
Extending to Soft and Preference Constraints a Framework for Solving
Efficiently Structured Problems

Samba Ndojh Ndiaye Philippe Jégou
Cyril Terrioux

LSIS - UMR CNRS 6168
Université Paul Cézanne (Aix-Marseille 3)

Avenue Escadrille Normandie-Niemen
13397 Marseille Cedex 20 (France)

{samba-ndojh.ndiaye, philippe.jegou, cyril.terrioux}@univ-cezanne.fr

Abstract

This paper deals with the problem of solving efficiently
structured COPs (Constraints Optimization Problems). The
formalism based on COPs allows to represent numerous
real-life problems defined using constraints and to man-
age preferences and soft constraints. In spite of theoretical
results, [15] has discarded (hyper)tree-decompositions for
the benefit of coverings by acyclic hypergraphs in the CSP
area. We extend here this work to constraint optimization.
We first study these coverings from a theoretical viewpoint.
Then we exploit them in a framework aiming not to define
a new decomposition, but to make easier a dynamic man-
agement of the structure during the search (unlike most of
structural methods which usually exploit the structure stat-
ically), and so the use of dynamic variable ordering heuris-
tics. Thus, we provide a new complexity result which out-
performs significantly the previous one given in the litera-
ture. Finally, we assess the practical interest of these no-
tions.

1 Introduction

Preference handling, when preferences can be expressed
by constraints as with COPs or VCSPs, defines hard prob-
lems from a theoretical viewpoint. So, algorithms to man-
age them must exploit all usable properties. For exam-
ple, topological properties, i.e. structural properties of data
must be exploited. In the past, the interest for the exploita-
tion of structural properties of a problem was attested in
various domains in AI: for checking satisfiability in SAT
[20, 12, 18], in CSP [8], in Bayesian or probabilistic net-
works [6, 4], in relational databases [1, 10], in constraint
optimization [23, 5]. Complexity results based on topologi-

cal properties of the network structure have been proposed.
A large part of these works has been realized on formalisms
which can take into account preferences. Generally, they
rely on the properties of a tree-decomposition [21] or a
hypertree-decomposition [9] of the network, which can be
considered as an acyclic hypergraph (a hypertree) covering
the network.

On the one hand, if we consider tree-decomposition,
the time complexity of the best structural methods is
O(exp(w + 1)), with w the width of the used tree-
decomposition, while their space complexity can generally
be reduced to O(exp(s)) where s is the size of the largest
intersection between two neighboring clusters of the tree-
decomposition. An example of an efficient method exploit-
ing tree-decomposition is BTD [16] which achieves a enu-
merative search driven by the tree-decomposition. Such a
method can be seen as driven by the assignment of variables
(or as a ”variable driven” method).

On the other hand, from a theoretical viewpoint, meth-
ods based on hypertree-decomposition are more interesting
than those based on tree-decomposition [9]. If we con-
sider hypertree-decomposition, the time complexity of the
best methods is in O(exp(k)), with k the width of the used
hypertree-decomposition. We can consider them as ”rela-
tion driven” approaches since they consist in grouping the
constraints (and so the relations) in nodes of the hypertree
and solve the problem by computing joins of relations. Re-
cently, hypertree-decomposition has been outperformed by
generalized hypertree-decomposition [3, 11].

These theoretical time complexities can really outper-
form the classical one which is O(exp(n)) (k < w < n)
with n the number of variables of the considered prob-
lem. However, the practical interests of decomposition
approaches have not been proved yet, except in some recent
works around CSPs [16] or for managing preferences

and soft constraints using Valued CSPs [17, 19, 5]. This
kind of approaches seems to be the most efficient from
a practical viewpoint. Indeed, the second international
competition around MAX-CSP (a basic framework for
preferences) has been won by ”Toolbar-BTD” which
exploits simultaneously decomposition with BTD and
valued propagation techniques (http://www.cril.univ-
artois.fr/CPAI06/round2/results/results.php?idev=7) [2].
We can note that the effective methods rely on the ”variable
driven” approach. A plausible explanation relies on the fact
that ”relation driven” methods need to compute joins which
may involve many variables and so require a huge amount
of memory. So, despite the theoretical results, we prefer
exploit here ”variable driven” decompositions.

In this paper, we propose to make a trade-off between
good theoretical complexity bounds and the peremptory ne-
cessity to exploit efficient heuristics as often as possible.
From this viewpoint, this work can be considered as an ex-
tension of [19, 14, 15] notably to optimization, preferences
and soft constraints. Like in [15], we prefer exploit here
the more general and useful concept of covering by acyclic
hypergraph rather than one of tree-decomposition. Given a
hypergraph H = (X,C) related to the graphical represen-
tation of the considered problem, we consider a covering of
this hypergraph by an acyclic hypergraph HA = (X,E) s.t.
for each hyperedge Ci ∈ C, there is an hyperedge Ei ∈ E
covering Ci (Ci ⊂ Ei). From [15], given HA, we can
define various classes of acyclic hypergraphs which cover
HA. Here, we focus our study on a class of coverings which
preserve the separators. We exploit it to propose a frame-
work for a dynamic management of the structure: during
the search, we can take into account not only one acyclic
hypergraph covering, but a set of coverings in order to man-
age heuristics dynamically (while usually structural meth-
ods only exploit the structure statically). Thanks to this for-
mal framework, we present a new algorithm (called BDHval
for ”Backtracking on Dynamic covering by acyclic Hyper-
graphs”) for which it is easy to extend heuristics. For exam-
ple, for dynamic variable ordering, we can add dynamically
a set of ∆ variables for the choices. Finally, we provide the-
oretical and practical results showing that we can preserve
already known complexity results and also improve some of
them and the practical interest of this approach.

