

Intelligent Optimization via Learnable Evolution Model

Ryszard S. Michalski, Janusz Wojtusiak, and Kenneth A. Kaufman
Machine Learning and Inference Laboratory

George Mason University
{michalski, jwojt, kaufman}@mli.gmu.edu

Abstract
A new method for optimizing complex functions and

systems is described that employs Learnable Evolution
Model (LEM), a form of non-Darwinian evolutionary
computation guided by machine learning. LEM’s main
novelties are operators for creating new individuals that
include hypothesis generation, which learns rules
indicating subareas in the search space likely containing
the optimum, and hypothesis instantiation, which
populates these subareas with new candidate solutions.
LEM3, the newest and most advanced implementation of
learnable evolution, is briefly described and
experimentally compared with other evolutionary
computation programs on selected function optimization
problems. We also describe two specialized LEM-based
systems for heat exchanger optimization.

1. Introduction
Research on intelligent optimization is concerned with

developing algorithms in which the optimization process
is guided by an “intelligent agent.” In the Learnable
Evolution Model (LEM), described in this paper, the role
of the intelligent agent is played by a machine learning
program.

LEM’s evolutionary computation differs from
conventional evolutionary computation in the way
innovation is introduced into the process. In addition to
conventional blind operators, such as mutation and
recombination, LEM employs new types of innovation
operators—hypothesis generation and hypothesis
instantiation—that create new individuals by taking into
consideration the properties of the current and possibly
also past populations.

Specifically, the hypothesis generation operator
hypothesizes general rules that differentiate between
groups of high fitness and low fitness individuals
(solutions). These rules delineate sub-areas in the search
space likely to contain the optimum. Subsequently, the
hypothesis instantiation operator populates these
subspaces with proposed new solutions. Multiple
experiments have confirmed that these operators can
drastically shorten the evolution length, defined as the

number of fitness evaluations needed to achieve a desired
solution.

Hypothesis generation and instantiation operators are,
however, computationally more complex than mutations
and recombinations. Therefore, LEM integrates both
types of operators—new and conventional ones—in a
way that seeks to maximize the efficiency and
effectiveness of the optimization process. It also employs
other operators for introducing innovation.

2. Brief Description of LEM3
LEM3 starts by generating an initial population of

candidate solutions. It can generate such solutions
randomly, load a previously created population from an
external source, or use a combination of the two methods.
Solutions in the current population are evaluated
according to a user-defined fitness function (or objective
function). Based on the results of the evaluation, a new
population of solutions is selected using one of the
selection methods developed in the field of evolutionary
computation, e.g. proportional selection, tournament
selection, etc.

The next steps introduce innovation into the population
in one of several ways, depending on what action or
actions are selected by the LEM3 Control Module. These
actions, also called modes of operation, are: Learn and
instantiate, Probe, Search locally, Adjust representation,
and Randomize. Figure 1 presents the top-level algorithm
underlying LEM3.

3. LEM3 Actions

3.1. Learn and Instantiate

The Learn and Instantiate action is the most important
novel component of the Learnable Evolution Model. This
action creates candidate solutions in three steps: (1)
select a training set for the learning program, (2) learn
from the training set a general hypothesis that
characterizes subareas likely to contain the optimum, and
(3) instantiate the hypothesis to create new candidate
solutions.

Figure 1. The LEM3 top level algorithm.

To determine a training set, Step (1) selects high-
performing (H-group) and low-performing (L-group)
candidate solutions from the current population (or from
the current and past populations), according to the given
fitness function. These solutions serve as positive and
negative examples, respectively, for a learning program,
which in LEM3 is AQ21, the newest implementation of
the AQ learning family [12].

In principle, there is no restriction on what learning
method can be used in LEM, provided that an effective
hypothesis instantiation method is developed for the
hypotheses it generates. The AQ-type learner is,
however, particularly suitable for LEM, because it creates
hypotheses that are easy to instantiate and easy to
interpret.

Specifically, AQ21 produces hypotheses in the form of
sets of attributional rules [7] that are generalizations of
conventional decision rules. The simplest form of an
attributional rule is:

CONSEQUENT <= PREMISE
where CONSEQUENT and PREMISE are conjunctions
of attributional conditions (a.k.a selectors), whose basic
form relates an attribute to a set of attribute values.

