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Abstract size models [7, 1, 2]. More recently, new tools based on
Boolean Satisfiability (SAT) and Pseudo Boolean Optimiza-
Boolean satisfiability (SAT) finds a wide range of practi- tion (PBO) have been developed [11, 5]. The SAT/PBO-
cal applications, including Artificial Intelligence and are based tools use polynomial-size models and additional tech
recently, Bioinformatics. Although encoding some com- niques for further reducing the size of the model. While the
binatorial problems using Boolean logic may not be the former HIPP tools could only solve small-size illustrative
most intuitive solution, the efficiency of state-of-theSkT problem instances, the latter tools are remarkably more effi
solvers often makes it worthwhile to consider encoding a cient, and capable of solving much larger and harder prob-
problem to SAT. One representative application of SAT in lem instances.
Bioinformatics is haplotype inference. The problem of hap-  The recent algorithmic developments for solving the
lotype inference under the assumption of pure parsimonyHIPP problem have made the pure parsimony approach
consists in finding the smallest number of haplotypes thatcompetitive to the point that it can be considered an effec-
explains a given set of genotypes. The original formulation tive alternative to other more standard approaches. Net sur
for solving the problem of Haplotype Inference by Pure Par- prisingly, there is no clear best approach, i.e. differeabp
simony (HIPP) were based on Integer Linear Programming. lem instances are solved differently by different appresch
More recently, solutions based on SAT have been showrHowever, there is still a comprehensive evaluation to be
to be remarkably more efficient. This paper provides an done in order to characterize the positive/negative aspect
overview of SAT-based approaches for solving the HIPP of each approach.
problem and identifies current research directions. This paper describes the state of the art in haplotype in-
ference by pure parsimony. The next section gives the pre-
liminaries, followed by an introduction to haplotype infer
1. Introduction ence. Section 4 describes the techniques that can be applied
in general to solve the HIPP problem. Afterwards, models
Haplotype inference is nowadays one of the most chal- based on ILP and SAT/PBO are d_escribed. Practical evi-
lenging problems in human genetics. The identification of 4ence shows the performance of different tools and the ac-
haplotypes, that contain the genetic data inherited frach ea  €Uracy of bounding techniques. Finally, we point out future
parent, may bring new insights to the genetic predispasitio '€Search directions.
to disease, as well as to response to drugs. Considering the
huge amount of data to deal with and the intrinsic complex- 2. Preliminaries
ity of the problem, haplotype inference also poses a number
of computational challenges. This is true regardless of the DNA (deoxyribonucleic acid) refers to any of the nucleic
approach followed to infer the haplotypes. acids (adenine (A), cytosine (C), guanine (G) and thymine
One of the existing approaches for solving the haplo- (T)) that are the basis of the genetic information for liv-
type inference problem is pure parsimony [7]. Given that ing organisms. DNA may also refer to the double strand
a solution has to be parsimonious, the original problem molecule where each strand contains a sequence of bases,
becomes a minimization problem. The first tools devel- and each base contains one nucleic acid. From one strand it
oped for solving the Haplotype Inference by Pure Parsi- is possible to determine the bases of the other strand be-
mony (HIPP) problem were based on Integer Linear Pro- cause A only pairs with T and C with G. For example,
gramming (ILP) and include exponential and polynomial given the sequence CCTAAG, the corresponding bases in



the other strand must be GGATTC. i i Ac@rATARS C

The genetic information is organized in DNA segments c AGTIGrAAGC
called genes. Each gene encodes a specific function. Within —— AGTTCIrAAGC
cells, DNA is organized into structures called chromo- —j AGTTATAAGC
somes, for which a set of genes can be distinguished. In — — _LT_ AGTTATIRGC
diploid organisms, chromosomes are organized in pairs, due L AGTTATAAGC
to the inheritance coming from each parent. (In what fol- ACTTATAACC
lows we will only consider diploid organisms.) | 4,_7!: ACTTATAACC

