
 

A Probabilistic Substructure-Based Approach for Graph Classification 
 

 

H.D.K. Moonesinghe, Hamed Valizadegan, Samah Fodeh, Pang-Ning Tan 

Department of Computer Science & Engineering 

Michigan State University 

East Lansing, MI 48824 

(moonesin, valizade, fodehsam, ptan) @cse.msu.edu 

 

 

Abstract 
 

 The classification of graph based objects is an 

important challenge from a knowledge discovery 

standpoint and has attracted considerable attention 

recently. In this paper, we present a probabilistic 

substructure-based approach for classifying a graph-

based dataset. More specifically, we use a frequent 

subgraph mining algorithm to construct substructure 

based descriptors and apply the maximum entropy 

principle to convert the local patterns into a global 

classification model for graph data. Empirical studies 

conducted on real world data sets showed that the 

maximum entropy substructure-based approach often 

outperforms existing feature vector methods using 

AdaBoost and Support Vector Machine. 

 

Keywords: Graph classification, Maximum entropy, 

frequent subgraph mining. 

 

 

1. Introduction 
 

Developing computational techniques based on 

classification to determine the identity of data 

represented as graphs has become a focused theme in 

data mining research. Graph classification has huge 

potential benefits in a variety of applications. For 

example, detecting spam web pages has become an 

important research problem because of the dramatic 

growth of spam web sites and the adverse effect it causes 

to degrade the quality of search results produced by the 

web search engines. Graph-based classification can also 

be applied to the drug discovery problems, where it is 

useful to learn the structural properties of a chemical 

compound and the effect that they have on the treatment 

of a particular disease. 

 Over the years, several innovative classification 

algorithms for graph-based data have been developed 

[18, 19, 20, 21, 22, 24]. Most of the algorithms are based 

on the underlying assumption that the intrinsic properties 

of a graph are rendered by its underlying substructures 

(nodes, edges, paths, strongly connected components, 

trees, subgraphs, etc). These substructure-based 

algorithms identify the important components present in 

each graph and subsequently use them to discriminate 

graphs from different classes. Most of the early works in 

graph-based classification have focused on the use of 

heuristic based search techniques to discover such 

discriminative components present in the graph database 

[24]. More recently, however, frequent subgraph based 

approach was proposed in which frequent subgraph 

mining algorithms are employed to generate all the 

subgraphs that occur a sufficiently large number of times 

in the graph database and to construct feature vectors 

based on the extracted subgraphs [18]. By transforming 

each graph into its corresponding feature vector, we can 

subsequently apply any of the existing classification 

algorithms such as Support Vector Machine (SVM), 

boosting, decision trees, or rule-based classifiers to build 

a classification model for the graph database.  

Since the main focus of these algorithms is on 

extracting a local set of relevant patterns that provide 

useful insight into the data, it is not obvious how this 

local information can be best synthesized into a global 

prediction model that can be used to determine the class 

of previously unknown graphs. In this paper, we present 

a principled approach for building a global classification 

model from the local patterns using the maximum 

entropy principle. The idea behind this approach is to 

learn a conditional probability distribution of the class 

for a graph given its underlying features (i.e., frequent 

subgraphs) by using the support of the features as 

constraints imposed on the probability model. Using an 

iterative technique known as the improved iterative-

scaling algorithm [6], the parameters of the probability 

model can be inferred from the data. While the idea of 

using maximum entropy principle for constructing a 

global model based on its underlying local patterns is not 

new [4], to the best of our knowledge, this approach has 

not been applied to graph-based data.  



Another aspect of this study is to compare the 

performance of the probabilistic substructure-based 

approach against existing substructure-based approaches 

that apply standard classification algorithms (such as 

support vector machine and boosting) to the feature 

vectors constructed from the frequent subgraphs. 

Experimental results using real world data sets show that 

the maximum entropy substructure-based approach often 

outperforms other approaches and yields better accuracy.  