Attributional rules delineate subsets of the search
space that can be separately instantiated. If the search
space has several equivalent optima, different rules may
delineate subspaces that contain these optima. Because
rules are easy to interpret and understand, it is possible for
experts to develop insights into the problem being
optimized.

The instantiation process (Step 3) generates new
individuals using attributional rules in the hypothesis. For

each condition in each rule, the program randomly assigns
an attribute value or values that satisfy that condition. For
attributes not included in the rule, the program selects a
value that the attribute takes in a randomly selected
individual from the H-group.

Because conditions in a rule can be usually satisfied by
a number of different values, many different individuals
can be created by instantiating one rule. For more details
on this process, see [11].

There are several modifications to the above basic
instantiation algorithm, one of which is a flexible
interpretation of selectors. For example, if a rule states
that a design is high performing if its length is between 12
and 70 feet, it is plausible that a design with length 71 feet
may also perform well, although it does not strictly match
the condition.

A simple method for flexible interpretation,
implemented in LEM3, is to generate s% individuals
strictly satisfying the rule conditions (s is a parameter),
and (100-s)% individuals with values whose probabilities
linearly decrease with distance from the condition border
(e.g., s=95%).

3.2. Probe and Search Locally Actions

The probe action executes conventional “Darwinian-
type” operators such as mutation and crossover. The
crossover creates two new individuals from two parents
by exchanging their values of the first k attributes, where
k is randomly chosen. Because the representation of
variables depends on their type, the crossover and
mutation operators need to support all attribute types
available in LEM3. This is done by performing these
operations using semantic information about the attribute
types, not necessarily their internal representation (as, for
example, in genetic algorithms that operate on bits).

The search locally operator is applied to improve the
current solutions by searching their neighborhoods. For
example, for continuous attributes, the program may
apply a gradient method. The LEM3 design allows users
to attach an external program to run a local search
method. This feature is currently under development in
the program.

3.3. Adjust Representation Action

The Adjust representation action modifies the
representation space of solutions to make it more suitable
for hypothesis generation, using operators such as
adjusting domains of variables, removing variables
irrelevant to the optimization problem, and creating new,
more relevant variables. Currently, only the operator that
changes the discretization level of attributes has been
implemented in LEM3. Specifically, LEM3 employs
adaptive anchoring discretization that splits dynamically
selected ranges or subranges of continuous attributes into

more discrete units. The method starts with a very rough
discretization, and then increases the precision of numeric
attributes in the most promising intervals, as indicated by
the best individuals.

4. Action Selection Module
The Action Selection Module (a.k.a. Control Module)

uses an Action Profiling Function (APF) to control which
actions are applied at a given step of evolution. Initially,
by default, the Control Module selects the “Learn and
Instantiate” action. When after a number of iterations,
insufficient progress is observed, LEM3 applies the
“Probe” action to increase diversity of solutions in the
population. If after several repetitions there is still no
progress, representation of individuals is adjusted. Then,
if after a number of repetitions the program still does not
make progress, it may mean that an optimum has been
reached, local or global. If the termination condition is not
satisfied, evolution is restarted by employing the
“Randomize” action.

An important novelty of LEM3 is that it allows a
parallel execution of these actions. For example, the
program may generate 100 individuals in each generation,
80 of which are created by learning and instantiation, 10
by applying crossover, 5 by mutation, and 5 by random
generation. Numbers of individuals created by different
actions can be adjusted based on their performance.

5. Heat Exchanger Optimization
Using the LEM methodology, we developed two

specialized systems, for heat exchanger optimization,
ISHED for optimizing evaporators and ISCOD for
optimizing condensers [2]. In both systems, the objective
is to optimize the connections among the heat exchanger
tubes, so that maximum heat transfer can occur.

The heat exchangers are subject to a variety of
constraints, resulting in a very large number of feasible
designs, scattered throughout intractably large
representation spaces.

