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Abstract 
 

This paper presents a multi-sensor fusion strategy 
for a novel road-matching method designed to support 
real-time navigational features within advanced 
driving-assistance systems. Managing multi-
hypotheses is a useful strategy for the road-matching 
problem. The multi-sensor fusion and multi-modal 
estimation are realized using Dynamical Bayesian 
Network. Experimental results, using data from Anti-
lock Braking System (ABS) sensors, a differential 
Global Positioning System (GPS) receiver and an 
accurate digital roadmap, illustrate the performances 
of this approach, especially in ambiguous situations. 
 
1. Introduction 
 

Autonomous Vehicles currently hold the attention of 
many researchers because they can provide solutions in 
many applications related to Intelligent Transportation 
system. One example of such a system is the transport of 
passengers in urban environments using a CyCab [1]. For 
navigational needs the vehicle first needs to know its 
position on the road network, and then to retrieve 
attributes from the appropriate databases. Examples of 
attributes are maximum authorized speed, the width of the 
road, the presence of landmarks for precise localization, 
etc. Unfortunately, the precise localization on a digital 
map cannot be guaranteed because there will often be 
errors in the estimation of position arising from sensor 
imprecision and because the map represents a deformed 
view of the real world: roads are represented by points – 
nodes and shaping points- that describe the geometry of 
the center line.  

Vehicle localization on a map has two meanings in the 
literature in this domain. In many works, [2], [3], [4] and 
[5] it refers to the projection of the absolute position 
estimate onto a segment of the road network stored in the 
database. In this case, the vehicle is localized when the 
curvilinear abscissa along the segment are known from 

the starting node. These “arc-matching” methods 
therefore introduce geometric distortions, since the model 
of the world is a set of segments, usually with a 10 meters 
absolute error and a 1 meter relative error. Alternatively, 
vehicle localization can refer to absolute localization in 
the map reference frame. In this case, the localization of 
the vehicle does not need a projection onto the segments 
representing the road in the database. Absolute 
localization can be very useful for the following reasons. 
In several kinds of databases, including those of the 
National French Institute of Geography (IGN), attributes, 
instead of being attached to the arcs representing the 
roads, can be stored in the database as point objects with 
an absolute position.  

The approach presented in this paper is an absolute 
localization method. The global positions provided by a 
GPS receiver are projected onto the map frame. The goal 
is to select the most likely segment(s) from a set of 
segments close to the estimation of the vehicle position. 
Nowadays, since the geometry of roadmaps is more and 
more detailed, the number of segments representing roads 
is increasing. The road managing module is an important 
stage in the vehicle localization process because the 
robustness of the localization depends mainly on this 
stage. In order to focus in this point, an accurate map 
Géoroute V2 provided by the IGN was used in this work.  

In order to develop our approach, it is important to 
estimate continuously the pose – position and heading – 
of the vehicle in the frame of the map using GPS, because 
of its affordability and convenience. However, GPS 
suffers from satellite outages occurring in urban 
environments, under bridges, tunnels or in forests. GPS 
can thus be seen as an intermittently-available positioning 
system that needs to be backed up by a dead-reckoning 
system [7]. In this work, a low-cost odometric method 
based on the use of encoders attached to the rear wheels is 
proposed. A dead-reckoned estimated pose is obtained by 
integrating the elementary rotations of the wheels starting 
from a known pose. The multisensor fusion of GPS and 
odometry is performed by a Switching Kalman Filter 
(SKF). This kind of formalism is also useful in 



quantifying the imprecision associated with each 
estimated pose.  

The outline is as follows. In section 2, the architecture 
of the road-matching method is described. In section 3, 
we present a short introduction of Bayesian networks. 
Section 4 describes the network model for road-matching. 
Next section, we evaluate the potential of our approach by 
presenting a real data results. Finally, concluding remarks 
are given in section 6. 