In the following, we present our work by using the
VCSP formalism [22], but any COP formalism could be
used instead. A valued CSP (VCSP) is a tuple P =
(X,D,C,E,⊕,�). X is a set of n variables which must
be assigned in their respective finite domain from D. Each
constraint of C is a function on a subset of variables which
associates to each tuple a valuation from E. ⊥ and > are
respectively the minimum and maximum elements of E. ⊕
is an aggregation operator on elements of E. Given an in-
stance, the problem generally consists in finding an assign-

ment on X whose valuation is minimum, what is a NP-hard
problem. The VCSP structure can be represented by the
hypergraph (X,C), called the constraint hypergraph.

The next section deals with coverings by acyclic hyper-
graphs. The third one describes how these coverings can be
exploited on the algorithmic level and gives some theoret-
ical results. Then section 4 provides some variable order-
ing heuristics based on these coverings. Finally, we present
practical results in section 5 before concluding in section 6.

2 Coverings by acyclic hypergraphs

The basic concept which interests us here is the acyclic-
ity of networks. Often, it is expressed by considering tree-
decompositions or hypertree-decompositions, or more gen-
erally, coverings of variables and constraints by acyclic hy-
pergraphs. In this paper, we refer to the covering of con-
straint networks by acyclic hypergraphs. Different defini-
tions of acyclicity have been proposed. Here, we consider
the classical definition called α − acyclicity in [1] and we
give an equivalent definition based on the notions of α-cycle
in a hypergraph H = (X,C).

X
3

X
4

X
1

X
2

X
7

X
6

X
8

X
14

X
13

X
12

X
11

X
10

X
5

X
9

X
15

X
16

X
18

X
17

X
25

X
26

X
27

X
28

X
29

X
32

X
31

X
33

X
30

X
24

X
23

X
22

X
21

X
19

X
20

C 1

C 2

C 3

C 4

C 5

C 6

C 7

Figure 1. A hypergraph.

Definition 1 Let Cu and Cv be hyperedges such that Cu ∩
Cv 6= ∅. We call sequence of neighborhood connecting Cu
and Cv , a sequence (Cu = Ci1 , Ci2 , . . . , CiR = Cv) such
thatR > 2 andCu∩Cv Cij∩Cij+1 , for j = 1, . . . , R−1.

Two hyperedges are α-neighbors if it does not exist an-
other path (a sequence of neighborhood) joining them.

Definition 2 Let Cu and Cv be two hyperedges of H . Cu
and Cv are α-neighboring if it does not exist a sequence of
neighborhood connecting them.

For example, the hypergraph given in figure 1 contains
two hyperedges C1 and C4 with a non empty intersection
which are not α-neighbors because (C1, C3, C4) is a se-
quence of neighborhood connecting C1 and C4.

2

Definition 3 An α-path in H is a sequence of hyperedges
(Ci1 , . . . , CiR) such that ∀j, 1 ≤ j < R,Cij and Cij+1 are
α-neighboring.

Definition 4 An α-cycle in H is an α-path
(Ci1 , Ci2 , . . . , CiR) such that R > 3, Ci1 = CiR ,
@1 ≤ a 6= b < R, Cia ∩ Cia+1 ⊂ Cib ∩ Cib+1 .

The next theorem shows the equivalence between the
acyclicity of hypergraphs and the existence of α-cycle.

Theorem 1 H is acyclic iff H does not contain an α-cycle.

X
2

X
8

X
14

X
13

X
12

X
11

X
10

X
5

X
9

X
15

X
16

X
18

X
17

X
25

X
26

X
27

X
28

X
29

X
32

X
31

X
33

X
30

X
24

X
23

X
22

X
21

X
19

X
20

X
4

C 4

C 2

C 1

C 3

C 5

C 6

X
7

X
6

X
3

X
1

Figure 2. An acyclic hypergraph.

Hypergraph presented in figure 1 is not acyclic because
(C1, C2, C3, C1) is a α-cycle. On the contrary, the hyper-
graph of figure 2 is acyclic.

Now, let us define acyclic covering.

Definition 5 Let H = (X,C) be a hypergraph. A covering
by an acyclic hypergraph (CAH) of the hypergraph H is
an acyclic hypergraph HA = (X,E) such that for each
hyperedge Ci ∈ C, there exists Ej ∈ E such that Ci ⊂ Ej .
The width γ of a CAH (X,E) is equal to maxEi∈E |Ei|.
The CAH-width γ∗ of H is the minimal width over all the
CAHs of HA. Finally, CAH(H) is the set of the CAHs of
H .