ISHED and ISCOD are equipped with learning and
probing operators tailored to the given application.
Experiments consistently showed that both systems are
able to create designs that adapt to varying environmental
conditions and technical constraints. They are able to
evolve designs that perform on a par with, or better than
the best human designs, according to experts. In
problems with highly uneven airflows, the ISHED designs
were evaluated by experts as superior to the best human
designs.

6. Experimental Results from LEM3
LEM3 was applied to selected benchmark problems of

optimizing Rastrigin, Griewangk and Rosenbrock

functions with numbers of variables ranging between 2
and 1000. For comparison, EA, a conventional
Darwinian-type program [3], was applied to the same
problems. We also compared LEM3’s results with
published results by Estimation of Distribution
Algorithms (EDAs), and a Cultural Algorithms (CAs)
applied to these problems.

The results of comparing LEM3 with EA are presented
in Table 1. The relative performance of LEM3 and EA is
measured by the speedup (LEM3/EA), defined as the ratio
of the number of fitness evaluations required by EA to
those required by LEM3 to achieve the same result.

Table1. Average speedup of LEM3 over EA in
optimizing Rosenbrock, Griewangk and Rastrigin
functions on numbers of variables ranging from 100
to 1000. Parameter δ was set to 0.1 and 0.01, and
the table presents the average speedup.

No of variables 100 200 300 400 500
Speedup LEM3/EA 10.7 15 16.8 17.8 17.2
No of variables 600 700 800 900 1000
Speedup LEM3/EA 16.7 19 16.6 17.2 18

As one can see, the speedup of LEM3 over EA ranges

between 10 and 18, and has a tendency to increase with
the number of function variables. The stopping criterion
for EA and LEM3 was finding solutions with a defined
improvement of the fitness value over the starting
population, called a δ-close solution [11]. When δ=0.1,
the best solution at the end of the process must be at least
10 times closer to the optimum than the best solution in
the starting population. Each experiment was repeated 10
times with different starting populations, which were the
same for both programs. LEM3 used default parameters,
without tuning to these particular functions.

A comparison of LEM3 results with the best results
from the Cultural Algorithm program on the optimization
of Rastrigin, Griewangk, and Rosenbrock functions that
were reported in [10] for 5, 3, and 2 variables indicated a
significant speedup by LEM3. LEM3 required on
average 728 times fewer fitness evaluations on the
Rastrigin function, 53 times fewer on the Griewangk
function, and 243 times fewer on the Rosenbrock
function. The stopping criterion for LEM3 was finding an
individual with fitness at least as good as reported for the
CA. Each experiment was repeated 40 times, and the
above numbers are averages.

Comparing LEM3’s results with the best results from
the EDA implementations on Griewangk and Rosenbrock
functions of 10 and 50 variables reported in [1] also
shows LEM3’s advantage. LEM3 required on average
142 and 66 times fewer fitness evaluations for optimizing
the Griewangk and Rosenbrock functions, respectively.
The LEM3 stopping criterion was finding a solution with
fitness at least as good as the one found by the EDA

program. Each experiment was repeated 10 times, and
reported numbers are averages.

7. Related research
The LEM3 program follows earlier implementations,

LEM2 and LEM1, that used earlier versions of AQ
learning. An implementation of Learnable Evolution
Model for multi-objective optimization, LEMMO,
developed by another research group, is based on rules
derived from decision trees learned by the C4.5 program,
and was applied successfully to a water quality
optimization problem [5].

The evolutionary methods that seem to be close in
spirit to LEM are cultural algorithms [10] that perform an
optimization in which constraints are learned during the
evolutionary computation. The constraints, called beliefs,
reside in a belief space that is updated during the
evolution process. Individuals that are stored in an
optimization space are modified so that they satisfy the
beliefs.

Estimation of Distribution Algorithms (EDAs) use
statistical inference, usually Bayesian or Gaussian
networks, to estimate distributions of high-performing
individuals selected from one population [1], [8]. LEM
differs from EDAs in that it seeks rules for distinguishing
between high- and low-performing individuals, and
employs symbolic learning rather than statistical. It also
uses the fitness function during the learning process itself,
through learning significance-based descriptions, while
EDA uses it solely for selecting individuals.