  
2. Architecture of the road-matching strategy 
 

The road-matching method described in this section 
relies on Bayesian networks. The proposed approach is 
described in Figure 1. Firstly, the algorithm combines the 
ABS measurements with a GPS position, if it is available. 
Then, using this estimate, segments around the estimation 
are selected in a radius of 30 meters by using a 
Geographical Information System (GIS)-2D. Using these 
segments, map observations are built and merged with 
other data sensors using a method based on Dynamic 
Bayesian Network.  
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Figure 1: Synoptic of the road-matching method 

 
2.1 Localization and heading estimation by 
combining odometry and GPS 

 
Consider a car-like vehicle with front-wheel drive. The 

mobile frame is chosen with its origin M attached to the 
center of the rear axle. The x-axis is aligned with the 
longitudinal axis of the car (see Figure 2). 

The vehicle’s position is represented by the (xk,yk) 
Cartesian coordinates of M in a world frame. The heading 
angle is denoted θk. If the road is perfectly planar and 
horizontal, and if the motion is locally circular, the 
motion model can be expressed as [8]: 
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Where δs is the length of the circular arc followed 
by M and δθ  is the elementary rotation of the mobile 
frame. These values are computed using the ABS 
measurements of the rear wheels. Let denote Xk the 
state vector containing the pose. 
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Figure 2: The mobile frame attached to the car 

 
2.2 Cartographical and GPS observation 
equation 

 
A correction of the odometric estimation is performed 

by the GPS information. When the GPS satellites signal is 
blocked by buildings or tunnels, the odometric estimation 
is used to select the segments all around the estimation 
from the cartographical database. The cartographical 
observations can be obtained by projections onto the 
segments. If the orthogonal projection onto line does not 
make part of the segment, the closer extremity is used 
(see Figure 3). When several segments are candidates, the 
cartographical observation function is a non-linear multi-
modal observation. Considering a Gaussian distribution of 
noise to represent the uncertainty zone all around a 
segment, so the multi-modal observation is a multi-
Gaussian observation one. 
 

 
 
 

 

 

 

Figure 3: Most likely segments extracted from 
the database 

 

The observation equation of the segment segi can be 
written: 
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Where (xcarto, ycarto) is the orthogonal projection onto 
each segments and capcarto is the segment heading. 

To represent the error of the cartographical observation 
in the SKF formalism, we choose a Gaussian distribution 
of the uncertainty zone all around the segment. So this 
error can be represented with an ellipsoid which encloses 
the road (we choose to use an ellipsoid because it is just 
the available model). This ellipsoid has its semi-major 
axis in the length of the segment and its semi-minor axis 
equals to the width of the road [8] (see Figure 4). 
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Figure 4: Ellipsoidal of probability construction 

representing zone around a segment for 
horizontal segment i.e. parallel with the east 

axes 

The third axis of the ellipsoid represents the 
uncertainty of the estimation of the segment. This 
uncertainty is related to the relative error of the 
cartographical database. The covariance matrix of the 
cartographical observation error can be written: 
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The GPS position measurement provides the GPS 
observation (xgps, ygps). The GPS measurement error can 
be provided also and in real time using the Standard 
National Marine Electronics Association (NMEA) 
sentence "GPGST" given by the Trimble AgGPS132 
receiver which has been used in the experiments. 
Therefore, the GPS noise is not stationary. The non 
stationary of the GPS measurements noise affect the 
observation model. With each measurement provided, the 

GPS provide it with his noise in the sequence GPGST in 
the standard NMEA. 

gps
kQ : covariance matrix of the GPS error where  
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The observation equation can be written: 
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3. Bayesian Networks 
 

A Bayesian Network (BN) is a graph with probabilities 
for representing random variables and their dependencies. 
It efficiently encodes the joint probability distribution 
(JPD) of a set of variables. Its nodes represent random 
variables and its arcs represent dependencies between the 
random variables encoded by conditional probabilities. 
Afterwards, a BN is written as a directed acyclic graph 
G=(E, W) with W={X1,…, XN} as the set of nodes, and 
(Xi,Xj)∈ E, the set of edges, if Xi ∈ Pa(Xj). Normally an 
edge is drawn from Xi to Xj if Xi has a direct influence on 
Xj. For more detailed in Bayesian Networks see [9] [10]. 

