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Abstract Mobile robot localization is taken into account as one of the most impor-
tant topics in robotics. In this paper, the localization problem is extended to the cases
in which estimating the position of multi robots is considered. To do so, the Joint
Probabilistic Data Association Filter (JPDAF) approach is applied for tracking the
position of multiple robots. To characterize the motion of each robot, two models
are used. First, a simple near constant velocity model is considered and then a vari-
able velocity model is applied for tracking. This improves the performance when
the robots change their velocity and conduct maneuvering movements. This issue
gives an advantage to explore the movement of the manoeuvring objects which is
common in many robotics problems such as soccer or rescue robots. Simulation re-
sults show the efficiency of the JPDAF algorithm in tracking multiple mobile robots
with maneuvering movements.

1 Introduction

The problem of estimating the position of a mobile robot in physical environment is
an important problem in mobile robotics. Indeed, because of the intrinsic error em-
bedded in the dead-reckoning of a mobile robot, the data gathered form the odom-
etry are not trustable and, therefore, some operations should be conducted on the
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crude data to reach more accurate knowledge about the position of a mobile robot.
Nowadays, various algorithms are proposed to modify the accuracy of localization
algorithms.
In the field of mobile robot localization, Kalman filter approach [1] plays a sig-
nificant role. Kalman approach combines the odometry data and the measurements
collected by the sensors of a mobile robot and provides an accurate estimation of
the robot’s position. Now, Kalman filter approach is greatly used in many local-
ization problems such as mobile robot tracking [2] and Simultaneous Localization
and Mapping [3]. Although Kalman approach has provided a general strategy to
solve localization problems, it suffers from some weaknesses. The most significant
problem of the Kalman method is its weakness to the state estimation of many real
systems in the presence of severe nonlinearity. Actually, in general nonlinear sys-
tems, the posterior probability density function of the states given the measurements
cannot be presented by a Gaussian density functions and, therefore, Kalman method
results in unsatisfactory responses. Moreover, Kalman filter is very sensitive to the
initial conditions of the states. Accordingly, Kalman methods do not provide accu-
rate results in many common global localization problems.
More recently, particle filters have been introduced to estimate non-Gaussian, non-
linear dynamic processes [4]. The key idea of particle filters is to represent the state
by sets of samples (or particles). The major advantage of this technique is that it can
represent multi-modal state densities, a property which has been shown to increase
the robustness of the underlying state estimation process. Moreover, particle filters
are less sensitive to the initial values of the states than the Kalman method is. This
problem is very considerable in applications in which the initial values of the states
are not known such as global localization problems. The mentioned power of parti-
cle filters in the state estimation of nonlinear systems has caused them to be applied
with great success to different state estimation problems including visual tracking
[5], mobile robot localization [6], control and scheduling [7], target tracking [8] and
dynamic probabilistic networks [9].
Multiple robot tracking is another attractive issue in the field of mobile robotics.
This problem can be introduced as the tracking of mobile robots’ position by an-
other mobile robot nominated as reference robot. Although this problem appears
similar to the common localization algorithms, the traditional approaches can not
be used because the reference robot does not have access to the odometery data of
each mobile robot used in localization algorithms to predict the future position of
the robot. Moreover, using the particle filter to estimate the position of all robots,
known as combined state space, is not tractable because the complexity of this ap-
proach grows exponentially with the number of objects being tracked.
To solve the problem of the lack of odometery data, various motion models have
been proposed in which no knowledge about external inputs, such as odometery, is
necessary. The simplest model proposed is the near constant velocity model. This
model has been greatly used in many tracking applications such as aircraft tracking
[10], people tracking [11] and some other target tracking applications [12]. Besides
this model, some other structures have been proposed usable in some special ap-
plications. Near constant acceleration model is a modified version of the previous
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model which can be applied to the tracking of maneuvering objects [13]. Also, inter-
active multiple model(IMM) filters represent another tool to track the movement of
highly maneuvering objects where the former proposed approaches are not reliable
[14].
Recently, many strategies have been proposed in the literature to address the difficul-
ties associated with multi-target tracking. The key idea of the literature is to estimate
each object’s position separately. To do so, the measurements should be assigned to
each target. Therefore, data association has been introduced to relate each target
to its associated measurements. By combining data association concept with filter-
ing and state estimation algorithms, the multiple target tracking issue can be dealt
easier than applying state estimation procedure to the combined state space model.
Among the various methods, Joint Probabilistic Data Association Filter (JPDAF)
algorithm is taken into account as one of the most attractive approaches. The tra-
ditional JPDAF [15] uses Extended Kalman Filtering(EKF) joint with the data as-
sociation to estimate the states of multiple objects. However, the performance of
the algorithm degrades as the non-linearities become more severe. To enhance the
performance of the JPDAF against the severe nonlinearity of dynamical and sensor
models, recently, strategies have been proposed to combine the JPDAF with particle
techniques known as Monte Carlo JPDAF, to accommodate general non-linear and
non-Gaussian models [16]. The newer versions of the mentioned algorithm use an
approach named as soft gating to reduce the computational cost which is one of the
most serious problems in online tracking algorithms [16]. Besides the Monte Carlo
JPDAF algorithm, some other methods have been proposed in the literature. In [16],
a comprehensive survey has been presented about the most well-known algorithms
applicable in the field of multiple target tracking.
The Monte Carlo JPDAF algorithm has been used in many applications. In [11], the
algorithm presented as sample based JPDAF, has been applied for multiple people
tracking problem. In [17], the JPDAF has been used for multi-target detection and
tracking using laser scanner. But, the problem of tracking multiple robots by a ref-
erence robot has not been discussed in the literature. This issue is very important in
many multiple robot problems such as robot soccer.
In this paper, the Monte Carlo JPDAF algorithm is considered for the multiple robot
tracking problem. Section II describes the Monte Carlo JPDAF algorithm for multi-
ple target tracking. The JPDAF for multiple robot tracking is the topic of section III.
In this section, we will present how the motion of robots in a real environment can
be described. To do so, near constant velocity and acceleration model are introduced
to describe the movement of mobile robots. Then, it will be shown how a reference
robot can track the motion of the other robots. In section IV, various simulation re-
sults are presented to support the performance of the algorithm. In this section, the
maneuvering movement of the mobile robot is also considered. The results show
the suitable performance of the JPDAF algorithm in tracking the motion of mobile
robots in the simulated environment. Finally, section V concludes the paper.
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2 The JPDAF Algorithm for Multiple Target Tracking