The remainder of the paper is organized as follows. In 

section 2, we describe the preliminaries and related 

research in graph classification. Section 3 introduces our 

proposed maximum entropy approach for classification. 

Section 4 presents our graph classification algorithm. In 

section 5, we perform an extensive performance 

evaluation on real world data sets. Finally, we conclude 

our work in section 6. 

 

2. Background 
  

 In this section we describe the preliminaries, related 

research in graph classification, and the algorithm we 

used to generate frequent subgraph patterns. 

  

2.1 Preliminaries 
 

 We first revisit some of the basic definitions from 

graph theory and graph mining. 

 Let g = (V, E) be a graph, where V is a finite set of 

objects called vertices (or nodes) and E is a set of 2-

element subsets of V called edges. A labeled graph is 

represented by a 4-tuple g = (V, E, L, l), where L is a set 

of labels, and a label function l: V ∪ E → L maps a 

vertex or an edge to a label. If e = uv is an edge of a 

graph g, then we say vertices u and v are adjacent in g. A 

graph g1 = (V1, E1, L1, l1) is a subgraph of another graph 

g2 = (V2, E2, L2, l2) if the following conditions hold: V1 ⊆ 

V2, E1 ⊆ E2, L1 ⊆ L2, and l1 = l2; i.e. there exists a 

subgraph isomorphism from g1 to g2, denoted as g1 ⊆ g2. 

Also, graph g2 is called a super-graph of g1. 

 In frequent subgraph mining, a subgraph g is said to 

be frequent if the occurrence of g (i.e. σ(g)) in a given 

graph database G = {gi | i= 0..n} is greater than or equal 

to a user specified minimum support threshold ξ. The 

problem of frequent subgraph mining is to find all 

frequent subgraphs in the graph database G. 

2.2 Related Research 
 

 Graph classification has received lots of attention 

because of its wide range of applicability to real-world 

data such as biological data, chemical compound data, 

and semi structured data to name a few. Several 

approaches have been developed [18, 19, 20, 21, 22] for 

building efficient classifiers for this task. In most of these 

approaches a graph is represented using various 

descriptors and a classification model is built using 

statistical or machine learning techniques. Karypis et al. 

[18] use similar approach by generating frequent sub 

structure based descriptors using a frequent subgraph 

mining algorithm and selecting the best substructures to 

define the feature vectors, which is subsequently used by 

Support Vector Machine (SVM) classifiers to build the 

classification model. Han et al. [22] showed that frequent 

closed graphs based descriptor space is a better approach 

than the frequent subgraphs based descriptors, and it 

generates typically lower dimensional feature vectors. A 

number of methods have been proposed in recent years 

using cyclic patterns [20], acyclic, path and tree 

fragments [19] to define the descriptor space and to 

generate features. With this feature based representation 

any classification technique can be used for the 

classification task. 

The state of the art classification algorithms includes 

SVM [7], Adaboost [10-12] and Maximum entropy 

model. SVM, in a very simple case, chooses a maximum 

margin linear classifier among all the existing linear 

classifiers. The margin is defined as the distance of the 

linear classifier to its nearest training samples, known as 

support vectors. This idea can be developed to non-linear 

case by mapping the samples to a high dimension space 

where they can be classified linearly. This mapping is 

performed by kernel function which defines the distance 

between all pairs of samples in the new high dimensional 

space. Unlike traditional approach to classification, SVM 

minimizes the empirical classification error and 

maximizes the geometric margin at the same time and it 

has been shown that this increases the generalization 

power of the model (decreases the classification error of 

unseen examples). SVM are widely applied to classify 

graph objects. Cai et al. use SVMs to classify protein 

sequences [13].  Dobson et al. applied SVM to 

distinguish enzyme from non-enzyme proteins [14]. 