The joint probability distribution of random variables  
S= {X1,…,XN} in a BN is calculated by the multiplication 
of the local conditional probabilities of all the nodes. The 
(JPD) of S is given as follows: 
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A Dynamic Bayesian network (DBN) is a BN used to 

model a temporal stochastic process. It can be created by 
specifying network (structure and parameters) for two 
consecutive "time slices", and then "unrolling" it into a 
static network of the required size. 

DBNs generalize two well-known signal modelling 
tools: Kalman filters for continuous state linear dynamic 
system (LDS) and Hidden Markov Models (HMMs) for 
classification of discrete state sequences. It has been 
shown that estimation in (LDSs) and inference in 
(HMMs) are special cases of inference in DBNs [11]. The 
focus of this paper is on a subclass of DBNs models 
called Switching Linear Systems or Switching Kalman 
Filter. 

 
3.1 Switching Kalman Filter 

 
Switching Kalman filter is a subclass of DBN and this 

type of network is useful for modeling piece-wise linear 
behavior (one way of approximating non-linear models), 
or multiple type or "mode" of behavior [11]. 

Consider a dynamical system whose parameters evolve 
in time according to some known model. This system can 



be described using the following set of state-space 
equations: 

tttt vXAX += − 1
 

tttt wXCY +=  

This model is called Linear Dynamical System (LDS), 
where Xt ∈ ℜN is the hidden state variable at time t, Yt ∈ 
ℜM is the observation at time t, and vt~N(0,Qt) and 
wt~N(0,Rt) are independent Gaussian noise. The 
parameters of model: At,Ct,Qt and Rt are assumed to be 
time-invariant. Unfortunately, most systems are not linear 
and are subject to non-Gaussian noise. One approach to 
this problem and one we take in this paper, is to switch 
among K different linear models or take some linear 
combination of them (see Figure 5)[12].  

 
The variables St are discrete and the variables Xt 

and Yt are continuous. Other observations can be 
introduced in this model. The conditional probability 
distributions for this model are as follows: 

P (Xt=xt/Xt-1=xt-1, St=i) =N (Axt-1+µi, Qi) 

P (Yt=y/Xt=xt)=N (Cxt+µY, R) 

P (St=j/St-1=i) =B (i,j) 
 
An important issue in BN is the computation of 

posterior probabilities of variables given observations. 
Several researchers have been developed to compute the 
exact and/or the approximate inference algorithms for 
different distributions. The most commonly used to 
compute the exact inference algorithm for discrete 
Bayesian Networks is known as the JLO1 algorithm [11]. 
The JLO algorithm is a recursive message passing 
algorithm that works on the junction tree of the BN. 
Namely, we need to find the posterior: P (Xt,St/ Yt)  in the 
case of switching Kalman filter. 

 
4. Switching Kalman filter for road-matching 

 
Road-matching involves applying a first filter which 

selects all the segments close to the estimated position of 
the vehicle. The goal is then to select the most likely 
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segment(s) from this subset. Nowadays, since the 
geometry of roadmaps is more and more detailed, the 
number of segments representing roads is increasing. In 
the other hand, the map has an absolute error (10 meters) 
and relative error (1 meter). The road classification 
module is an important stage in the vehicle localization 
process because the robustness of the localization depends 
mainly on this stage. In order to take into account the 
error of several sensors or database used in this 
application, we introduce a concept which can manage 
multi-hypothesis in the formalism of BN. 

 
4.1 BN model 

 
For each selected segment Cartoi, we represent it by a 

Gaussian: Cartoi ~ N (µi, ∑i). Where µi is the pose vector: 
(xi,yi) is the projection of the estimated position on this 
segment and θi is the heading of the segment. 