DNA contains relevant hereditary information. This in- ACTTATAACC

formation, however, is mostly the same for all human be-

ings. There are some exceptions though, including the Figure 1. Mutations within a population

ones derived from mutations at specific sites of the DNA

strand. These mutations are called Single Nucleotide Poly-

morphisms (SNPs), assuming they occur in at least 1% ofby a string of sizen over the alphabet0,1}, such that each
the population. For example, a SNP occurs if the sequencegenotype isxplainedby a pair of haplotypes. A genotype
CCTAAG is modified to CCTGAG. The site for which the gi € G is explained by a pair of hapl()typé@7 hi € H,i.e.
mutation occurred contains two possible values (callegt all ¢, = hj @ hg, iff:

les): A and G. The analysis of SNPs is relevant to the extent
that they can be related with genetic diseases as well as to
patients response to drugs. o if gy = 1thenhj; = hy =1,

e ifgy=0 thenhjl = hy; =0,

o ifgy=2 thenhjl % hy,
wherel refers to the! character of the string.

A.‘ h_aplotype IS a sequence 0f SNPs that are kn_own to b_eExampIe 1 (Haplotype Inference) Consider the fol-
statistically associated. As a consequence of this assomalowing set of genotypesy = {g } =
. . . . o 1,92, 93,94
tion, it is oftep possmle to identify just a few SNPs (callgd {011,021, 122, 212}. One solution to the haplo-
tag SNP;) _W|th|n a haplotype that unambiguously identify type inference problem fof is the set of haplotypes
the remaining SNPs. . H = {hi,ha ha,ha,hs} = {011,001, 111,100,110},

Due to technical limitations, it is not possible to directly v .o = — 5 @ h —h ®h — ha @ hs and

. . . . L g1 1 1, 92 1 2y 93 3 4

obtain haplotypes, which would make possible to distin- gi=hi®h
guish between the SNPs inherited from each of the par- : ! o
ents. Instead, genotypes representing the conflated data of There are different approaches for choosing, between the
the two parents are obtained. SNPs in genotypes are tradicandidate haplotypes, which ones are the most adequate to
tionally represented as AA, Aa or aa, where 'A stands for explain a genotype. This is usually done considering not
the original base and 'a’ for the mutant. only one genotype but rather a set of genotypes from indi-

If both parents have the same DNA base at a given siteviduals of the same population. With such data, it is pos-
(and so it is either AA or aa), it is called an homozygous sible to take into account the coalescent model [9]. This
site, and it is straightforward to infer the value of the hap- model states that there is a unique ancestor for all individu
lotypes at that site. However, for a heterozygous site (Aa) als of the same population. Hence, the individuals can be
each haplotype at that site has a different value: one haggrouped accordingly to the mutations they have been af-
value A and the other has value a. Hence, for a sequencdected by. Figure 1 illustrates the effect of mutations with
of SNPs representing a genotype witheterozygous posi- ~ a population, as well as the similarities between indivisua
tions, there ar@”~! possible pairs of haplotypes. The coalescent model has inspired statistical approaches

Without lack of generality, in what follows we will as- that are behind the most well-known tools, which are com-
sume that genotypes are represented by a sequence of elgonly used by biologists. An alternative approach is pure
ments that may assume values 0, 1 or 2. The values 0 and parsimony, for which the goal is to minimize the number of
represent homozygous sites whereas value 2 represents hetaplotypes required to explain a given set of genotypes [7].
erozygous sites. Haplotypes are therefore represented by &lthough not directly, this approach may also be related
sequence of values 0 and 1. with the coalescent model.

3. Haplotype Inference

Definition 1 (Haplotype Inference) Given a sét of n Definition 2 (Haplotype Inference by Pure Parsimony)
genotypes, each one represented by a string ofrsinwer Given a set of genotypes, a solution to the haplotype in-
the alphabef0,1,2}, the haplotype inference problem con- ference by pure parsimony (HIPP) problem requires the ex-
sists in finding a sekt of haplotypes, each one represented plaining set of haplotypes to have minimum size.