Much of the recent focus on applying SVM in graph 

application is on how to build efficient and valid kernel 

functions on graphs. Most of these approaches are 

usually based on constructing a feature space with 

decomposing a graph into subgraphs and counting the 

number of these subgraphs. Watkins in [15] shows that 

the scores produced by certain dynamic alignment 

algorithms can be considered as valid kernel functions. 

Kashima et al. in [16] uses the counts of labels paths 

produced by random walks on graph to generate the 

kernel. Borgwardt et al. in [17] construct the kernel by 

combining the similarity measures based on different 

data types for different source of information including 

sequential, structural and chemical.  

Adaboost is a meta-algorithm which can be applied 

over any given classifier. It constructs a series of weak 



classifiers and uses a linear combination of these 

classifiers as the final model. Adaboost uses an iterative 

process during which the error rate of the model 

decreases gradually. Given the model created from the 

linear combination of the current series of weak 

classifiers, it makes a new weak classifier with 

concentrating on the areas with many wrongly labeled 

samples. This is performed with a sampling procedure 

from a weighted training sample set with high weight for 

wrongly labeled samples and low weight for correctly 

labeled samples.  

  Maximum entropy has been used widely in different 

areas such as machine learning and Natural Language 

Processing (NLP). For example, in machine learning it is 

used to build translation models, such that for a given 

word (x), its translation could be any (y) in a set that 

contains candidate values for (y) [1]. Zhu and Rosenfeld 

in [2] used maximum entropy models and minimum 

discriminative information methods to buid n-gram 

language models. Furthermore, Khudanpur Wu in [3] 

used Maximum entropy to integrate n-grams and topic 

dependencies in conversational speech recognition. On 

the other hand, Mannila et al. [4] have applied the 

maximum entropy principle to synthesize global models 

from frequent itemsets, and sequential patterns for query 

selectivity and protein sequence modeling applications.  

Maximum entropy is also applied in classification. In [5] 

Nigam et al. illustrated how maximum entropy could be used 

for text classification. 

 

2.3 Frequent Subgraph Mining 
 

 In frequent subgraph mining the goal is to develop 

algorithms to discover frequently occurring subgraphs in 

the graph database. Although there are many efficient 

and scalable frequent pattern mining algorithms exist for 

itemset mining and sequence mining, developing 

efficient and scalable algorithms for subgraph mining is 

particularly challenging as subgraph isomorphism, which 

is a computationally expensive operation, plays a key 

role throughout the mining process. Despite that, several 

subgraph mining algorithms such as FSG [25], and 

gSpan [26] are available and can be used in many 

practical situations. 

 In this paper, we use FSG algorithm [25] to generate 

frequent subgraph patterns, which are subsequently used 

to build the prediction model. FSG takes a graph 

database and a minimum support ξ and generates all 

connected subgraphs that occur in at least ξ% of the 

graphs. FSG follows an Apriori style level-by-level 

approach (breadth first search) to generate subgraph 

patterns. It starts by enumerating frequent subgraphs 

consisting of one edge and proceeds to generate larger 

subgraphs by joining them. At each level sub graphs are 

grown by adding one edge at a time. Once a subgraph is 

generated its occurrence in the graph database is 

computed to determine whether it is frequent. FSG uses 

number of optimization techniques to join subgraphs 

efficiently, and to compute the frequency of the 

subgraphs. For more information readers should refer to 

[25]. 

 

3. Maximum Entropy Model 
 

 Maximum entropy modeling synthesizes a set of local 

patterns into a global model by choosing a probability 

model that is consistent with the constraints imposed by 

the local patterns, but otherwise, is as uniform as 

possible. Mathematically, the approach corresponds to 

finding a probability model P that minimizes the 

Kullback-Leibler divergence D(P||Q), subject to a set of 

constraints ℘, with Q chosen to be a uniform probability 

distribution. The resulting model can be shown to be 

equivalent to a model P* that maximizes the entropy: 

 

 

P

PHP )(maxarg* =  (1) 

where H(P) is the entropy of P. 

