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Abstract 

 
This paper presents a grammar-induction based ap-

proach to partitioning a Web page into several small 
pages while each small page fits not only spatially but 
also logically for mobile browsing. Our approach pro-
ceeds in three steps: (1) using the grammar induction 
technique to generate a graph grammar, which formal-
izes design policies for presenting information in a clear 
and logic structure; (2) based on the graph grammar, a 
graph parser parses a Web page to recover the hierar-
chical logic structure underlying that Web page; (3) the 
extracted logic structure models the content organization 
in the Web page, and is used to  partition the Web page 
into several small pages for mobile displays. 

 

1. Introduction 
 

Wireless network and mobile devices make it possible 
to access information from anywhere at anytime. The 
ubiquitous access to Web information, however, raises a 
new challenge to the Web page presentation. Currently, 
most Web pages are designed for personal computers. 
Without adaptation, these pages on the small screen of 
mobile devices require users to frequently scroll the dis-
play window to find the content of interest, which makes 
mobile browsing frustrating and annoying. 

Markup languages, such as WML and XHTML Mo-
bile Profile (XHTML-MP), have been proposed to support 
the rendering on mobile devices. Though the number of 
Web pages in the form of WML or XHTML is growing 
fast, Web pages tailored to personal computers still domi-
nate the Internet. Furthermore, keeping two versions of 
presentations, one for desktops and the other for mobile 
devices, is time-consuming and error-prone in mainte-
nance. Therefore, it is desirable to automatically adapt a 
Web page from a desktop presentation to a mobile presen-
tation whenever needed. 

One challenging issue in the adaptive presentation is to 
discover closely related information in the original Web 
page, i.e. page segmentation. We can classify the ap-
proaches of page segmentation into two categories: web-
site-independent heuristic approaches and website-
dependent formal approaches.  

The heuristic approaches [6, 7, 12, 17, 18] analyze ei-
ther the HTML elements or the visual layout of a Web 
page to detect closely related contents. Those approaches 
assume that Web designers follow some common guide-
lines to present information. However, different designers 
can have different understandings on the same guideline, 
which can cause an inconsistency in the presentation 
across different Web sites. The inconsistency can reduce 
the accuracy of page segmentation. Furthermore, those 
heuristic approaches only provide coarse page segmenta-
tions which cannot recognize the semantic relation be-
tween different blocks. 

Zhang et al. [10, 21] proposed a formal approach for 
page segmentation based on graph grammars. Instead of 
requiring a common pattern of design and presentation 
across different Web sites, this approach only assumes a 
consistent pattern applied to Web pages within a Web 
site. Based on this assumption, design patterns are formal-
ized as a graph grammar, which specifies the information 
organization in a Web page. The graph grammar can be 
designed to derive a fine-grained segmentation, such as 
recognizing the title, publishing time and content in an 
article. Based on the graph grammar, a graph parser 
parses a Web page and produces a hierarchical structure, 
which indicates the content organization. However, it is 
time-consuming to design a graph grammar, which limits 
its application in practice.  

In summary, the heuristic approaches suffer from in-
consistent designs and presentations and only provide a 
coarse-grained segmentation, while the grammar-based 
formal approaches are not scalable to different Web sites. 
This paper presents a novel approach, which combines the 
grammar-based approach with grammar induction. From 
a Web page, the grammar induction can automatically 
derive a graph grammar, which formalizes the underlying 
information organization. In other words, the grammar 
induction process can replace human experts in designing 
a graph grammar used to guide the page segmentation 
process.   

The rest of the paper is organized as the following. 
Section 2 gives the overview of our approach. Section 3 
introduces the basic concepts of graph grammar and 
grammar induction. Section 4 illustrates how to construct 
and refine a graph grammar through grammar induction. 



 

 

Section 5 goes through the process of page segmentation 
and gives an optimized parser. Section 6 discusses an 
adaptive layout. Section 7 compares related work, fol-
lowed by the conclusion in Section 8. 

 

2. Overview 

Figure 1 gives an overview of our approach, which 
mainly includes three parts: grammar design, page seg-
mentation and layout adaptation. In order to keep a con-
sistent layout across a Web site, Web designers in general 
follow some guidelines to organize and present informa-
tion. Such guidelines can be formalized as a graph gram-
mar. Instead of designing the graph grammar from 
scratch, the grammar induction process automatically 
generates from sample Web pages a graph grammar, 
which is verified and elaborated by human experts. This 
automation significantly reduces the effort of designing a 
graph grammar. Based on the graph grammar, a graph 
parser parses a Web page to derive the hierarchical or-
ganization of contents underlying a Web page. Finally, 
according to a specific layout policy, such as adapting the 
original Web page to a one-column presentation, the lay-
out module produces an adaptive layout suitable for mo-
bile display and browsing.  