Example 2 (Haplotype Inference by Pure Parsimony) Con- @ 2
sider again the set of genotypgs = {g1,92,93,94} = 02— 102
{011,021,122,212}. A solution to the HIPP problem

requires only 4 haplotypes:H = {hi,ho,hs, ha} =

{011,001, 110,101}, whereg; = hy1 ® h1, g2 = h1 ® ho,

g3 = hg ® hy andgy = hy ® hs. 110

@
The HIPP problem is NP-hard [10].

4. Standard Techniques for Solving HIPP Figure 2. Clique-based lower bound

When solving the HIPP problem, there are quite a few 4-2. Computing Lower Bounds
techniques that may be applied during preprocessing. These ) ] )
techniques are inexpensive and empirical evidence shows 1Ne techniques for computing lower bounds rely on in-

that they can significantly improve the performance of the formation regarding incompatible genotypes: two geno-
HIPP solvers. types areéncompatibleif they are both homozygous at the

same site but with different values.

A lower bound can be computed from a maximal
clique [11]. Clearly, for two incompatible genotypesand
o _ g1, the haplotypes that explain must be distinct from the

A key approach for simplifying the haplotype inference papiotypes that explaig. Given the incompatibility rela-
problem instances consists in reducing the size of the in-4jon we can create an incompatibility graphwhere each
stance [2]. vertex is a genotype, and two vertexes are connected with

The set of genotypes given to HIPP solvers contains gn edge if they are incompatible. Suppddeas a clique of
genotypes from individuals that belong to the same popu-sjze x. Then the number of required haplotypes is at least
lation. Not surprisingly, these sets often contain repate 9. _ , whereo is the number of genotypes in the clique
genotypes, even though each of them refers to different in-ynich do not have heterozygous sites.
dividuals. Clearly, for each subset of repea_\ted genotypes  since this problem is NP-hard, we use the size of a
only one of them has to be kept. After a solution to the sim- clique in the incompatibility graph, computed using a sim-
plified problem ha§ peen found, it is straightforward to find ple greedy heuristic. The genotype with the highest number
a solution to the original problem. of incompatible genotypes is first selected. At each step,

Other techniques for reducing the size of a problem in- the genotype selected is one that is still incompatible with
stance entail removing sites of the genotypes. Consider a seg|| the already selected genotypes, and preference is given

of genotypes, each with the same number of sites. If thereto the haplotype with the highest number of incompatible
are two sites with exactly the same value for each genotype genotypes.

then one of them can be removed. Furthermore, the same . .
procedure can be applied to symmetric sites. Two sites are=x@mple 4 (Lower Bounds) Consider the following set of
said to be symmetric if for each genotype the two sites are9enotypes:{110,012,102}. The three genotypes are in-
either homozygous with value 0(1) and value 1(0) or het- compatible, which is represented in the incompatibility
erozygous (both with value 2). Again, after a solution to the 9raph in Figure 2, along with each genotype contribution

simplified problem has been found, it is straightforward to t© the lower bound. Hence, the number of required haplo-
find a solution to the original problem. types is at least 5 (twice the clique size less the number of

genotypes with no heterozygous sites).

Example 3 (Simplification Techniques) Consider the set | addition, the analysis of the structure of the genotypes
of genotypesj = {10111,10121,21022,10111, 12211}. allows the lower bound to be further increased, by identify-
By removing duplicated genotypes, the forth geno- ijng heterozygous sites which require at least one additiona
type is removed and the set becomgt = haplotype given a set of previously chosen genotypes [12].
{10111, 10121, 21022,12211}. This set is further reduced  The procedure starts from the clique-based lower bound and
by removing duplicated sites, which implies removing the grows the lower bound by searching for heterozygous sites
fifth site for being equal to the first Site, thus becoming among genotypes not yet considered for lower bounding
g" = {1011,1012,2102,1221}. Finally, we may remove  pyrposes. For each genotypenot in the clique, if the

the third site for bEing Symmetric to the second Site, thus genotype has a heterozygous site and all Compatib|e geno-
getting the simplified set”” = {101, 102,212, 121}. types have the same value at that site (either O or 1), then

4.1. Simplifying the Problem Instances



g; is guaranteed to require one additional haplotype to beunexplained genotypes. The algorithm terminates when all
explained. Hence the lower bound can be increased by 1. genotypes have been explained.