 

3.1 Formulation  
 

 Let G = {g1, g2, …, gn} be a collection of n graphs in 

the database and F = {X1, X2, …, Xk} be the set of 

frequent subgraphs, where each subgraph Xi ∈ F satisfies 

the minimum support threshold. Furthermore, we denote 

si as the support for feature Xi in the database G.  We 

also assume that each graph gi is assigned a class label, y, 

chosen from a set of discrete labels Y.  In this paper, we 

assume that the classes are binary, even though the 

approach can be generalized to multi-class problems 

using one-versus-one, one-versus-all, or error correcting 

output coding (ECOC) methods.  

 Given a graph g, let Xg ⊆ F be the set of frequent 

subgraphs contained in g. Our objective is to find a 

global probability model P(y| Xg) based on the subgraphs 

in F and their corresponding support si using the 

maximum entropy principle. To apply the maximum 

entropy principle, we first define a set of features 

constructed from the frequent subgraphs. We then create 

a database of binary transactions, where each transaction 

corresponds to a graph g ∈ G.  Each transaction also 

contains a set of binary features, also called items, which 

is defined as follows:  

 



 ⊆

=
otherwise0

 if1
),(

gX
yXf

i

ig  (2) 



 

 As previously noted, the maximum entropy principle 

seeks to find a probability model P* that maximizes the 

following objective function:  
 









−= ∑

∈Gg

gg
P

XyPXyPP )|(log)|(max*  (3) 

 

subject to the following constraints:  

 

∑ =
g

iigg syXfXyP ),()|(  (4) 

 

where si corresponds to the support of the subgraph Xi in 

the database G. Note that Equation (4) states that the 

expected value for every feature is constrained to be 

identical to the support of the corresponding subgraph. It 

can be shown that the probability model that maximizes 

Equation (3) subject to the linear constraints in Equation 

(4) has the following exponential form:: 

 









= ∑

i

igi

g

g yXf
XZ

XyP ),(exp
)(

1
)|(* λ  (5) 

 

where Z(Xg) is a normalization factor, and λ’s are the 

parameters to be optimized. 

 

3.2 Parameter Estimation 
 

  Let  Λ  = {λ1, λ2, …, λd} be the set of parameters to be 

estimated. The Λ  vector can be interpreted as the 

significance or weight of the corresponding features and 

can be estimated using the maximum likelihood 

approach. Specifically, the likelihood function for the 

training data G is: 
~

( , )( ) *( | )P X y

g G

L P y X
∈

Λ = ∏  
(6) 

where 
~

( , )p X y  is the estimated counts of (X,y) in the 

training data G.  

 The conditional maximum likelihood model above is 

solved using the Improved Iterative Scaling algorithm 

(IIS) [1]. The goal of using IIS is to prevent overfitting in 

the produced model P*(y/X), and this is done by using 

the Guassian Prior. Here, instead of maximizing the 

likelihood function we maximize the posteriori function:  

 
~

( / )( ) *( | ) ( )
i

P y X

i i

g G

L P y X P
∈

Λ = × Λ∏  
(7) 

 

where the parameters Λ   are assumed to have a Gaussian 

prior with zero mean and the same variance σ2
:  

 

∏ 







−=Λ

i

iP
2

2

2 2
exp

2

1
)(

σ

λ

πσ
 (8) 

 
 Solving the log likelihood which has a concave shape 

for Λ that maximizes the likelihood starts by initializing 

{ }Λ = λ λ λ λ1 2 3, , ,... m
with some arbitrary values. Then it 

proceeds to find a new set of parameters which yields a 

model of presumably higher log likelihood.  

 

L L L/ ( ) ( ) ( )Λ Λ ∆ Λ= + −  (9) 

 

 Solving the equation above gives us a model in terms 

of ∆ , so taking the derivative with respect to a certain 

δi  yields: 

  
~

( , ) ( , )
i

g G

p X y f X y
∈

∑  

~
#( ) *( / ) ( , ) exp( ( , )) 0

i i

g G

p X p y X f X y f X yδ
∈

− =∑  (10) 

 

where

1

#
( , ) ( , )

n

i

f X y f X yi
=

=∑  for a particular graph g. 