The notion of covering by acyclic hypergraph (called
hypertree embedding in [7]) is very close to one of tree-
decomposition. Particularly, given a tree-decomposition we
can easily compute a CAH. Moreover, the CAH-width γ∗

is equal to the tree-width plus one. However, the concept of
CAH is less restrictive. Indeed, for a given (hyper)graph, it
can exist a single CAH whose width is γ, while it can ex-
ist several tree-decompositions of width w s.t. γ = w + 1.
The best structural methods for solving a COP with a CAH
of width γ have a time complexity in O(exp(γ)) while
their space complexity can be reduced to O(exp(s)) with
s = maxEi,Ej∈E |Ei ∩ Ej | in HA.

In [15], given a hypergraph H = (X,C) and one of its
CAHs HA = (X,E), we have defined and studied several
classes of acyclic coverings of HA. These coverings corre-
spond to coverings of hyperedges (elements of E) by other
hyperedges (larger but less numerous), which belong to a
hypergraph defined on the same set of vertices and which is
acyclic. In all the cases, these extensions rely on a particu-
lar CAH HA, called CAH of reference. [15] aims to study
different classes of acyclic coverings, to manage dynami-
cally, during the search, acyclic coverings of the considered
CSP. By so doing, we hope to manage dynamic heuristics
to optimize the search while preserving complexity results.

We first introduce the notion of set of covering:

Definition 6 The set of coverings of a CAH HA = (X,E)
of a hypergraph H = (X,C) is defined by CAHHA

=
{(X,E′) ∈ CAH(H) : ∀Ei ∈ E,∃E′j ∈ E′ : Ei ⊂ E′j}

The following classes of coverings will be successive re-
strictions of this first class CAHHA

.
The first restriction imposes that the edges Ei covered

(even partially) by a same edge E′j are connected in HA,
i.e. mutually accessible by paths. This class is called set
of connected-coverings of a CAH HA = (X,E) and is de-
noted CAHHA

[C+]. It is possible to restrict this class by
restricting the nature of the set {Ei1 , Ei2 , . . . EiR}. On the
one hand, we can limit the considered set to paths (class
of path-coverings of a CAH denoted CAHHA

[P+]), and on
the other hand by taking into account the maximum length
of connection (class of family-coverings of a CAH denote
CAHHA

[F+]). We can also define a class (called unique-
coverings of a CAH and denoted CAHHA

[U+]) which im-
poses the covering of an edge Ei by a single edge of E′.
Finally, it is possible to extend the class CAHHA

in an-
other direction (class of close-coverings of a CAH denoted
CAHHA

[B+]), ensuring neither connexity, nor unicity: we
can cover edges with empty intersections but which have a
common neighbor.

Definition 7 Given a graph H and a CAH HA of H:

• CAHHA
[C+] = {(X,E′) ∈ CAHHA

: ∀E′i ∈
E′, E′i ⊂ Ei1 ∪ Ei2 ∪ . . . ∪ EiR with Eij ∈ E and
∀Eiu , Eiv , 1 ≤ u < v ≤ R, there is a α-path in
H joining Eiu and Eiv defined on edges belonging to
{Ei1 , Ei2 , . . . EiR}}.

• CAHHA
[P+] = {(X,E′) ∈ CAHHA

: ∀E′i ∈
E′, E′i ⊂ Ei1 ∪ Ei2 ∪ . . . ∪ EiR with Eij ∈ E and
Ei1 , Ei2 , . . . EiR is a α-path in H}.

• CAHHA
[F+] = {(X,E′) ∈ CAHHA

: ∀E′i ∈
E′, E′i ⊂ Ei1 ∪ Ei2 ∪ . . . ∪ EiR with Eij ∈ E and
∃Eiu , 1 ≤ u ≤ R,∀Eiv , 1 ≤ v ≤ R and v 6= u, Eiu
and Eiv are α-neighbors }.

3

• CAHHA
[U+] = {(X,E′) ∈ CAHHA

: ∀Ei ∈
E,∃!E′j ∈ E′ : Ei ⊂ E′j}.

• CAHHA
[B+] = {(X,E′) ∈ CAHHA

: ∀E′i ∈
E′, E′i ⊂ Ei1 ∪ Ei2 ∪ . . . ∪ EiR with Eij ∈ E and
∃Ek ∈ E such that ∀Eiv , 1 ≤ v ≤ R Ek 6= Eiv and
Ek and Eiv are α-neighbors }.

If ∀E′i ∈ E′, E′i = Ei1 ∪ Ei2 ∪ . . . ∪ EiR , these classes
will be denoted CAHHA

[X] for X = C,P, F, U or B.