In this section, the JPDAF algorithm considered as the most successful and widly
applied strategy for multi-target tracking under data association uncertainty is pre-
sented. The Monte Carlo version of the JPDAF algorithm uses common particle
filter approach to estimate the posterior density function of the states given mea-
surements

(
P(xt |y1:t)

)
. Now, consider the problem of tracking of N objects. xk

t de-
notes the state of these objects at time t where k=1,2,..,N is the the target number.
Furthermore, the movement of each target can be considered by a general nonlinear
state space model as follows:

xt+1 = f (xt)+ vt

yt = g(xt)+wt (1)

where vt and wt are the white noise with the covariance matrixes Q and R, respec-
tively. Also, in the above equation, f and g are the general nonlinear functions rep-
resenting the dynamic behavior of the target and the sensor model. The JPDAF
algorithm recursively updates the marginal filtering distribution for each target
P(xk

t |y1:t), k=1,2,..,N instead of computing the joint filtering distribution P(Xt |y1:t),
Xt = x1

t , ...,x
N
t . To compute the above distribution function, some points should be

considered as follows:

• It is very important how to assign each target state to a measurement. Indeed, in
each iteration the sensor provides a set of measurements. The source of these
measurements can be the targets or the disturbances also known as clutters.
Therefore, a special procedure is needed to assign each target to its associated
measurement. This procedure is designated as Data Association considered as
the key stage of the JPDAF algorithm which is described in the next sections.

• Because the JPDAF algorithm recursively updates the estimated states, a recur-
sive solution should be applied to update the states in each sample time. Tradi-
tionally, Kalman filtering has been a strong tool for recursively estimating the
states of the targets in multi-target tracking scenario. Recently, particle filters
joint with the data association strategy have provided better estimations specially
when the sensor model is nonlinear.