Another improvement to the lower bound consists in  Each time the set of candidate haplotypes becomes
identifying genotypes with triples of heterozygous sites, empty, and there are still more genotypes to explain, a
among the genotypes not used in the clique lower bound. new candidate haplotype is generated. The new haplo-
type is selected greedily as the haplotype which can explain
the largest number of genotypes not yet explained. Given
that the proposed organization allows selecting haplatype
which will not be used in the final solution, the last step of
the algorithm is to remove from the set of selected haplo-
types all haplotypes which are not used for explaining any
genotypes.

Example 5 (Improved Lower Bounds) Consider the follow-
ing set of genotype:200, 020, 002, 222}. Given that there
are no two incompatible genotypes, the clique-based lower
bound would give a lower bound of 2 corresponding to a
unique vertex (e.g. with the first genotype). The analysis of
the structure of the remaining genotypes requires one ad-
ditional haplotype for the second and the third genotype,
thus increasing the lower bound to 4 haplotypes. This lower . .
bound can be further improved by analyzing the fourth hap- 2. Solving HIPP with ILP
lotype 222. Any of the haplotypes already included in the
lower bound requirest leasttwo positions with value O. The first solutions for solving the HIPP problem were
But the pair of haplotypes explaining 222 will require one ILP models, solved with dedicated solvers [7, 8, 1, 2].
haplotype withat mostone position with value 0. Hence, These models are briefly reviewed below.
the lower bound can be increased by 1 to 5.
5.1. Exponential-Size ILP Models
4.3. Computing Upper Bounds
The original ILP models,TIP and RTIP, have linear

Clark's method is a well-known algorithm to solve the space complexity on the number of candidate haplotypes [7]
haplotype inference problem [3]. This method starts by and so both are exponential on the number of given geno-
Identlfylng genotypes with zero or one heterozygous Sites,types in the worst-case. For each genotypea” r can-
which have Only one pOSSible eXpIanation. Then, the didate pairs of hap|0types that can exp|mmre enumer-
method attempts to explain the remaining genotypes withated. For example, given genotype 02122, the candidate
at least one of the haplotypes already identified. This may pairs of haplotypes for explaining it are: (00100,01111),
eventually require the inference of new haplotypes which (01100,00111), (00110,01101) and (00101,01110). In the
will be added to the set of haplotypes. The key pOint to note genera| case, each genotype ha\[{;ﬁmterozygous sites is
is that there are many ways to extend the set of haplotypeSexp|ained byzkfl pairs of hap|0types_ Hence, the space
since for genotypes with more than one heterozygous sitecomplexity isO (2™ ) wherem is the number of sites, which
there are a few possible explanations. represents the maximum number of heterozygous sites per

Clark’s method may be used to compute an upper boundgenotype. A Boolean variablg , is associated with each
to the HIPP prOblem. HOWEVGr, this method is often too pairu of hap|0types that can exp|ain a given genotyge
greedy. An alternative algorithm (called Delayed Selettio jts value is 1 if this pair of haplotypes is used for explagin
(DS) [16]) addresses the main drawback of Clark’s method. g; or 0 otherwise. A cardinality constrair¥; . y; ., = 1, re-
The DS algorithm maintains two sets of haplotypes:se  quires that exactly one pair of haplotypes must be used for
lectedhaplotypes, which represent haplotypes which have explaining each genotype, among all pairs that can explain
been chosen to be included in the target solution, and thethe genotype. Each candidate haplotype is associated with
candidatehaplotypes, which represent haplotypes which a dedicated variable,, such that:, = 1 if the haplotype
can explain one or more genotypes not yet explained by ajs ysed The utilization of a specific pair of haplotypes for
pair of selected haplotypes. explaining a genotype (i.@; , = 1) implies the respective