The proposed BN model for road-matching is 
illustrated in Figure 6. In this model we used two hidden 
variables. The discrete variable Sk represents the segments 
of which the vehicle can be. The second is continuous 
variable; Xk(xi,yi,θi) represents the estimation of a vehicle 
for each segment candidate.  

The graph represented in Figure 6 allows us to 
represent causal links between the variables. The variable 
Xk is updated by observations Cartok and/or GPSk (if GPS 
is masked we use only the cartographical observations).  
This variable is multi-modal because it has been updated 
by the set of candidates segments (Cartok

segi). The 
variable Sk is update by cartographical observation 
(Cartok) and the estimation is given by the hidden 
variable Xk. 

 
 
 

 

 

 

Figure 6: Switching Kalman filter for a map-
matching 

For each candidate segment one can build a 
cartographical observation given by projection of 
odometric estimation onto the segments. The 
cartographical observations and/or GPS observation are 
used to update variables Xk and Sk. A result of Bayesian 
inference is a probability of each candidate segment. The 
synoptic of this algorithm is given by Figure 7. 

Let us use a specific case study to illustrate the 
method. In Figure 8, the vehicle is traveling on the road 
represented by the segments 1 and 2. Estimation errors 
and digital map errors oblige the selection of the segment 

S1 S2 Sk 

X1 X2 Sk 

Y1 Y2 Yk 

Figure 5:  A switching Kalman filter 
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3 in addition to the segment 2 to be treated also. So, two 
cartographical observations were generated in giving the 
same chance to each segment candidate. Consequently 
two estimations were generated also at the step t=k-1.  

 
Figure 7: Synoptic of road-matching using a BN 

At the instant k, three segments were selected all 
around the predicted pose. These segments were used to 
generate three observations. Then, using SKF, three 
estimations were provided. We plot only the most 
probable in green circle on the Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Illustrative example of multi-
hypotheses  

 
5. Experimental results 
 

A test trajectory has been carried out at Compiègne in 
France with an experimental vehicle. The used GPS is a 
differential Trimble AgGPS132 receiver. For odometry, 
the ABS sensors is of the rear wheels of the vehicle are 
used.  

The test trajectory is presented in Figure 9. In this 
experience, the GPS measurement was available in the 
beginning of the test trajectory. Then, the GPS still not 

used for 1.5Km. One can remark that in spite of the long 
GPS mask, the vehicle location is matched correctly. As 
matter of fact, the final estimated positions stay close to 
the GPS points. In Figure 9, we only presented the most 
probable SKF estimation of the pose. 
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Figure 9: pose estimation with SKF using 

odometry and cartographical observation (GPS 
was masked) 

 
In Figure 10, the estimation is plotted with a red ×. 

When the GPS measurement is not available, the method 
provides estimation for each segment candidate and the 
estimation of the most probable segment only is plotted. 
Then the GPS measurement it becomes available but the 
GPS position is then closer the segment which describe 
the other side of the road.  In this case, the situation is an 
ambiguous parallel road situation. The method detects the 
ambiguity of this situation and selects all probable 
segments in this parallel road situation. The SKF manage 
all hypotheses until the elimination of the ambiguity. One 
can remark that, in spite the ambiguity, the road on which 
the vehicle is running in reality presents the highest 
probability. With these results, the proposed approach can 
manipulate and take into account the GPS error also. 
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Figure 10: Multi-hypothesis managed with SKF 

to treat parallel road situation 

      Construct map-observation:  
 seg1(x1, y1, θ1),….., segN(xN, yN, θN)

 Select segment candidates around Xi: 
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In Figure 11, GPS was not available after the 
intersection. One can see that the method manage two 
hypotheses for seven steps then wrong hypothesis was 
eliminated. We can remark that, the good segment always 
presents the most important probability computed by the 
SKF inference. 
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Figure 11: Multi-hypothesis managed with SKF 

to treat junction road situation 

 
6. Conclusion 
 

This article has presented a road-matching method 
based on a multi-sensor fusion approach. The main 
contributions of this work are the formalization of a road-
matching method in the Switching Kalman filtering 
context and an experimental validation with real data.  