With regard to the above points, the following sections describe how particle filters
paralleled with the data association concept can deal with the multi-target tracking
problem.
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2.1 The Particle Filter for Online State Estimation

Consider the problem of online state estimation as computing the posterior proba-
bility density function P(xk

t |y1:t). To provide a recursive formulation for computing
the above density function the following stages are presented:

• Prediction stage: The prediction step is proceeded independently for each target
as:

P(xk
t |y1:t−1) =

∫

xk
t−1

P(xk
t |xk

t−1)P(xk
t−1|y1:t−1)dxk

t−1 (2)

• Update stage: The update step can be described as follows:

P(xk
t |y1:t) ∝ P(yt |xk

t )P(xk
t |y1:t−1) (3)

The particle filter estimates the probability distribution density function P(xk
t |y1:t−1)

by sampling from a specific distribution function as follows:

P(xk
t |y1:t−1) =

N

∑
i=1

w̃i
tδ (xt − xi

t) (4)

Where i=1,2,...,N is the sample number, w̃t is the normalized importance weight
and δ is the delta dirac function. In the above equation, the state xi

t is sampled from
the proposal density function q(xk

t |xk
t−1,y1:t). By substituting the above equation in

equation (2) and the fact that the states are drawn from the proposal function q, the
recursive equation for the prediction step can be written as follows:

α i
t = α i

t−1
P(xk

t |xk,i
t−1)

q(xk
t |xk,i

t−1,y1:t)
(5)

Where xk,i
t−1 is the ith sample of xk

t−1. Now, by using equation (3) the update stage
can be expressed as the recursive adjustment of importance weights as follows:

wi
t = α i

t P(yt |xk
t ) (6)

By repeating the above procedure at each time step the sequential importance sam-
pling (SIS) for online state estimation is presented as follows:

The SIS Algorithm

1. For i=1: N initialize the states xi
0, prediction weights α i

0 and importance weights
wi

0.
2. At each time step t proceed the following stages:
3. Sample the states from the proposal density function as follows:
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xi
t ∼ (xt |xi

t−1,y1:t) (7)

4. Update prediction weights as equation (5).
5. Update importance weights as equation (6).
6. Normalize the importance weights as follows:

w̃i
t =

wi
t

Σ N
i=1wi

t
(8)

7. Set t=t+1 and go to step 3.

Where, for simplicity, the index, k, has been eliminated. The main failure of the SIS
algorithm is the degeneracy problem. That is, after a few iterations one of the nor-
malized importance ratios tends to 1, while the remaining ratios tend to zero. This
problem causes the variance of the importance weights to increase stochastically
over time [18]. To avoid the degeneracy of the SIS algorithm, a selection (resam-
pling) stage may be used to eliminate samples with low importance weights and
multiply samples with high importance weights. There are many approaches to im-
plement resampling stage [18]. Among them, the residual resampling provides a
straightforward strategy to solve the degeneracy problem in the SIS algorithm. Us-
ing the residual resampling joint with the SIS algorithm can be presented as the SIR
algorithm as follows:

The SIR Algorithm

1. For i=1: N initialize the states xi
0, prediction weights α i

0 and importance weights
wi

0.
2. At each time step t Do the following stages:
3. Do the SIS algorithm to sample states xi

t and compute normalized importance
weights w̃i

t .
4. Check the resampling criterion:

• If Ne f f > thresh follow the SIS algorithm.

Else

• Implement the residual resampling stage to multiply/suppress xi
t with high/low

importance weights.
• Set the new normalized importance weights as w̃i

t = 1
N .

5. Set t=t+1 and go to step 3.

In the above algorithm, Ne f f is a criterion checking the degeneracy problem which
can be written as:

Ne f f =
1

∑N
i=1(w̃

i
t)2

(9)
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In [18], a comprehensive discussion has been made on how one can implement the
residual resampling stage.
Besides the SIR algorithm, some other approaches have been proposed in the lit-
erature to enhance the quality of the SIR algorithm such as Markov Chain Monte
Carlo particle filters, Hybrid SIR and auxiliary particle filters [19]. Although these
methods are more accurate than the common SIR algorithm, some other problems
such as the computational cost are the most significant reasons that, in many real
time applications such as online tracking, the traditional SIR algorithm is applied to
recursive state estimation.