 We solve this for each δi  and increment the 

corresponding λi iteratively. We continue with this search 

procedure until a stationary point of the vector Λ is 

found, which causes the model to converge. 
 

4. Algorithm 
 

 This section describes our proposed algorithm 

(MaxEnt) based on the above framework for classifying 

graphs in a given dataset.  

 In our approach, we first generate frequent subgraphs 

for a given minimum support threshold using a frequent 

subgraph mining algorithm. Once the frequent subgraphs 

are generated binary feature vectors are constructed for 

each graph in the graph database. The i
th

 entry of the 

feature vector is set to one if that feature (frequent sub 

graph) occurs in the graph, and it is set to zero if the 

feature is not present. 

 Using these feature vectors, we repeatedly compute 

the model described in Equation (10) until it converges 

to a stationary point. The following algorithm describes 

the procedure we used to classify graphs. 

 

 

 

 



Algorithm MaxEnt 

Input:  Graph database G, min support threshold ξ 

  Empirical distribution 
~

( , )p X y  

Output: Optimal parameters set (λi) ∀ i ∈ {1, 2,…, n} 

 Optimal model p* 

Method: 

1: generate feature functions f1, f2,…, fn  for G 

2: construct binary feature vector for each g ∈G 

3: initialize λi= 0 ∀ i ∈ {1, 2,.., n} 

4: repeat 

5:     for i = 1 to n do 

  a.  compute δα by solving Equation (10) 

 b.  update λi← λi+ δi 

 c.  ∀ g ∈G compute P*(y|X) using Λ. 

6: until convergence   

 

 

5. Experimental Evaluation 
 

In this section we describe the experimental 

environment used to evaluate our algorithms and the 

results obtained. 

 

5.1. Datasets 

 

We used 4 different real world datasets to evaluate the 

algorithms. 

The first dataset, Predictive Toxicology Data -PTC
1
, 

contains 417 chemical compounds evaluated on 4 types 

of laboratory animals: male mouse (MM), female mouse 

(FM), male rat (MR), and female rat (FR). Each 

compound is assigned a class label indicating the toxicity 

(positive or negative) of the compound for that animal. 

Therefore, in this dataset we have 4 binary classification 

problems corresponding to each laboratory animal 

(MM/FM/MR/FR). 

 The second dataset, Aids
2
, contains 42,682 chemical 

compounds evaluated for evidence of anti HIV activity. 

We have formulated a binary classification problem, 

where a compound is labeled as active if it can provide 

protection to the human CEM cells from HIV infection, 

and as inactive otherwise. 

The third dataset, Cancer
3
, contains 42,247 chemical 

compounds evaluated for evidence of the ability to 

inhibit the growth of human tumor cell lines. We have 

formulated a binary classification problem using this 

dataset. 

The fourth dataset is the WebSpam
4
 dataset containing 

4,188 graphs generated for our purpose. This dataset 

                                                 
1
 http://www.predictive-toxicology.org/ptc/ 

2
 http://dtp.nci.nih.gov/docs/aids/aids_data.html 

3
 http://dtp.nci.nih.gov/docs/cancer/cancer_data.html 

4
 http://www.yr-bcn.es/webspam/datasets/ 

contains a web graph of nodes corresponds to hostnames, 

and edges corresponds to the directed links between 

hosts. We first discretized this data set by calculating the 

average number of links between the nodes and applying 

a threshold to form new edges. Then for each node its 

neighborhood is determined, and each such node and its 

corresponding neighborhood are used to form a single 

graph. This way we were able to generate multiple 

graphs and each graph is classified as normal or spam. 

Table 1 shows various characteristics of these 

datasets. 