The concept of separator is essential in the methods ex-
ploiting the structure, because their space complexity di-
rectly depends on their size. So we define the class S of
coverings which makes it possible to limit the separators to
an existing subset of those in the hypergraph of reference:

Definition 8 The set of separator-based coverings of a
CAH HA = (X,E) is defined by CAHHA

[S] =
{(X,E′) ∈ CAHHA

: ∀E′i, E′j ∈ E′, i 6= j,∃Ek, El ∈
E, k 6= l : E′i ∩ E′j = Ek ∩ El}.

This class presents several advantages. First, it preserves
the connexity of HA. Then, computing one of its elements
is easy in terms of complexity. For example, given H and
HA (HA can be obtained as a tree-decomposition), we can
computeH ′A ∈ CAHHA

[S] by merging neighboring hyper-
edges of HA. Moreover, according to theorem 2, this class
may have some interesting consequences on the complexity
of the algorithms which will exploit it. More precisely, it
allows to make a time/space trade-off since, given a hyper-
graph H ′A of CAHHA

[S], it leads to increase the width of
H ′A w.r.t. HA while the maximal size of separators in H ′A
is bounded by one in HA.

Theorem 2 ∀H ′A ∈ CAHHA
[S], ∃∆ ≥ 0 such that γ′ ≤

γ + ∆ and s′ ≤ s.

Other classes are defined in [15], but, from a theoretical
and practical viewpoint, the class S seems to be the most
promising and useful one.

In the sequel, we exploit these concepts at the algorith-
mic level. Each CAH is thus now equipped of a privileged
hyperedge (the root) from which the search begins. So, the
connections between hyperedges will be oriented.

3 Algorithmic Exploitation of CAHs

In this section, we introduce the method BDHval which
is an extension of BDH [14] to the VCSP formalism and a
generalization of BTDval based on CAH. BDHval relies on
the Branch and Bound technique and a dynamic exploita-
tion of the CAH. It makes it possible to use more dynamic
variable ordering heuristics which are necessary to ensure

an effective practical solving. Like in BDH, we will only
consider hypergraphs in CAHHA

[S], withHA the reference
hypergraph of the constraint hypergraph H of the given
problem. This class allows to guarantee good space and
time complexity bounds.

BTDval is based on a tree-decomposition that is a join-
tree on the acyclic hypergraph HA. But, this jointree is not
unique: it may exist another one more suitable w.r.t. the
solving. Instead of choosing arbitrary one jointree of HA,
BDHval computes in a dynamic way a suitable one during
the solving. Moreover, it is also possible not restricting our-
self to one jointree but computing a suitable one at each
stage of the solving.

At each stage, BDHval uses a jointree Tc of HA, com-
puted incrementally. At the beginning, the current subtree
Tc0 of Tc is empty. BDHval chooses a root hyperedge E1

where the search begins and computes the neighbors of E1

in Tc (among its α-neighbors in HA). Then it adds E1 and
its neighbors to Tc0 and obtains the next subtree Tc1 of Tc.
After this, BDHval chooses incrementally among the neigh-
boring hyperedges those which will be merged withE1. Let
Ei be the first of these. BDHval computes first the neigh-
bors of Ei, adds them to Tc1 and merges Ei and E1. The
sons of this new hyperedge is the union of the sons of E1

and ones of Ei. The same operation is repeated on the new
hyperedge. Let E′1 be the hyperedge obtained and Tcm1

the resulting subtree. BDHval assigns all the variables in
E′1 and recursively solves the next subproblem among those
rooted on its sons in Tcm1 .

Definition 9 Let Tc be a jointree of HA. A jointree, Tcm,
related to Tc is one of a hypergraph H ′A obtained by merg-
ing some neighboring hyperedges in Tc. Moreover, H ′A ∈
CAHHA

[S].

Father(Ei) denotes the father node of Ei and
Sons(Ei) its son set. The descent of Ei (denoted
Desc(Ei)) is the set of variables in the hyperedges con-
tained in the subtree rooted on Ei. The subproblem
rooted on Ei is the subproblem induced by the variables in
Desc(Ei). BDH has 7 inputs: A the current assignment,E′i
the current hyperedge, VE′i the set of unassigned variables
in E′i, ubE′i the current upper bound for the subproblem
PA,Father(E′i)/E′i induced byDesc(E′i) and the assignment
A[E′i ∩ Father(E′i)], lbE′i the lower bound of the current
assignment in Desc(E′i), H ′A the current hypergraph and
Tcmb

the current subtree. BDHval solves recursively the
subproblem PA,Father(E′i)/E′i and returns its optimal valu-
ation. At the first call, the assignment A is empty, the sub-
problem rooted on E1 corresponds to the whole problem.
While VE′i is not empty and the lower bound is less than
the upper bound, BDHval chooses a variable x in VE′i (line
12) and a value in its domain (line 14) (if not empty) and
updates the lower bound. If the lower bound is greater or