An interesting characteristic of this approach is that it 
is flexible and modular in the sense that it can easily 
integrate other sensors. This feature is interesting because 
adding other sensors is a way to increase the robustness of 
the road-matching. 

In this approach, the use of the digital map as an 
observation of the state space representation has been 
introduced. This observation is used in the Switching 
Kalman filter in the same way that the GPS data. It turned 
out in the experiments that the GPS measurements are not 
necessary available all the time, since the merging of 
odometry and roadmap data can provide a good 
estimation of the position over a substantial period. The 
strategy presented in this paper doesn’t keep only the 
most likely segment. When approaching an intersection, 
several roads can be good candidates for this reason we 
manage several hypotheses until the situation becomes 
unambiguous. 

Acknowledgments 
 

The authors wish to acknowledge the HEUDIASYC 
laboratory in the person of Philippe Bonnifait for his 
contribution. 

10. References 

[1] Pradalier C. & Sekhavat S. “Localization Space: a 
Framework for Localization and Planning, for Systems 
Using a Sensor/Landmarks Module”. Proc. of the IEEE Int. 
C. on Robotics and Automation, 2002. 

[2] R. Joshi, “Novel Metrics for Map-Matching in In-vehicle 
Navigation System” Proc. Of the IEEE Intelligent Vehicle 
Symposium, 2002, pp. 36–43. 

[3] J. S. Kim, J. H. Lee, T. H. Kang, W. Y. Lee and Y. G. 
Kim, “Node based map matching algorithm for car 
navigation system” in Proc. 29th ISATA Symposium, 
Florence, 1996, vol. 10, pp. 121–126. 

[4] M. A. Quddus W. Y. Ochieng, L. Zhao and R. B. Noland, 
“A General Map Matching Algorithm for Transport 
Telematics Applications”, GPS Solution 7(3), pp. 157-167, 
2003. 

[5] C. A. Scott C.R. Drane, “Increased Accuracy of Motor 
Vehicle Position Estimation by Utilizing Map Data, Vehicle 
Dynamics and Other Information Sources” in 1994 Proc. of 
the vehicle Navigation and Information Systems 
Conference, pp. 585–590. 

[6] Zhao Y. “Vehicle Location Navigation Systems”. Artech 
House, Inc, 1997. 

[7] Abbott E. & Powell D. “Land-Vehicle Navigation using 
GPS”. Proc. of IEEE, vol.87, NO.1, Jan 99. 

[8] M.E.EL Najjar & Ph. Bonnifait. “A Roadmap Matching 
Method for Precise Vehicle Localization using Belief 
Theory and Kalman Filtering”. IEEE/EJS/ISR 11th Int. 
Conference on Advanced Robotics, 2003,  pp. 1677-1682. 

[9] R.G. Cowell & A.P. Dawid. Probabilistic Networks and 
Expert System. New York: 1999 Springer. 

[10] J.Pearl. (1988) Probabilistic reasoning in intelligent 
systems: Networks of plausible Inference. Publishers, Inc., 
San Mateo, CA, 2nd edition. 

[11] K.P. Murphy. “Dynamic Bayesian Networks: 
Representation, Inference and Learning”. PhD thesis, UC 
Berkley, 2002, Computer Science Division. 

[12] K.P. Murphy. “Switching Kalman Filters”. Technical 
report, UC Berkeley, Computer Science Division, 1998. 

[13] M.E.EL Najjar & Ph. Bonnifait. (2005) “Towards an 
Estimate of Confidence In a Road-Matched Location”. IEEE 
International Conference on Robotics and Automation, 2005.  

 
 

 
 

 
 

GPS not available 