 

Table 1. Characteristics of the datasets 

Dataset Num. Instances Min. Support 

MM 417 10% 

MR 417 10% 

FM 417 10% 

FR 417 10% 

Aids 42,682 20% 

Cancer 42,247 10% 

WebSpam 4,188 25% 

 

5.2. Experimental Methodology 

 

 In order to generate feature vectors, we used a 

frequent sub graph mining algorithm – FSG [25] and 

generated frequent subgraphs for a given minimum 

support threshold. Table 1 shows the selected minimum 

support threshold for each of the datasets. Then binary 

feature vectors are constructed for each graph in the 

graph database as discussed in Section 4. Once the 

feature vectors are built any of the existing classification 

algorithms (SVM, Adaboost) can potentially be used for 

classification. 

 In this paper, classification is done by performing 5-

fold cross validation on the dataset; that is, we divide the 

datasets into five equal sized subsets and in each round 

we choose one subset as the test set and remaining four 

subsets as the training set and report the average 

accuracy.  

 

5.3. Results 
 

 In this section we describe the performance of our 

approach when compared with the existing methods. We 

analyze the performance using two different descriptor 

spaces: frequent subgraphs, and maximal frequent 

subgraphs. 

 

5.3.1 Comparison with Other Approaches  

 

 We compared the performance of our algorithm 

(MaxEnt) against two existing methods: Adaboost and 



SVM. For the SVM classifier, we used SVM
Light

 package 

provided in [8] and described in [7]. For Adaboost we 

used the MATLAB package provided in [9]. We set the 

number of iteration for Adaboost as 20. Table 2 shows 

the accuracy (Acc) and F-Measure (F) of each of these 

methods.  

 

Table 2. Experimental results (Accuracy and F-

Measure) 

 

Adaboost SVM MaxEnt 
Dataset 

Acc F Acc F Acc F 

MM 0.584 0.58 0.561 0.50 0.582 0.59 

FM 0.567 0.56 0.547 0.46 0.558 0.57 

MR 0.585 0.53 0.569 0.42 0.586 0.63 

FR 0.558 0.61 0.565 0.64 0.578 0.54 

Cancer 0.654 0.59 0.669 0.60 0.661 0.58 

Aids 0.974 0.00 0.964 0.00 0.965 0.07 

WebSpam 0.935 0.68 0.906 0.00 0.934 0.67 

 

 As can be seen from the results, MaxEnt approach 

achieved a reasonably better accuracy compared to other 

approaches. In MR, and FR datasets it shows the best 

performances. Overall it achieved better performance 

than SVM in all of the datasets except in Cancer data. In 

the WebSpam dataset, performance of MaxEnt is better 

than that of SVM and is comparable to Adaboost. 

Adaboost shows better performance in MM, FM, and 

Aids datasets when compared with MaxEnt. 

 

5.3.2 Classification Using Maximal Subgraph-Based 

Descriptors  

  

 In the previous section we used frequent subgraph 

based descriptor space for defining feature vectors. 

Instead of frequent subgraphs here we analyze maximal 

frequent subgraphs as descriptors. For this analysis, we 

used 4 datasets (MM, FM, MR, FR) and generated 

maximal frequent subgraphs with the same support 

threshold (10%) used in the previous case. Table 3 shows 

the classification accuracy and F-Measure for each of the 

algorithms.   

 

Table 3. Experimental results (Accuracy and F-

Measure) with maximal subgraphs 

 

Adaboost SVM MaxEnt 
Dataset 

Acc F Acc F Acc F 

MM 0.577  0.58 0.602 0.61 0.565 0.55 

FM 0.553 0.54 0.547 0.49 0.542 0.54 

MR 0.568 0.51 0.561 0.38 0.554 0.57 

FR 0.603 0.63 0.592 0.68 0.563 0.50 

 

 Use of maximal subgraph based descriptors changes 

the performance of different algorithms dramatically. 

However while it improves the performance of SVM in 

terms of both accuracy and F-Measure, it reduces the 

performance of Adaboost and MaxEnt. 