4

Algorithm 1: BDHval (A, E′i, VE′i
, ubE′

i
, lbE′

i
, HA, Tcmb

)

if VE′i
= ∅ then1

F ← Sons(E′i); lb← lbE′
i2

while F 6= ∅ and lb ≺ ubE′
i

do3
Ej ← Choose-hyperedge(F); F ← F\{Ej}4
E′

j′ ← Compute(Tcmb
, HA, Ej)5

if (A[E′
j′ ∩ E

′
i], o) is a good then lb← lb⊕ o6

else7
o←BDHval (A, E′

j′ , E
′
j′\(E

′
j′ ∩ E

′
i),>,⊥, HA,8

Tcmb+1)

lb← lb⊕ o; Record the good (A[E′
j′ ∩ E

′
i], o)9

return lb10
else11

x← Choose-var(VE′
i
); dx ← Dx12

while dx 6= ∅ and lbE′
i
≺ ubE′

i
do13

v ← Choose-val(dx); dx ← dx\{v}14
L← {c ∈ EP,E′

i
|Xc ∩ VE′

i
= {x}}; lbv ← ⊥15

while L 6= ∅ and lbE′
i
⊕ lbv ≺ ubE′

i
do16

Choose c ∈ L; L← L\{c}17
lbv ← lbv ⊕ c(A ∪ {x← v})18

if lbE′
i
⊕ lbv ≺ ubE′

i
then19

ubE′
i
← min(ubE′

i
,BDHval(A ∪ {x← v}, E′i,20

VE′
i
\{x}, ubE′

i
, lbE′

i
⊕ lbv, HA, Tcmb

)

return ubE′
i21

equal to the upper bound, BDHval chooses another value or
performs a backtrack. Otherwise, BDHval is called in the
rest of the hyperedge (line 20). When all the variables in
E′i are assigned, the algorithm chooses a son Ej of E′i (line
4) (if exists). The function Compute extends the construc-
tion of Tcmb by computing a new hyperedge E′j′ covering
Ej . If A[E′i ∩ E′j′] is a good (line 6), the optimal valuation
on Desc(E′j′) is added directly to the lower bound and the
search continues on the rest of the problem. If A[E′i ∩ E′j′]
is not a good, then the solving continues on Desc(E′j′). As
soon as, the optimal valuation on Desc(E′j′) is computed,
we record it with the assignmentA[E′i ∩E′j′] as a good and
return it as the result (line 10).

Theorem 3 BDHval is sound, complete and terminates.

Like BDH, BDHval uses a subset of hypergraphs in
CAHHA

[S] for which there exists ∆ ≥ 0 such that for
all H ′A in this subset, γ′ ≤ γ + ∆. The value of ∆ can
be parametrized to only consider covering hypergraphs in
CAHHA

[S] whose width is bounded by γ+∆. Anyway, the
time complexity of BDHval is given by the following the-
orem while the space complexity remains in (O(exp(s)))
since the search relies on the same set of separators as HA.

Theorem 4 The time complexity of BDHval is
O(N(Tc).(γ + ∆).exp(γ + ∆ + 1)), with N(Tc) the
number of jointrees used by BDHval.

Proof: Let P = (X,D,C,E,⊕,�) be a VCSP, HA the

CAH of reference of H = (X,C). Let us consider a join-
tree Tc built by BDHval.

As for the proof for time complexity of BDH ([15]), it is
possible to cover HA (Tc) by sets Va of γ+ ∆ + 1 variables
verifying that each assignment of their variables will not be
generated by BDHval at most numberSep(Va) times, with
numberSep(Va) the number of separators of HA contained
in Va. The definition of sets Va is exactly the same than
given in the proof of BDH.

Let Va be a set of γ + ∆ + 1 variables such that
∃(Eu1 , . . . , Eur) a path taken in Tc, Va ⊂ Eu1 ∪ . . . ∪Eur

(r ≥ 2 since |Va| = γ+ ∆ + 1 and γ is the maximal size of
hyperedges of HA) and Eu2 ∪ . . . ∪ Eur−1 Va (respec-
tively Eu1 ∩ Eu2 ⊂ Va) if r ≥ 3 (respectively r = 2).
Va contains r − 1 separators which are the intersections

between hyperedges that cover it. Indeed, (Eu1 , . . . , Eur)
being a path and none hyperedge being included in another,
the separators are located only between two consecutive el-
ements in the path.

During the search, it is possible to cover Va in different
ways with the jointrees Tcm related to Tc. Nevertheless, at
least one separator of Va will be an intersection between two
hyperedges in each Tcm. Let Tcm be a jointree related to
Tc such that s1 is an intersection between two hyperedges.
The search based on this jointree will generate an assign-
ment on Va and record on s1 a valued good. If s1 is also
an intersection between two hyperedges in a jointree T ′cm
related to Tc, used during a new attempt for an assignment
of variables of Va with the same values, the valued good
will allow to stop the assignment. Conversely, if s1 is not
an intersection, the location of the good can lead to produce
again totally the assignment but another valued good will
be recorded on another separator s2 of V . Henceforth, if s1

or s2 is an intersection between hyperedges of a jointree re-
lated to Tc used during the search, the assignment will not
be reproduced. Thus, an assignment on Va can be repro-
duced as many times as it is possible to decompose it by its
separators : thus the number of separators.