2.2 Data Association

In the last section, the SIR algorithm was presented for online state estimation.
However, the major problem of the proposed algorithm is how one can compute
the likelihood function P(yt |xk

t ). To do so, an association should be made between
the measurements and the targets. Briefly, the association can be defined as target to
measurement and measurement to target association:
Definition 1: We will denote a target to measurement association (T→M) by
λ̃ = {r̃,mc,mT} where r̃ = r̃1, .., r̃K and r̃k is defined as follows:

r̃k =
{

0 If the kth target is undetected
j If the kth target generates the jth measurement

Where j=1,2,...,m and m is the number of measurements at each time step and
k=1,2,..,K which K is the number of targets.
Definition 2: In a similar fashion, the measurement to target association (M→T) is
defined as λ = {r,mc,mT} where r = r1,r2, ...,rm and r j is defined as follows:

r j =





0 If the jth measurement is not associated
to any target

k If the jth measurement is associated
to the kth target

In both above equations, mT is the number of measurements due to the targets and
mc is the number of clutters.
It is very easy to show that both definitions are equivalent but the dimension of the
target to measurement association is less than the measurement to target association.
Therefore, in this paper, the target to measurement association is used.
Now, the likelihood function for each target can be written as:

P(yt |xk
t ) = β 0 +

m

∑
i=1

β iP(yi
t |xk

t ) (10)

In the above equation, β i is defined as the probability that the ith measurement is
assigned to the kth target. Therefore, β i is written as:
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β i = P(r̃k = i|y1:t) (11)

Before presenting the computation of the above equation, the following definition is
explained:
Definition 3: We define the set ∧̃ as all possible assignments which can be made
between the measurements and targets. For example, consider a 3-target tracking
problem. Assume that the following associations are recognized between the targets
and measurements:
r1 = 1,2,r2 = 3,r3 = 0.
Now, the set ∧̃ can be shown in Table 1.

Table 1 Simulation Parameters

Target 1 Target 2 Target 3

0 0 0
0 3 0
1 0 0
1 3 0
2 0 0
2 3 0

In Table 1, 0 means that the target has not been detected.
By using the above definition, equation (11) can be rewritten as:

P(r̃k = i|y1:t) = Σλ̃t∈∧̃t ,r̃k= jP(λ̃t |y1:t) (12)

The right side of the above equation is written as follows:

P(λ̃t |y1:t) =
P(yt |y1:t−1, λ̃t)P(y1:t−1, λ̃t)

P(y1:t)
=

P(yt |y1:t−1, λ̃t)P(λ̃t) (13)

In the above equation, we have used the fact that the association vector λ̃t is not de-
pendent on the history of measurements. Each of the density functions in the right
side of the above equation can be presented as follows:

• P(λ̃t)
The above density function can be written as:

P(λ̃t) = P(r̃t ,mc,mT ) = P(r̃t |mc,mT )P(mc)P(mT ) (14)

The computation of each density function in the right side of the above equation
is straightforward and can be found in [16].
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• P(yt |y1:t−1, λ̃t)
Because the targets are considered independent, the above density function can
be written as follows:

P(yt |y1:t−1, λ̃t) = (Vmax)−mc Π j∈Γ Pr j
t (y j

t |y1:t−1) (15)

Where Vmax is the maximum volume which is in the line of sight of the sensors, Γ
is the set of all valid measurement to target associations and Pr j

t (yt |y1:t−1) is the
predictive likelihood for the (r j

t )th target. Now, consider r j
t = k. The predictive

likelihood for the kth target can be formulated as follows:

Pk(y j
t |y1:t−1) =

∫
P(y j

t |xk
t )P(xk

t |y1:t−1)dxk
t (16)

Both density functions in the right side of the above equation are estimated using
the samples drawn from the proposal density function. However, the main prob-
lem is how one can determine the association between the measurements (yt ) and
the targets. To do so, the soft gating method is proposed as the following algo-
rithm:

Soft Gating

1. Consider xi,k
t , i=1,2,..,N, as the samples drawn from the proposal density func-

tion.
2. For j=1:m do the following steps for the jth measurement:
3. For k=1:K do the following steps:
4. Compute µk

j as follows:

µk
j =

N

∑
i=1

α̃ i,k
t g(xi,k

t ) (17)

Where g is the sensor model and α̃k
t is the normalized weight as presented in

the SIR algorithm.
5. Compute σ k

j as follows:

σ k
j = R+

N

∑
i=1

α̃ i,k
t

(
g(xi,k

t )−µk
j )(g(xi,k

t )−µk
j
)T (18)

6. Compute the distance to the jth target as follows:

d2
j =

1
2
(y j

t −µk
j )

T (σ k
j )
−1(y j

t −µk
j ) (19)

7. If d2
j < ε , assign the jth measurement to the kth target.
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It is easy to show that the predictive likelihood presented in equation (16) can be
approximated as follows:

Pk(y j
t |y1:t−1)' N(µk,σ k) (20)

Where N(µk,σ k) is a normal distribution with mean µk and the covariance matrix
σ k. By computing the predictive likelihood, the likelihood density function is easily
estimated. In the next subsection, the JPDAF algorithm is presented for multi-target
tracking.