The initial set of selected haplotypes corresponds to all ;;, variable,y; , — ., for each haplotype in the pair. The

haplotypes which are required to explain the genotypes withcost function consists in minimizing the number of haplo-
no more than one heterozygous sites, i.e. genotypes whichypes used,

are explained with either one or exactly two haplotypes. At minimizez 2 1)
each step, the DS algorithm chooses the candidate haplo-

type h. which can explain the largest number of genotypes. This model is referred to aBP [7]. A more efficient model
The chosen haplotype. is then used to identify additional is RTIP, which introduces one key simplification. If geno-
candidate haplotypes. Moreovgy,is added to the set of se-  typeg; can be explained by pair of haplotypés (), such
lected haplotypes, and all genotypes which can be explainedhat bothh, andh; cannot explain any other genotype, then
by a pair of selected haplotypes are removed from the set ofthe pair of haplotypesh(, h; ) needs not to be considered



for explainingg;. If all pairs are discarded for a genotype
gi, then it suffices to pick any pair for explainigg

5.2. Polynomial-Size ILP Models

One alternative to the exponential models is FodyIP
model, which is polynomial in the number of sitesand
population sizen [8, 1], with a number of constraints and
variables, respectively, i®(n?m) and©(n? + nm). The
PolylP model represents tRe: candidate haplotypes as se-
guences of Boolean variables, and then establishes condi
tions for the haplotypes to explain the corresponding geno-
types, such that the total number of distinct haplotypes is
minimized. Haplotypes are represented with Boolean vari-
ablesy; ;, 1 <i < 2nandl < j <m,i.e.m variables for
each of the2 n candidate haplotypes.

First, the PolylP model defines conditions on the sites,
withl <i<nandl <j <m:

y2i—1; = 0andyz; ; = 0, ?f gij = 0,
Y2i—1; = landyg;; = 1, !f gij = 1, (2
Yoim1j +y2ij =1 if gi =2

whereg;; € {0,1,2} denotes the possible values at each
site. Second, the PolylP model defines conditions for iden-
tifying different haplotypes, with < i,1 < 2nandl <

4 < m. Boolean variabld;; is defined such that;; = 1 if

h; # h;. The resulting conditions become:

Yij — Y < dig
Vi — Yi; < dig

3)

If at least one site of; andh, differs, thend; ; needs to be
assigned to value 1.

Third, the model introduces the; variables denoting
whetherh; is different from all previous haplotypefs;,
wherel < [ < 14, and defines conditions on these vari-
ables. Boolean variable; is defined such that, = 1
if h; is unique with respect to the previous haplotypes.
Thus, if h; is unique, thery /| d;; = i — 1; otherwise
Z;j dy; < i— 1. As aresult, the condition on variabig

becomes:
1—1

$i22—i+zdu
=1

(4)

Finally, the cost function consists in minimizing the numbe
of different haplotypes:

o 2n
minimize " x;
=1

(%)

A number of optimizations have been proposed to the ba-
sic PolylP model [1], with the purpose of pruning the search
space to be handled by the ILP solver. More recently, an

alternative polynomial-size ILP modetybridIP, was pro-
posed [2], and represents a hybrid between the RTIP and the
PolylP models. Nonetheless, no significant improvements
were achieved by HybridIP compared to PolylIP.

6. Solving HIPP with SAT

An alternative to solving HIPP with ILP is to use SAT.
Current SAT solvers are characterized by being extremely
fast at solving real world problem instances, mainly due
to the capacity of learning new constraints whenever the
search reaches a dead-end, as well as to very efficient data
structures. SAT-based approaches for the HIPP problem
were proposed recently in the SHIPs tool [11, 12], and al-
lowed remarkable performance improvements over the ex-
isting ILP-based models.

The SAT-based HIPP solution algorithm starts from a
lower boundib on the number of haplotypes necessary to
explain the set of genotypes; a trivial value foiis 1. The
algorithm searches for the smallest vatusuch that there
exists a set of haplotypes with- = ||, which explain all
genotypes irj. Observe that the value ofis guaranteed to
satisfylb < r < 2n, since a solution witl2 n haplotypes is
guaranteed to exist. For each value-afonsidered, a CNF
formulay” is created, and a SAT solver is invoked.