The maximum number of separators (r − 1) of a Va is
bounded by γ + ∆ because the number of elements of the
path (Eu1 , . . . , Eur

) is bounded by γ + ∆ + 1.
We have proved that each assignment on V is generated

at most γ + ∆ times.
On each Va covering Tc an assignment is produced at

most γ + ∆ times. The number of possible assignments on
Va is bounded by dγ+∆+1. So, the number of possible as-
signments on the set of variables of the problem is bounded
byN(Tc).numberVa .(γ+∆).dγ+∆+1, with numberVa the
number of sets Va covering Tc. The number of Va being
bounded by the number of hyperedges of HA, the complex-
ity of BDHval is then O(N(Tc).(γ + ∆).exp(γ + ∆ + 1)).
�

As for BDH, this complexity is bounded by O(exp(h))

5

(the complexity of the method without good learning), with
h the maximum number of variables in a path of a jointree
Tc.

Like BTDval, BDHval can be improved applying valued
local consistency techniques. We can defined LC-BDHval,
an extension of BDHval with LC a valued local consistency
technique. Even though, we obtain very good results in
our experiments, using FC-BDHval, we should do the same
with LC-BDH+

val. This method is similar to LC-BTD+
val [5]

and the motivations are identical, i.e. to improve the pruning
by using a better upper bound than> at the beginning of the
search. Thus, we use in this method, as an upper bound, the
difference between the valuation of the best solution so far
and the local valuation of the current assignment as in [5].
In this case, recorded informations are not necessarily val-
ued goods. It is possible that this upper bound be less than
the optimal valuation of the sub-problem. So, LC-BTD+

val

has not an optimal valuation, but a lower bound of this one.
Nevertheless, this information is recorded, modifying the
definition of structural valued good. A valued good is then
defined by an assignment A[Ei ∩Ej] of an intersection be-
tween a hyperedgeEi and one of its sonsEj , and by a valu-
ation which is a lower bound of the optimal valuation of the
problem rooted in Ej or this optimal valuation. Finally, we
have:

Theorem 5 The time complexity of LC-BDH-val+ is
O(α∗.(γ + ∆).N(Tc).exp(γ + ∆ + 1)), with N(Tc) the
number of jointrees Tc used by LC-BDH-val+ and α∗ the
optimal valuation of the VCSP.

4 Variable ordering Heuristics based on
CAH

4.1 Classes of variable orders

As for BDH, many variable orders can be used in
BDHval. We give below a hierarchy of classes of these or-
ders more and more dynamic.

• Class 1: Static variable orders compatible with a join-
tree Tc of HA.
In this class, we use a single jointree Tc all along the
search and computed at the beginning. Then, we derive
a static compatible order on the hyperedges of HA and
on the variables in each hyperedge. The main draw-
back of this class is the inefficiency of the static vari-
able orders.

• Class 2: Static hyperedge orders compatible with a
jointree Tc of HA, dynamic variable ordering in each
hyperedge.
Likewise in the Class 1, we have only one jointree

Tc of HA, computed statically. Hyperedge ordering
is also static and compatible with Tc, while variable
ordering in the hyperedges is dynamic.

• Class 3: Dynamic hyperedge orders compatible with a
jointree Tc of HA, dynamic variable ordering in each
hyperedge.
This class provides more freedom than the previous
ones. The jointree is always computed statically and
stays unchanged during the search. Yet, besides a dy-
namic variable ordering in each hyperedge, the order
on hyperedges is also dynamic and compatible with
the jointree.

• Class 4: Class 3 orders on a jointree Tcm related to a
jointree Tc of HA.
The jointree Tc of HA is always unique. However,
we can modify the decomposition during the search
by merging (covering) hyperedges in Tc and obtain,
by so doing, a new jointree Tcm of a hypergraph in
CAHHA

[S]. Finally, an order of this class is a Class 3
order based on Tcm.

• Class 5: Class 3 orders on a set of jointrees Tcm re-
lated to a jointree Tc of HA.
The main difference with the previous class is that the
hyperedge merging is dynamic. We have an unique
jointree Tc and at each step of the search, we choose
dynamically the next hyperedge (w.r.t. a compatible
order) and we merge it possibly with some other hy-
peredges in the sub-problem rooted on it. Thus, we
can use during the solving different jointrees Tcm (re-
lated to Tc) of hypergraphs in CAHHA

[S]. The orders
of this class are Class 3 orders based on this set of join-
trees.

• Class 6: Class 5 orders on a set of jointrees Tc of HA.
This class allow using several jointrees Tc during the
search.

• Class ++: Dynamic variable ordering.
There is no restrictions on the variable orders. They
are totally dynamic. This class offers no theoretical
guarantees.

These classes forms an hierarchy :
Class 1 ⊂ Class 2 ⊂ Class 3 ⊂ Class 4 ⊂ Class 5 ⊂

Class 6 ⊂ Class ++.

Theorem 6 With a Class 1, Class 2 or Class 3 order, the
time complexity of BDHval is O(exp(γ)).