 As the number of frequent subgraphs generated for 

these datasets is always higher than the number of 

maximal frequent subgraphs, these extra features 

provided by frequent subgraphs can be very effective for 

classification. To understand the values of extra features 

in frequent subgraphs, we measured the matching 

percentage of the first n features used by MaxEnt 

methods with maximal subgraphs, i.e., we find n features 

which obtained the highest weight in the MaxEnt 

algorithms and counted how many of them were 

maximal. We changed n from 10 to the number of 

maximal subgraphs and plotted the matching percentage. 

Figure 1 and 2 show this plot for MM and FR
5
 datasets. 

As can be seen in these plots, the matching percentage 

falls quickly when n increases which shows that MaxEnt 

uses non-maximal features as some of the most effective 

features for the purpose of classification. Therefore, 

MaxEnt approach can automatically choose the best 

features for classification and thus it shows better 

performance with frequent subgraphs based descriptors 

than the maximal ones. 

 

Figure 1. The matching percentage of top frequent 

subgraphs features for MaxEnt with Maximal 

subgraphs features in MM dataset. 

 

 

6. Conclusions 
 

 This paper investigated maximum entropy based 

approach for the problem of graph classification. Similar 

to some of the existing  methods,  our algorithm  is based  

                                                 
5
 Other datasets exhibit similar characteristics. 



 

Figure 2. The matching percentage of top frequent 

subgraphs features for MaxEnt with Maximal 

subgraphs features in FR dataset. 

 

on the frequent subgraph patterns extracted from the 

graph database. Instead of using these patterns directly to 

build feature vectors, we combined them into a coherent 

global model that can be used for prediction. This 

method, which is relatively unexplored in the context of 

graphs, has the advantage of providing better accuracy 

and efficiency. Also, it offers coherent and consistent 

way for predicting the class of the graph objects. 

  Experimental results using real-world data sets 

confirmed that this approach is generally more effective 

at classifying most understandable graph objects. Also, 

the results revealed that the precision of our approach 

does not depend heavily on the support threshold used to 

generate frequent subgraph patterns, which makes our 

approach stable, compared to existing SVM based graph 

classifiers.   

 In our past work [23], we have explored data 

classification in an unsupervised setting. In the future we 

plan to investigate unsupervised learning techniques for 

graph classification. This will allow us to look for 

patterns that have not previously been considered, which 

is a key challenge in anomaly detection. 

 

  

Acknowledgements 
 

 We would like to thank Dr. George Karypis for 

providing the PAFI software containing FSG graph 

mining algorithm. 

 

References 
 
[1] A.L. Berger, V.J. Della Pietra, and S.A. Della Pietra. 

Maximum Entropy Approach for Natural Language 

Processing. Computational Linguistics.22(1) P: 39 – 71, 

1996. 

[2] X. Zhu and R. Rosenfeld. Improving Trigram Language 

Modeling with the World Wide Web. In Proc of ICASSP, 

P:533–536, 2001. 

[3] S. Khudanpur, and J. Wu. A Maximum Entropy Language 

Model Integrating N- Grams and Topic Dependencies for 

Conversational Speech Recognition. In Proc of ICASSP, 

1999. 

[4] H. Mannila, and P. Smyth. Prediction with Local Patterns 

using Cross-Entropy. In Proc. of the fifth ACM SIGKDD, 

P: 357 – 361, ISBN:1-58113-143-7, 1999.  

[5] K. Nigam, J. Lafferty, and A. Maccallum. Using 

Maximum Entropy for Text Classification.  IJCAI-99 

Workshop on Machine Learning for Information, 1999. 

[6] A. Berger. The Improved Iterative Scaling Algorithm: A 

gentle Introduction. Technical report, Carnegie Mellon 

University, 1997. 

[7] T. Joachims. Making large-Scale SVM Learning 

Practical. Advances in Kernel Methods - Support Vector 

Learning, B. Schölkopf and C. Burges and A. Smola (ed.), 

MIT Press, 1999. 