In what follows the same indexes will be used through-
out: ¢ ranges over the genotypes apdver the sites, with
1 <i<nandl < j < m, wheren is the number of
genotypes aneh is the number of sites. In additioncan-
didate haplotypes are considered, each wittsites, and
with 1 <r < 2n. An additional index: is associated with
haplotypes, such that< k < r. As aresulth; € {0,1}
denotes thg'" site of haplotypék.

For a given value of, the SHIPs model considersap-
lotypes and seeks to associate two haplotypes (possibly cor
responding to the same haplotype) with each genotype
wherel < ¢ < n. The Boolean variables used by SHIPs are
depicted in Figure 3. For each genotypehe model uses
selectorvariables for selecting which haplotypes are used
for explainingg;. Since the genotype is to be explained by
two haplotypes, the model uses two setandb, of r se-
lector variables, respectively; ands?, with k = 1,...,r.
Hence, genotypg; is explained by haplotypés,, andhy,
if s¢ , = 1ands} , = 1. Clearly,g; is also explained by
the same haplotypessf, ; = 1 andsz”. =1.

We can now derive the conditions for the SHIPs model:

e If asiteg;; is O (resp. 1), and if haplotypeis selected
for explaining genotypé, either by the: or theb rep-
resentative, then the value of haplotypat sitej must
be O (resp. 1). In CNF, if sitg;; is 0, then the model
includes(—s¢,; V—hy; ) A(—sh, V—hy;), and if siteg;; is
1, then the model includés:s¢; V h; ) A (=88, V hij),
in both cases fok =1,...,r.



cedures. One very successful approach is based on us-
ing Pseudo-Boolean Optimization (PBO) in a tool called
.............. o] g RPoly [5, 6].

The organization of RPoly is similar to the organization
of PolylP: two haplotypes are associated with each geno-
type, and conditions which capture when a different haplo-
type is used for explaining a given genotype are defined.
With no surprise, the generated PBO formulas are much
larger than the generated SAT formulas for a given HIPP
« Otherwise, one requires that the haplotypes explainingProblem instance. Whereas the PBO approach assumes the

the genotypey; have opposing values at site This worst case for which the number of required haplotypes is

is done by creating a variabte; € {0,1} such that twice the. number of genotypes, the SAT approach incre-
site j of the haplotype selected by tagepresentative ~ mentally increases the number of required haplotypes start

Figure 3. Boolean variables used in SHIPs

selector assumes the same valug;asand sitej of g from a lower bound.
the haplotype selected by theepresentative selector Despite the similarities, RPoly has a few key differences
assumes the complementary value.gf As a result with respect to PolylP. First, the set of variables is differ
the model requireghy,; V —t;; V —s;) A (=hij Vit V ent. Instead of associating a variable with each site of each
=88 A (hij V tij V ﬁszi) A (=hij V =t v ﬁszi) for haplotype, RPoly only associates variables with heterozy-
k =1,...,r. Observe thaby; equalst;; if s¢;, = 1, gous sites (since the value of haplotypes in the other sites i
andhy; equals—t;; if Sii —1. known beforehand, and so can be implicitly assumed). In
addition, each used variable describes the possible piairs o
Clearly, for each genotype, and fora or b, it is nec-  values for the corresponding heterozygous site.

essary that exactly one haplotype is used, and so exactly |n practice, the model associates two haplotypgsand
one selector variable can be assigned value 1. This can b%?, with each genotype;, and these haplotypes are required

captured with the following cardinality constraints: to explaing;. Moreover, the model associates a variable
. . t;; with each heterozygous site, j) (i.e. with g;; = 2).
ZSZi —1) A Zszz 1 ) Hence,t;; = 1.inqlicates thathy; = 1 andhl; = 0,
=1 =1 whereag, ; = 0 indicates thah§; = 0 andh},; = 1. The

value of ¢ andh? at homozygous sitegis implicitly as-

These cardinality constraints can be encoded in CNF in lin- ¢ a4

ear space, by introducing additional auxiliary variablEk [ This alternative definition of the variables associated