2.3 The JPDAF Algorithm

The mathematical foundations of the JPDAF algorithm were discussed in the last
sections. Now, we are ready to propose the full JPDAF algorithm for the problem
of multiple target tracking. To do so, each target is characterized by the dynamical
model introduced by equation (1). The JPDAF algorithm is presented as follows:

The JPDAF Algorithm

1. Initialization: initialize the states for each target as xi,k
0 where i=1,2,..,N and

k=1,2,...,K, the predictive importance weights α i,k
0 and importance weights wi,k

0 .
2. At each time step t proceed through the following stages:
3. For i=1:N do the following steps:
4. For k=1:K conduct the following procedures for each target:
5. Sample the new states from the proposal density function as follows:

xi,k
t ∼ q(xt |xi,k

t−1,y1:t) (21)

6. Update the predictive importance weights as follows:

α i,k
t = α i,k

t−1
P(xi,k

t |xi,k
t−1)

q(xi,k
t |xi,k

t−1,y1:t)
(22)

Then, normalize the predictive importance weights.
7. Use the sampled states and new observations, yt , to constitute the association

vector for each target as Rk = { j|0 ≤ j ≤ m,y j → k} where (→ k) refers to the
association between the kth target and the jth measurement. To do so, use the soft
gating procedure described in the last subsection.

8. Constitute all of possible association for the targets and make the set, Γ̃ , as de-
scribed by definition 3.
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9. Use equation (13) and compute β l for each measurement where l=1,2,..,m and m
is the number of measurements.

10. By using equation (10) compute the likelihood ratio for each target as P(yt |xi,k
t ).

11. Compute the importance weights for each target as follows:

wi,k
t = α i,k

t P(yt |xi,k
t ) (23)

Then, normalize the importance weights as follows:

w̃i,k
t =

wi,k
t

Σ N
i=1wi,k

t

(24)

12. Proceed the resampling stage. To do so, implement the similar procedure de-
scribed in the SIR algorithm. Afterwards, for each target the resampled states
can be presented as follows:

{w̃i,k
t ,xi,k

t }→ { 1
N

,xm(i),k
t } (25)

13. Set the time as t=t+1 and go to step 3.

The above algorithm can be used for multiple target tracking issue. In the next sec-
tion, we show how the JPDAF algorithm can be used for multiple robot tracking.
In addition, some well-known motion models are presented to track the motion of a
mobile robot.

3 The JPDAF Algorithm for Multiple Robot Tracking

In the last section, the JPDAF algorithm was completely discussed. Now, we want
to use the JPDAF algorithm to the problem of multiple robot tracking. To do so,
consider a simple 2-wheel differential mobile robot whose dynamical model is rep-
resented as follows:

xt+1 = xt +
∆sr +∆sl

2
cos(θt +

∆sr−∆sl

2b
)

yt+1 = yt +
∆sr +∆sl

2
sin(θt +

∆sr−∆sl

2b
)

θt+1 = θt +
∆sr−∆sl

b
(26)

Where [xt ,yt ] is the position of the robot, θt is the angle of robot’s head, ∆sr and
∆sl are the distances traveled by each wheel, and b refers to the distance between
two wheels of the robot. The above equation describes a simple model presenting the
motion of a differential mobile robot. For a single mobile robot localization the most
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straightforward way is to use this model and the data collected from the sensors set
on the left and right wheels measuring ∆sr and ∆sl at each time step. But, the above
method does not satisfy the suitable results because the data gathered from the sen-
sors are dotted with the additive noise and, therefore, the estimated trajectory does
not match the actual trajectory. To solve this problem, measurements obtained from
the sensors are used to modify the estimated states. Therefore, Kalman and particle
filters have been greatly applied to the problem of mobile robot localization [2, 6].
Now, suppose the case in which the position of other robots should be identified by
a reference robot. In this situation, the dynamical model discussed previously is not
applicable because the reference robot does not have access the internal sensors of
the other robots such as the sensors measuring the movement of each wheel. There-
fore, a motion model should be defined for the movement of each mobile robot. The
simplest method is near constant velocity model presented as follows:

