Step (1) selects high-
performing (H-group) and low-performing (L-group) 
candidate solutions from the current population (or from 
the current and past populations), according to the given 
fitness function. These solutions serve as positive and 
negative examples, respectively, for a learning program, 
which in LEM3 is AQ21, the newest implementation of 
the AQ learning family [12]. 

In principle, there is no restriction on what learning 
method can be used in LEM, provided that an effective 
hypothesis instantiation method is developed for the 
hypotheses it generates.  The AQ-type learner is, 
however, particularly suitable for LEM, because it creates 
hypotheses that are easy to instantiate and easy to 
interpret.  

Specifically, AQ21 produces hypotheses in the form of 
sets of attributional rules [7] that are generalizations of 
conventional decision rules. The simplest form of an 
attributional rule is: 

CONSEQUENT <= PREMISE 
where CONSEQUENT and PREMISE are conjunctions 
of attributional conditions (a.k.a selectors), whose basic 
form relates an attribute to a set of attribute values.  

Attributional rules delineate subsets of the search 
space that can be separately instantiated.  If the search 
space has several equivalent optima, different rules may 
delineate subspaces that contain these optima.  Because 
rules are easy to interpret and understand, it is possible for 
experts to develop insights into the problem being 
optimized. 

The instantiation process (Step 3) generates new 
individuals using attributional rules in the hypothesis.  For 

each condition in each rule, the program randomly assigns 
an attribute value or values that satisfy that condition.  For 
attributes not included in the rule, the program selects a 
value that the attribute takes in a randomly selected 
individual from the H-group. 

Because conditions in a rule can be usually satisfied by 
a number of different values, many different individuals 
can be created by instantiating one rule.  For more details 
on this process, see [11]. 

There are several modifications to the above basic 
instantiation algorithm, one of which is a flexible 
interpretation of selectors.  For example, if a rule states 
that a design is high performing if its length is between 12 
and 70 feet, it is plausible that a design with length 71 feet 
may also perform well, although it does not strictly match 
the condition. 

A simple method for flexible interpretation, 
implemented in LEM3, is to generate s% individuals 
strictly satisfying the rule conditions (s is a parameter), 
and (100-s)% individuals with values whose probabilities 
linearly decrease with distance from the condition border 
(e.g., s=95%). 

3.2. Probe and Search Locally Actions 

The probe action executes conventional “Darwinian-
type” operators such as mutation and crossover. The 
crossover creates two new individuals from two parents 
by exchanging their values of the first k attributes, where 
k is randomly chosen. Because the representation of 
variables depends on their type, the crossover and 
mutation operators need to support all attribute types 
available in LEM3.  This is done by performing these 
operations using semantic information about the attribute 
types, not necessarily their internal representation (as, for 
example, in genetic algorithms that operate on bits). 

The search locally operator is applied to improve the 
current solutions by searching their neighborhoods.  For 
example, for continuous attributes, the program may 
apply a gradient method.  The LEM3 design allows users 
to attach an external program to run a local search 
method. This feature is currently under development in 
the program. 

 
3.3. Adjust Representation Action 

The Adjust representation action modifies the 
representation space of solutions to make it more suitable 
for hypothesis generation, using operators such as 
adjusting domains of variables, removing variables 
irrelevant to the optimization problem, and creating new, 
more relevant variables. Currently, only the operator that 
changes the discretization level of attributes has been 
implemented in LEM3.  Specifically, LEM3 employs 
adaptive anchoring discretization that splits dynamically 
selected ranges or subranges of continuous attributes into 



more discrete units. The method starts with a very rough 
discretization, and then increases the precision of numeric 
attributes in the most promising intervals, as indicated by 
the best individuals. 

4. Action Selection Module 
The Action Selection Module (a.k.a. Control Module) 

uses an Action Profiling Function (APF) to control which 
actions are applied at a given step of evolution.  Initially, 
by default, the Control Module selects the “Learn and 
Instantiate” action.  When after a number of iterations, 
insufficient progress is observed, LEM3 applies the 
“Probe” action to increase diversity of solutions in the 
population.  If after several repetitions there is still no 
progress, representation of individuals is adjusted.  Then, 
if after a number of repetitions the program still does not 
make progress, it may mean that an optimum has been 
reached, local or global. If the termination condition is not 
satisfied, evolution is restarted by employing the 
“Randomize” action. 

An important novelty of LEM3 is that it allows a 
parallel execution of these actions.  For example, the 
program may generate 100 individuals in each generation, 
80 of which are created by learning and instantiation, 10 
by applying crossover, 5 by mutation, and 5 by random 
generation. Numbers of individuals created by different 
actions can be adjusted based on their performance. 

5. Heat Exchanger Optimization 
Using the LEM methodology, we developed two 

specialized systems, for heat exchanger optimization, 
ISHED for optimizing evaporators and ISCOD for 
optimizing condensers [2].  In both systems, the objective 
is to optimize the connections among the heat exchanger 
tubes, so that maximum heat transfer can occur. 

The heat exchangers are subject to a variety of 
constraints, resulting in a very large number of feasible 
designs, scattered throughout intractably large 
representation spaces. 