ﬁzl'dlln ((j:udr_rf?nt |m|plebmesntat|0n|s, auxiliary varlablr(]es aoe n | with the sites of genotypes reduces the number of variables
andled differently by SAT solvers. However, the specia by a factor of 2. In addition, the model only creates vari-

handling of these variables may be considered in the future,ables for heterozygous sites, and so the number of vari-

as it has been recently shovv_n that not _branc_hmg on these,ples associated with sites equals the total number of het-
variables, aslwell as not learning constraints with these va erozygous sites. As a result, the conditions provided by (2)
ables, leads in general to more robust performances [15]. are eliminated. It is interesting to observe that this defini

Besid(_es the b_asic quel O,Ut"nEd above, S'A‘T'b""se‘jtion of the variables associated with sites follows the SHIP
haplotyping requires the inclusion of a number of effec- model [11, 12]

tive techniques, including lower bounds and identifica-
tion of symmetries [11] (see Section 4.3). More recent
work addressed using local search algorithms for improving
lower bounds in SAT-based approaches for the HIPP prob-
lem [13]. Another sucessful approch used answer set pro-
gramming (ASP) [4]. Similarly to SHIPs, this ASP-based
approach uses a SAT solver as a search engine. SAT solverﬁO
have also been recently used for solving the HIPP problem
for non-diploid organisms [17].

Finally, another key modification is that the candidate
haplotypes for each genotype are related with candidate
haplotypes for other genotypes only if the two genotypes
arecompatible Clearly, incompatible genotypes are guar-
anteed not to be explained by the same haplotype.

The proposed modification implies the use of two addi-

nal sets of variables. Variable % , with p,q € {a, b}

and1l < iy < 47 < n, is 1 if thep haplotype of genotype

11 and theg haplotype of genotypg are different. Clearly,

) ) if genotypesi; andiy are incompatible, then the value of

7. Solving HIPP with PBO 2% is 1 for the four possible combinations pfandg.
Moreover, two genotypes andi, are related only with re-

The success of solving HIPP with SAT motivated consid- spect to siteg such that eithep;, or g;, is heterozygous
ering other Boolean-based decision and optimization pro-at that site. In addition, the model uses variables to denote



when one of the haplotypes associated with a given geno- gﬁfs #'”Sta{‘ggs mi“SNlFC’; ma)SNlF’YSS mi”GENgo maﬁENzo
type is different from all previous haplotypes. Heneg, su2 100 156 188 89 o
i ; i i su3 100 128 182 87 ad
with p € .{a,l?} andl < ¢ < n, is 1 if haplotypep of o ookb o " 5 : o
genotype is different from all previous haplotypes. Total 359 14 188 7 30
The conditions on the? variables are based on the con-
ditions for thex; variables for the PolylP model: Table 1. Classes of instances: number of SNPs and genotypes
N @i Aaly) = ul Y]
1<k<i 8. Practical Experience

The conditions on the} % variables are all of the fol-

lowing form, for all1 < j < m: This section illustrates the behaviour of the models de-

scribed above in a challenging set of 329 problem in-
(R < ) — 2P (8) stances. These instances were generated to evaluate phas-
e ing algorithms [14]. Table 1 characterizes the instances gi
Where the predicateB andS depend on the values of the INg the number of instances for each class, as well as the
Sites(il’j) and (iQ,j), and on which of the hap'otypes is minimum and maximum number of SNPB“OSNPS&”d
considered, i.e. eitheror b. Observe that < iy < i; < n, maxSNPpand genotypesiinGENsandmaxGEN}for the