Xt+1 = AXt +But

Xt = [xt , ẋt ,yt , ẏt ]T (27)

Where the system matrixes are defined as:

A =




1 Ts 0 0
0 1 0 0
0 0 1 Ts
0 0 0 1




B =




T 2
s
2 0
Ts 0

0 T 2
s
2

0 Ts


 (28)

Where Ts refers to the sample time. In the above equations, ut is a white noise with
zero mean and an arbitrary covariance matrix. Because the model is considered as a
near constant velocity, the covariance of the additive noise can not be so large. In-
deed, this model is suitable for the movement of the targets with a constant velocity
which is common in many applications such as aircraft path tracking [5] and people
tracking [11].
The movement of a mobile robot can be modeled by the above model in many condi-
tions. However, in some special cases the robots’ movement can not be characterized
by a simple near constant velocity model. For example, in a robot soccer problem,
the robots conduct a maneuvering movement to reach a special target ordinary to
the ball. In these cases, the robot changes its orientation by varying the input forces
imposed to the right and left wheels. Therefore, the motion trajectory of the robot
is so complex that the elementary constant velocity does not result in satisfactory
responses. To overcome the mentioned problem the variable velocity model is pro-
posed. The key idea behind this model is using the robot’s acceleration as another
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state variable which should be estimated as well as the velocity and position of the
robot. Therefore, the new state vector is defined as, Xt = [xt , ẋt ,ax

t ,yt , ẏt ,a
y
t ], where

ax
t and ay

t are the robot’s acceleration along with the x and y axis, respectively. Now,
the near constant acceleration model can be written as what mentioned in equation
(27), except for the system matrixes are defined as follows [13]:

A =




1 0 Ts 0 a1 0
0 1 0 Ts 0 a1
0 0 1 0 a2 0
0 0 0 1 0 a2
0 0 0 0 exp(−Ts) 0
0 0 0 0 0 exp(−Ts)




B =




b1 0
0 b1
b2 0
0 b2
b3 0
0 b3




(29)

Where the parameters of the above equation are defined as follows:

b3 =
1
c

(
1− exp(−cTs)

)

a2 = b3,b2 =
1
c
(Ts−a2),a1 = b2

b1 =
1
c
(

T 2
s

2
−a1) (30)

In the above equation, c is a constant value. The above model can be used to track
the motion trajectory of a maneuvering object, such as the movement of a mobile
robot. Moreover, combining the results of the proposed models can enhance the per-
formance of tracking. This idea can be presented as follows:

X̃t = αX̃at +(1−α)X̃vt (31)

Where X̃at and X̃vt are the estimation of the near constant acceleration and near
constant velocity model, respectively, and α is a number between 0 and 1.
Besides the above approaches, some other methods have been proposed to deal with
tracking of maneuvering objects such as IMM filters [14]. But, these methods are
applied to track the movement of the objects with sudden maneuvering targets which
is common in aircrafts. However, in mobile robots scenario, the robot’s motion is not
so erratic for the above method to be necessary. Therefore, the near constant velocity
model, near constant acceleration model or a combination of the proposed models
can be considered as the most suitable structures which can be used to represent the
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dynamical model of a mobile robot. Afterwards, the JPDAF algorithm can be easily
applied to the multiple robot tracking problem.

4 Simulation Results

To evaluate the efficiency of the JPDAF algorithm, a 3-robot tracking scenario is
considered. Fig.1 shows the initial position of the reference and target robots. To
prepare the scenario and implement the simulations, the parameters are presented
for the mobile robots structure and simulation environment as Table 2. Now, the
following experiments are conducted to evaluate the performance of the JPDAF
algorithm in various situations.

Table 2 Simulation Parameters

Parameters Description

vl the robot’s left wheel speed
vr the robot’s right wheel speed
b the distance between the robot’s wheels
ns number of sensors placed on each robot
Rmax the maximum range of simulation environment
Qs the covariance matrix of the sensors’ additive noise
ts Sample time for simulation running
tmax Simulation maximum running time

Fig. 1 Initial Position of Reference and Target Robots and Simulation Environment, non-
maneuvering case
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4.1 Local Tracking for Non-maneuvering Movement

For each mobile robot, the speed of each wheel is determined as shown in Table 3.