Theorem 7 With a Class 4 order, the time complexity of
BDHval is O(exp(γ + ∆)), with γ + ∆ the maximum size
of hyperedges in Tcm.

6

Theorem 8 With a Class 5 order, the time complexity of
BDHval is O((γ + ∆).exp(γ + ∆ + 1)), with γ + ∆ the
maximum size of the hyperedges of the set of Tcm used.

Theorem 9 With a Class 6 order, the time complexity of
BDHval is O(N(Tc).(γ+ ∆).exp(γ+ ∆ + 1)), with γ+ ∆
the maximum size of the hyperedges of all the sets of Tcm
used and N(Tc) the number of jointrees Tc of HA used.

4.2 Heuristics

We present here some heuristics we use to run experi-
ments presented in the following section. Since, these ex-
periments are restricted to classes 1, 2, 3 and 4, we define
heuristics for static merging of hyperedges, hyperedge or-
dering and variable ordering in the hyperedges.

4.2.1 Merging strategies

First, we define some static merging heuristics. They
choose among the sons of the current hyperedge those that
will be merged with it.

• sep: This heuristic has a parameter which defines the
maximum size of the separators authorized. It merges
every pair of hyperedges <father, son> whose inter-
section size is greater than this value.

• vp: Its parameter is the mimimum number of proper
variables (variables not in the father hyperedge) that
must contain a hyperedge. It merges with its father any
hyperedge whose number of proper variables is less
than this value.

4.2.2 Hyperedge ordering

Hyperedge ordering heuristics allow to choose efficiently
the next hyperedge to consider among the sons of the
current one. There is two steps in this ordering: the choice
of the root hyperedge (the first to assign) and the ordering
of the sons of a given hyperedge. While the order on the
sons can be dynamic, the choice of the root is always static
since it must be done before the search begins.

Root choice:

• rand : chooses randomly.

• minexp: chooses a hyperedge minimizing the ratio
(exp) between its expected number of solutions and
its size.

• card : chooses a hyperedge maximizing the number of
variables.

• size: chooses a hyperedge maximizing the size (prod-
uct of the variable domain sizes in hyperedges).

• bary : chooses barycentre hyperedge. The notion of
barycentre uses one of distance between two hyper-
edges in the hypergraph which is the shortest path join-
ing them. The barycentre hyperedge c is one minimiz-
ing Σc′∈Cdist(c, c′).

• nv : chooses a hyperedge containing the first variable
w.r.t. a dynamic variable ordering heuristic. We try, by
this way, to derive benefit from the efficiency of these
heuristics.

Static Son orders:

• rands : orders randomly.

• minexps : orders according to the increasing value of
the ratio exp.

• minseps : orders according to the increasing value of
the size of the intersection with the father hyperedge.

Dynamic Son orders:

• randsdyn : chooses randomly.

• nvs : chooses a hyperedge containing the next variable
w.r.t. a dynamic variable ordering heuristic, among the
variables in the unassigned son hyperedges.

• minexpsdyn : chooses a hyperedge minimizing the ra-
tio exp which is computed after the father is totally
assigned (it takes in account the induced filtering of
domains).

4.2.3 Variable ordering

About the variable orders in the hyperedges, we use one
of the best heuristics: minimum domain on degree (mdd)
static (class 1) and dynamic (class 2, 3, 4) versions. This
heuristic chooses as the next variable one minimizing the
ratio between the size of its domain and its degree.

5 Experimental results

We run experiments with BDHval on benchmarks (struc-
tured random VCSPs) presented in [13]. The reference
hypergraph is computed thanks to the triangulation of the
constraint graph H performed in [14]. We present only
the best results obtained by the heuristics given in this pa-
per, using the same empirical protocol and PC as in [13].
The table shows the runtime of BDHval with the heuristic
card + minsep (class 1) and minexp (classes 2,3 and 4),

7

VCSP (n, d, w, t, s, ns, p) (a) (b) (c) (d)
(75,10,15,30,5,8,10) Mem Mem Mem 8.69
(75,10,15,30,5,8,20) 3.27 6.13 6.24 1.56
(75,10,15,33,3,8,10) 8.30 7.90 7.87 5.26
(75,10,15,34,3,8,20) 2.75 3.42 3.52 1.48
(75,10,10,40,3,10,10) 11.81 3.02 4.73 0.58
(75,10,10,42,3,10,20) 1.02 0.76 0.83 0.51

(75,15,10,102,3,10,10) 11.76 12.10 12.09 5.41
(100,5,15,13,5,10,10) Mem Mem Mem 9.60

Table 1. Runtime (in s) on random partial
structured VCSPs: (a) Class 1, (b) Class 2,
(c) Class 3 and (d) Class 4.

with a hypergraph whose maximum size of hyperedge inter-
sections is bounded by 5 for the Class 4. The Class 4 obtains
the best results, it succeeds in solving all the instances while
the other classes fails in solving a problem in the classes
(75, 10, 15, 30, 5, 8, 10) and (100, 5, 15, 13, 5, 10, 10) be-
cause of a too large required memory space. Merging hy-
peredges with a too large intersection for the class 4 reduces
the space complexity and increases the dynamicity of the
variable ordering heuristic. This leads to significant im-
provements of the practical results of BDHval as well as
those of the first version of BTDval which is equivalent to
BDHval with an order of the Class 1.