1 < j < m,andp,q € {a,b}. Accordingly, theR and$ instances of each class.
predicates are defined as follows: A comparison of alternative approaches for solving the
HIPP problem is summarized in Figure 4. The HIPP
o If g;,; # 2,thenR = (g;,; < (¢ < a)) andS = solvers RTIP [7], PolylP [1], HybridIP [2], SHIPs [12] and
iy - RPoly [6] were consideretl All HIPP solvers were run on
a Intel Xeon 5160 server (3.0GHz, 1333Mhz, 4GB) running
o If giy; # 2,thenR = (gi,; < (p < a)) andS = Red Hat Enterprise Linux WS 4.
Liy - The run times for each solver were sorted and plotted,

the cutoff point being 1000 seconds. As the figure shows,
o Ifgij =2Ngi; =2 thenkR = ~(p < g)and  he |Lp approaches are significantly less efficient than the
S=(tiy j < tizg)- SAT/PBO approaches. The ILP approaches are able to solve
less than 30% of the problem instances. SHIPs is able to
solve around 81% of the problem instances, whereas RPoly
n is able to solve more than 94% of the problem instances.
minimizeZ(ug + u?) 9) This section also illustrates the effectiveness of the
i=1 bounding techniques described in Section 4. For this study,
only the instances that have been solved by at least one
The proposed simplifications to PolylP model [1] yield of the solvers have been taken into account. (This proce-
significant performance improvements, even when the twoqyre has eliminated 12 of the 329 instances). Otherwise it
models are solved with a PB solver [S]. More recently, & would not be possible to compare the values of the com-
number of improvements to RPoly were proposed [6]. Sim- puted bounds with the optimal solution.
ilarly to SHIPs, one of the proposed improvements is the ' Figure 5 provides a comparison between the lower bound
integration of lower bounds (see Section 4.3). and the HIPP solution. For around 30% of the instances, the
One useful feature of the RPoly tool is to be able to deal |ower bound computes the exact HIPP solution. Moreover,
with unspecified genotype sites. Genotyping procedures of-for the majority of the instances (more precisely 65%) the
ten leave a percentage of missing genotype positions, and sgfference between the lower bound and the HIPP solution
haplotype inference tools need to be able to deal with miss-js |ess than or equal to 5.
ing sites. RPoly can handle SNPs with unspecified values, The evaluation of the upper bound computation is sum-
inferring the values for the missing sites and still guaran- marized in Figure 6. For 16% of the instances, the up-
teeing a parsimonious solution. Two Boolean variables areper hound algorithm computes the exact HIPP solution. In
associated with each missing site to represent the four-poss gqdition, for 65% of the instances the difference between
ble values for the haplotypes: two homozygous values (one
for each a||e|e) and two heterozygous values (one for each LAvailable fromhttp://www.stats.ox.ac.ukimarchini/phaseoff.html

: ig 2The results were obtained with the tools provided by thearsthex-
haplotype phase). The constraints for unspecmed genOtypecept for the RTIP tool. This tool was provided by the authdr&olylP

sites are similar to the constraints for heterozygous geno-ang HybridiP. To our best knowledge, the author of RTIP hasmasle the
type sites. software available.

Finally, the cost function is given by:
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o 9. Research Directions

the computed upper bound and the HIPP solution is less or
equal to 5, and for 88% the difference is less than or equal Pure parsimony has been shown in the past to be an ac-
to 10. curate approach for haplotype inference [18]. Accuracy is

Finally, Figure 7 compares the lower and upper bound measured by the correct association between genotypes and
values obtained for each instanteFor this plot the whole explaining haplotypes. Although it is not possible in gen-
set of 329 instances has been evaluated. We may observeral to know the precise solution for the haplotype infegenc
that for more than 10% of the instances both values are exX-problem, there are very well-studied sets of genotypes for
actly the same. This means that computing lower and up-which the solution is known. This solution is often obtained
per bounds suffices to solve these problem instances, i.e. n@sing different generations from the same population.
search is required. In addition, the difference between the |n the future, additional criteria should be taken into ac-
upper bound and the lower bound is more than 10 for lesscount to further improve the accuracy of the HIPP algo-
than half of the instances, thus predictably not requiring rithms. This is motivated by the fact that in general, and
much time to be solved. for a single instance, the number of solutions satisfyirey th
pure parsimony criterion can be significantly large.
3These results are not as impressive as the ones reporteglariginal The reason for a "'?‘rge. number of SOlunan is that al-

though the HIPP criterion imposes a constraint on the num-

publications [12, 16] because here only a subset of very inatences is ’ -
being considered. ber of haplotypes in the solution, the same set of haplotypes
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