ISHED and ISCOD are equipped with learning and 
probing operators tailored to the given application.  
Experiments consistently showed that both systems are 
able to create designs that adapt to varying environmental 
conditions and technical constraints. They are able to 
evolve designs that perform on a par with, or better than 
the best human designs, according to experts.  In 
problems with highly uneven airflows, the ISHED designs 
were evaluated by experts as superior to the best human 
designs. 

6. Experimental Results from LEM3 
LEM3 was applied to selected benchmark problems of 

optimizing Rastrigin, Griewangk and Rosenbrock 

functions with numbers of variables ranging between 2 
and 1000.  For comparison, EA, a conventional 
Darwinian-type program [3], was applied to the same 
problems. We also compared LEM3’s results with 
published results by Estimation of Distribution 
Algorithms (EDAs), and a Cultural Algorithms (CAs) 
applied to these problems. 

The results of comparing LEM3 with EA are presented 
in Table 1.  The relative performance of LEM3 and EA is 
measured by the speedup (LEM3/EA), defined as the ratio 
of the number of fitness evaluations required by EA to 
those required by LEM3 to achieve the same result. 
 
Table1. Average speedup of LEM3 over EA in 
optimizing Rosenbrock, Griewangk and Rastrigin 
functions on numbers of variables ranging from 100 
to 1000. Parameter δ was set to 0.1 and 0.01, and 
the table presents the average speedup. 

No of variables 100 200 300 400 500 
Speedup LEM3/EA 10.7 15 16.8 17.8 17.2 
No of variables 600 700 800 900 1000 
Speedup LEM3/EA 16.7 19 16.6 17.2 18 

 
As one can see, the speedup of LEM3 over EA ranges 

between 10 and 18, and has a tendency to increase with 
the number of function variables.  The stopping criterion 
for EA and LEM3 was finding solutions with a defined 
improvement of the fitness value over the starting 
population, called a δ-close solution [11].  When δ=0.1, 
the best solution at the end of the process must be at least 
10 times closer to the optimum than the best solution in 
the starting population. Each experiment was repeated 10 
times with different starting populations, which were the 
same for both programs.  LEM3 used default parameters, 
without tuning to these particular functions. 

A comparison of LEM3 results with the best results 
from the Cultural Algorithm program on the optimization 
of Rastrigin, Griewangk, and Rosenbrock functions that 
were reported in [10] for 5, 3, and 2 variables indicated a 
significant speedup by LEM3.  LEM3 required on 
average 728 times fewer fitness evaluations on the 
Rastrigin function, 53 times fewer on the Griewangk 
function, and 243 times fewer on the Rosenbrock 
function.  The stopping criterion for LEM3 was finding an 
individual with fitness at least as good as reported for the 
CA.  Each experiment was repeated 40 times, and the 
above numbers are averages. 

Comparing LEM3’s results with the best results from 
the EDA implementations on Griewangk and Rosenbrock 
functions of 10 and 50 variables reported in [1] also 
shows LEM3’s advantage.  LEM3 required on average 
142 and 66 times fewer fitness evaluations for optimizing 
the Griewangk and Rosenbrock functions, respectively. 
The LEM3 stopping criterion was finding a solution with 
fitness at least as good as the one found by the EDA 



program. Each experiment was repeated 10 times, and 
reported numbers are averages. 

7. Related research 
The LEM3 program follows earlier implementations, 

LEM2 and LEM1, that used earlier versions of AQ 
learning.  An implementation of Learnable Evolution 
Model for multi-objective optimization, LEMMO, 
developed by another research group, is based on rules 
derived from decision trees learned by the C4.5 program, 
and was applied successfully to a water quality 
optimization problem [5]. 

The evolutionary methods that seem to be close in 
spirit to LEM are cultural algorithms [10] that perform an 
optimization in which constraints are learned during the 
evolutionary computation.  The constraints, called beliefs, 
reside in a belief space that is updated during the 
evolution process.  Individuals that are stored in an 
optimization space are modified so that they satisfy the 
beliefs. 

Estimation of Distribution Algorithms (EDAs) use 
statistical inference, usually Bayesian or Gaussian 
networks, to estimate distributions of high-performing 
individuals selected from one population [1], [8].  LEM 
differs from EDAs in that it seeks rules for distinguishing 
between high- and low-performing individuals, and 
employs symbolic learning rather than statistical.  It also 
uses the fitness function during the learning process itself, 
through learning significance-based descriptions, while 
EDA uses it solely for selecting individuals. 

Another form of non-Darwinian method is performed 
by memetic algorithms that combine conventional 
evolutionary computations with local search methods [4], 
[9].  A local search mode is included as one of the 
possible actions in LEM3. 

8. Conclusion 
LEM3 is the most recent and most advanced 

implementation of the Learnable Evolution Model.  In 
some aspects, the algorithms implemented in LEM3 go 
beyond the methodology described in [6], for example, 
novel aspects include the introduction of the Action 
Profiling Function and new instantiation algorithms. 

LEM3 is highly scalable, and experiments have 
confirmed that LEM3 can serve as a powerful 
optimization system for problems with hundreds or more 
controllable variables.  In every experiment we 
conducted, it outperformed other evolutionary 
computation methods in terms of evolution length, 
sometimes more than an order of magnitude.  LEM3 is 
also particularly suitable for optimization problems with 
many different types of attributes (a feature that was not 
demonstrated in the presented experiments). 
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