6 Conclusion

In this paper, we have proposed an extension to VCSP
(preferences and soft constraints) of the method BDH [14]
defined in the CSP framework and based on coverings
of a problem by acyclic hypergraphs. This approach
gives more freedom to the variable ordering heuristic.
We obtain a new theoretical time complexity bound in
O(N(Tc).(γ + ∆).exp(γ + ∆ + 1)). The dynamic ex-
ploitation of the problem structure induced by this method
leads to very significant improvements. We must continue
the experiments on the classes 5 and 6 for which more
important enhancements are expected.

Acknowledgments This work is supported by an ANR
grant (STAL-DEC-OPT project).

References

[1] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the
desirability of acyclic database schemes. J. ACM, 30:479–
513, 1983.

[2] S. Bouveret, S. de Givry, F. Heras, J. Larrosa, E. Rollon,
M. Sanchez, T. Schiex, G. Verfaillie, and M. Zytnicki. Max-
CSP Competition 2006: toolbar/toulbar2 solver brief de-
scription. Technical report.

[3] D. Cohen, P. Jeavons, and M. Gyssens. A Unified The-
ory of Structural Tractability for Constraint Satisfaction and
Spread Cut Decomposition. In Proc. of IJCAI, pages 72–77,
2005.

[4] A. Darwiche. Recursive conditioning. Artificial Intelligence,
126:5–41, 2001.

[5] S. de Givry, T. Schiex, and G. Verfaillie. Exploiting Tree De-
composition and Soft Local Consistency in Weighted CSP.
In Proc. of AAAI, pages 22–27, 2006.

[6] R. Dechter. Bucket Elimination: A Unifying Framework for
Reasoning. Artificial Intelligence, 113(1-2):41–85, 1999.

[7] R. Dechter. Constraint processing. Morgan Kaufmann Pub-
lishers, 2003.

[8] R. Dechter and J. Pearl. Tree-Clustering for Constraint Net-
works. Artificial Intelligence, 38:353–366, 1989.

[9] G. Gottlob, N. Leone, and F. Scarcello. A Comparison of
Structural CSP Decomposition Methods. Artificial Intelli-
gence, 124:343–282, 2000.

[10] G. Gottlob, N. Leone, and F. Scarcello. Hypertree De-
compositions and Tractable Queries. J. Comput. Syst. Sci.,
64(3):579–627, 2002.

[11] M. Grohe and D. Marx. Constraint solving via fractional
edge covers. In Proc of SODA, pages 289–298, 2006.

[12] J. Huang and A. Darwiche. A structure-based variable order-
ing heuristic for SAT. In Proc. of IJCAI, pages 1167–1172,
2003.

[13] P. Jégou, S. Ndiaye, and C. Terrioux. Dynamic heuristics for
branch and bound search on tree-decomposition of Weighted
CSPs. In Proc. of the International Workshop on Preferences
and Soft Constraints (Soft-2006), pages 63–77, 2006.

[14] P. Jégou, S. Ndiaye, and C. Terrioux. ‘Dynamic Heuristics
for Backtrack Search on Tree-Decomposition of CSPs. In
Proc. of IJCAI, pages 112–117, 2007.

[15] P. Jégou, S. Ndiaye, and C. Terrioux. Dynamic Manage-
ment of Heuristics for Solving Structured CSPs. In Proc. of
13th International Conference on Principles and Practice of
Constraint Programming (CP-2007), pages 364–378, 2007.

[16] P. Jégou and C. Terrioux. Hybrid backtracking bounded by
tree-decomposition of constraint networks. Artificial Intelli-
gence, 146:43–75, 2003.

[17] P. Jégou and C. Terrioux. Decomposition and good record-
ing for solving Max-CSPs. In Proc. of ECAI, pages 196–
200, 2004.

[18] W. Li and P. van Beek. Guiding Real-World SAT Solv-
ing with Dynamic Hypergraph Separator Decomposition. In
Proc. of ICTAI, pages 542–548, 2004.

[19] R. Marinescu and R. Dechter. Dynamic Orderings for
AND/OR Branch-and-Bound Search in Graphical Models.
In Proc. of ECAI, pages 138–142, 2006.

[20] I. Rish and R. Dechter. Resolution versus Search: Two
Strategies for SAT. Journal of Automated Reasoning,
24:225–275, 2000.

[21] N. Robertson and P. Seymour. Graph minors II: Algorithmic
aspects of treewidth. Algorithms, 7:309–322, 1986.

[22] T. Schiex, H. Fargier, and G. Verfaillie. Valued Constraint
Satisfaction Problems: hard and easy problems. In Proc. of
IJCAI, pages 631–637, 1995.

[23] C. Terrioux and P. Jégou. Bounded backtracking for the val-
ued constraint satisfaction problems. In Proc. of CP, pages
709–723, 2003.

8