[8] http://svmlight.joachims.org/ 

[9] http://research.graphicon.ru/machine-learning/gml-

adaboost-matlab-toolbox.html 

[10] R.E. Schapire and Y. Singer Improved boosting 

algorithms using confidence-rated predictions. Machine 

Learning, 37(3):297-336, December 1999. 

[11] J. Friedman, T. Hastie, and Robert Tibshirani. Additive 

logistic regression: A statistical view of boosting. The 

Annals of Statistics, 38(2):337–374, April 2000. 

[12]  A. Vezhnevets, and V. Vezhnevets. Modest AdaBoost - 

Teaching AdaBoost to Generalize Better. In Proc of 

Graphicon, Novosibirsk Akademgorodok, Russia, 2005. 

[13] C.Z Cai., W.L. Wang, L.Z. Sun and Y.Z. Chen. Protein 

function classification via support vector machine 

approach. Math. Biosci., 185, 111–122, 2003. 

[14] P.D. Dobson and A.J. Doig, Distinguishing enzyme 

structures from non-enzymes without alignments. J. Mol. 

Biol., 330, 771–783, 2003. 

[15] C. Watkins. Dynamic Alignment Kernels, Department of 

Computer Science, Royal Holloway, University of 

London, Technical Report, CSD-TR-98-11, January 1999. 

[16] H. Kashima, K. Tsuda, and A. Inokuchi, Marginalized 

kernels between labeled graphs. In Proceedings of 20th 

International Conference on Machine Learning (ICML 

2003),Washington, DC, 2003. 

[17] K.M. Borgwardt, C.S. Ong, S. Sch¨onauer, S. 

Vishwanathan, A.J. Smola, and H.P. Kriegel. Protein 

function prediction via graph kernels. Bioinformatics 

21(1), 2005. 

[18] M. Deshpande, M. Kuramochi, Nikil Wale, and G. 

Karypis, Frequent Substructure-Based Approaches for 

Classifying Chemical Compounds, IEEE Transactions on 



Knowledge and Data Engineering, vol. 17,  no. 8,  pp. 

1036-1050,  Aug.,  2005. 

[19] N. Wale and G. Karypis. Acyclic Subgraph-based 

Descriptor Spaces for Chemical Compound Retrieval and 

Classification.  In Proc of IEEE International Conference 

on Data Mining (ICDM), 2006. 

[20] T. Horvath, T. Grtner, and S. Wrobel. Cyclic pattern 

kernels for predictive graph mining. In Proc. of the 10th 

ACM SIGKDD international conference on Knowledge 

discovery and data mining, pages 158-167, 2004. 

[21] T. Kudo, E. Maeda, and Y. Matsumoto. 

An Application of Boosting to Graph Classification, NIPS 

2004. 

[22] C. Liu, X. Yan, H. Yu, J. Han, and P. S. Yu. Mining 

Behavior Graphs for Backtrace of Noncrashing Bugs. In 

Proc. of SIAM Int. Conf. on Data Mining (SDM'05), 

2005. 

[23] H.D.K. Moonesinghe and Pang-Ning Tan. Outlier 

Detection using Random Walk. In Proc. of IEEE 

International Conference on Tools with Artificial 

Intelligence (ICTAI-06), Washington D.C., 2006. 

[24] M.R. Berthold and C. Borgelt. Mining Molecular 

Fragments: Finding Relevant Substructures of Molecules, 

In Proc. Int’l Conf. on Data Mining, 2002. 

[25] M. Kuramochi and G. Karypis. Frequent subgraph 

discovery. In Proc of IEEE International Conference on 

Data Mining (ICDM), 2001. 

[26] X. Yan, and J. Han. gSpan: Graph-based substructure 

pattern mining.  In Proc. of Int'l Conf. on Data Mining 

(ICDM), 2002. 

 

 