Table 3 Simulation Parameters

Robot Number Left Wheel Speed Right wheel Speed

1 .2( Rad
S ) .2( Rad

S )
2 .3( Rad

S ) .3( Rad
S )

3 .1( Rad
S ) .1( Rad

S )

The initial position of the reference robot is set as [5,5, Π
2 ]. Also, the position of

the target robots are considered as [8,2,π],[1,3, Π
3 ] and [1,9, Π

4 ], respectively. To run
the simulation, sample time, ts, and simulation maximum running time, tmax, are set
as 1s and 200s, respectively. Fig. 2 shows the trajectories generated for each mobile
robot. To probe the physical environment, 24 sensors are placed on the reference
robot. The sensors provide the distance from the static objects, walls or obstacles,
and the dynamic targets. Because the position of each sensor to the robot’s head is
fixed, the sensors’ data can be represented as a pair of [r,φ ] where φ is the angle
between the sensor and the reference coordination. Also, the covariance of the sen-
sors’ noise is supposed to be:

(
.2 0
0 5×10E−4

)
(32)

Now, the JPDAF framework is used to track the trajectory of each robot. In this
simulation, the clutters are assumed to be the data collected from the obstacles such
as walls. To apply the near constant velocity model as described in equation (27),
the initial value of the velocity is chosen uniformly between 1 and -1 as follows:

ẋt = U (−1,1) (33)
ẏt = U (−1,1) (34)

Where U (.) is the uniform distribution function. Fig. 3 presents the simulation re-
sults using the JPDAF algorithm with 500 particles for each robot’s tracking. Sim-
ulations justify the ability of the JPDAF algorithm in modifying the intrinsic error
embedded in the data collected from the measurement sensor.
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4.2 Local Tracking for Maneuvering Movement

Now, consider a maneuvering movement for each robot. Therefore, a variable ve-
locity model is considered for each robot’s movement. Fig. 4 shows the generated
trajectory for each mobile robot. Now, we apply the JPDAF algorithm for track-

Fig. 2 The generated trajectory for target robots

ing each robot’s position. To do so, 3 approaches are implemented. Near constant
velocity model, near constant acceleration model and combined model described in
the last section are used to estimate the states of the mobile robots. Fig. 5-7 shows
the results for each robot separately. To compare the efficiency of each strategy, the
obtained error is presented for each approach in Tables 4, 5 where the following
criterion is used for estimating the error:

ez =
∑tmax

t=1(zt − z̃t)2

tmax
,zt = {xt ,yt} (35)

The results show better performance of the combined method relative to the other
approaches.
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Fig. 3 The estimated trajectory using the JPDAF algorithm

Fig. 4 The generated trajectory for manoeuvering target robots



18 Aliakbar Gorji, Saeed Shiry and Mohammad Bagher Menhaj

Fig. 5 The estimated trajectory for robot 1

Fig. 6 The estimated trajectory for robot 2
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Fig. 7 The estimated trajectory for robot 3

Table 4 The error for estimating xt

Robot Number Constant Acceleration Constant Velocity Combined

1 .0045 .0046 .0032
2 .0112 .0082 .005
3 .0046 .0067 .0032

Table 5 The error for estimating yt

Robot Number Constant Acceleration Constant Velocity Combined

1 .0082 .009 .0045
2 .0096 .0052 .005
3 .0073 .0077 .0042

5 Conclusion

In this paper, the JPDAF algorithm was presented for multi robot tracking. After
introducing the mathematical basis of the JPDAF algorithm, we showed how one
can apply the JPDAF algorithm to the problem of multiple robot tracking. To do so,
three different models were represented. The near constant velocity model and near
constant acceleration model were first described and, then, combining two former
approaches were presented as a modification to enhance the accuracy of multi robot
tracking. Afterwards, simulation results were carried out in two different stages.
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First, tracking the non-maneuvering motion of the robots were explored. Later, the
JPDAF algorithm was tested on tracking the motion of the robots with maneuver-
ing movement. The simulations show that the combined approach provided better
performance than the other presented strategies. Although the simulations were ex-
plored in the case in which the reference robot was assumed to be stationary, this
algorithm can be easily extended to multi robot tracking as well as mobile reference
robot. Indeed, robot’s self localization can be used to obtain the mobile robot’s po-
sition. Next, the JPDAF algorithm is easily applied to the target robots according to
the current estimated position of the reference robot.
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