Another form of non-Darwinian method is performed
by memetic algorithms that combine conventional
evolutionary computations with local search methods [4],
[9]. A local search mode is included as one of the
possible actions in LEM3.

8. Conclusion
LEM3 is the most recent and most advanced

implementation of the Learnable Evolution Model. In
some aspects, the algorithms implemented in LEM3 go
beyond the methodology described in [6], for example,
novel aspects include the introduction of the Action
Profiling Function and new instantiation algorithms.

LEM3 is highly scalable, and experiments have
confirmed that LEM3 can serve as a powerful
optimization system for problems with hundreds or more
controllable variables. In every experiment we
conducted, it outperformed other evolutionary
computation methods in terms of evolution length,
sometimes more than an order of magnitude. LEM3 is
also particularly suitable for optimization problems with
many different types of attributes (a feature that was not
demonstrated in the presented experiments).

Acknowledgments
This research has been conducted in the Machine

Learning and Inference Laboratory at George Mason
University. The Laboratory’s research has been supported
in part by the National Science Foundation under Grants
No. IIS-0097476 and IIS-9906858, and in part by the
UMBC/LUCITE #32 grant. The findings and opinions
expressed here are those of the authors, and do not
necessarily reflect those of the above sponsoring
organizations.

References
[1] Bengoextea, E., Miquelez, T., Larranaga, P., and Lozano,
J.A., “Experimental Results in Function Optimization with
EDAs in Continuous Domain”, In P. Larranaga and J.A. Lozano
(Eds.) Estimation of Distribution Algorithms, 2002.
[2] Domanski, P.A., Yashar, D., Kaufman K. and Michalski
R.S., “An Optimized Design of Finned-Tube Evaporators Using
the Learnable Evolution Model”, International Journal of
Heating, Ventilating, Air-Conditioning and Refrigerating
Research, 10, 2004.
[3] Evolutionary Objects Library, downloadable from the
website: http://eodev.sourceforge.net.
[4] Hart, W.E., Krasnogor, N. and Smith, J.E. (Eds.), Recent
Advances in Memetic Algorithms, Springer, 2004.
[5] Jourdan, L., Corne, D., Savic, D. and Walters, G.,
“Preliminary Investigation of the ‘Learnable Evolution Model’
for Faster/Better Multiobjective Water Systems Design”, Proc.
of The Third International Conf. on Evolutionary Multi-
Criterion Optimization, EMO’05, 2005.
[6] Michalski, R.S., “LEARNABLE EVOLUTION MODEL:
Evolutionary Processes Guided by Machine Learning”, Machine
Learning, 38, 2000.
[7] Michalski, R.S., “ATTRIBUTIONAL CALCULUS: A
Logic and Representation Language for Natural Induction”,
Reports of the Machine Learning and Inference Laboratory,
MLI 04-2, 2004.
[8] Miquelez, T., Bengoetxea, E., and Larranaga, P.,
“Evolutionary Computation Based on Bayesian Classifiers”,
International Journal of Applied Mathematics and Computer
Science, 14, 2004.
[9] Moscato, P., “On Evolution, Search, Optimization, Genetic
Algorithms and Martial Arts: Towards Memetic Algorithms”,
Caltech Concurrent Comput. Program, C3P Report 826, 1989.
[10] Reynolds, R. G. and Zhu, S., “Knowledge-Based
Function Optimization Using Fuzzy Cultural Algorithms with
Evolutionary Programming”, IEEE Transactions on Systems,
Man, and Cybernetics, 31, 2001.
[11] Wojtusiak, J. and Michalski, R. S., “The LEM3 System for
Non-Darwinian Evolutionary Computation and Its Testing on
Complex Function Optimization Problems”, Proceedings of
Genetic and Evolutionary Computation Conf., GECCO, 2006.
[12] Wojtusiak, J., Michalski, R.S., Kaufman, K.A., and
Pietrzykowski, J., “The AQ21 Natural Induction Program for
Pattern Discovery: Initial Version and Ins Novel Features”,
Proceedings of The 18th IEEE International Conference in
Tools with Artificial Intelligence, ICTAI 06’, 2006.