Based on the derived graph grammar, a graph gram-
mar parser is used to segment a Web page. Therefore, the 
time complexity of the grammar parser is critical to the 
overall performance. However, even for the most restricted 
classes of graph grammars, the membership problem is 
NP-hard [15]. The high time complexity is mainly caused 
by backtracking during the parsing process. We design an 
optimized grammar parser, which automatically applies 
grammatical rules in a certain order based on the hierar-
chical nature of information organization. The optimized 
parser avoids backtracking and runs in polynomial time.    

 

3. Preliminary 
 

3.1. Spatial graph grammar 
 
A graph grammar includes a set of grammatical rules 

(i.e. productions). Each production has two graphs, called 
left graph and right graph, and models a local informa-
tion organization. For example, a museum is displaying 
its collections online. The presentation of each collection 

includes a picture and a textual description, enclosed in a 
table. Such an information organization can be formalized 
as a production in Figure 2(a).  

Applying a production to a graph (i.e. a host graph) is 
referred to as a graph transformation, which can be classi-
fied as an L-application (in a forward direction) or R-
application (in a reverse direction). In particular, an R-
application replaces the right graph in a production with 
the left graph in a host graph. In the page segmentation, 
we are using R-applications (i.e. the parsing process) to 
analyze the information organization.  

The spatial graph grammar (SGG) [10] introduces spa-
tial notions to the abstract syntax. In the SGG, nodes and 
edges, together with spatial relations, construct the pre-
condition of a production application. The distinct spatial 
capability in the SGG allows the designer to formalize 
design patterns from both the DOM structure and the vis-
ual layout. For example, in the above example, the fact 
that the picture should be placed on top of the textual de-
scription can be defined by a spatial specification in an 
SGG production in Figure 2(a). Our current implementa-
tion of grammar induction does not support spatial induc-
tion, and designers need to manually revise the induced 
productions to add spatial configurations.  

Due to the multi-dimensional nature of graphs, some 
mechanism is needed to establish relationships between 
the surrounding of a redex (i.e. a sub-graph in the host 
graph which is isomorphic to the right graph in an R-
application) and its replacing graph in the host graph [14]. 
Inherited from the Reserved Graph Grammar [19], the 
SGG addresses the embedding issue by the marking tech-
nique. In the SGG, a node has a two-level structure: the 
node itself and the small rectangles embedded in the node 
called vertices. In order to identify any graph elements 
that should be reserved during the transformation process, 
we mark each isomorphic vertex in a production graph by 
prefixing its label with an integer unique in the node. For 
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example, in Figure 2(a), vertex T in node Table is marked. 
Figure 2(b) gives a host graph, in which a redex is high-
lighted within a dotted rectangle. Since vertex T in node 
Table in the redex has its isomorphic vertex marked in the 
right graph, it is preserved during the graph transforma-
tion as shown in Figure 2(c). Then, the preserved vertex 
facilitates to embed the newly created node Collection to 
the host graph in Figure 2(d). 

 

3.2. Grammar Induction 
 
The graph grammar induction system used is a deriva-

tive of the SUBDUE Grammar Learner [2]. The SUBDUE 
induction process is based primarily on the idea of graph 
compression. Graphs can be compressed in a similar 
manner to file compression. Like popular file compression 
techniques, the compression process looks for common 
substructures within the data, i.e., the graph, and com-
presses the data by recording the substructure and replac-
ing all instances by a marker. As substructures are cap-
tured, this process models a simple context-free grammar 
induction process. Like string-based data compression, 
graph-based data compression relies on a substructure 
matching technique to find instances within the data.  
However, unlike string-based data compression, for exact 
sub-graph matching, graph-based data compression re-
quires an exponential runtime graph matching algorithm. 
Since sub-graph size is generally constrained to less than 
half of the originating graph and Web page graphs are 
relatively small, the runtime for the graph matching proc-
ess has limited impact on the grammar induction process. 

 

4. Grammar Construction 
 

This section discusses the grammar construction based 
on grammar induction by going through a case study. 

 

4.1. A Case Study 
 

Web designers often have a design pattern to organize 
and present information when creating a Web page. Such 
a pattern helps keeping a consistent layout across the 
whole Web site.  Consider an example that the metropoli-
tan museum of arts (http://www.metmuseum.org/) has 
thousands of artworks, exhibited online using a common 
design pattern. As illustrated in Figure 3(a), an artwork is 
presented in a top-bottom style. The top part presents a 
picture of the artwork at the left side and a brief descrip-
tion at the right side. At the bottom, the left side provides 
a list of links and the right side presents the detailed in-
formation. The corresponding DOM tree is presented in 
Figure 3(b), in which the top part is separated from the 
bottom one by using the Div elements. The following sub-
section describes the grammar induction process based on 
the above example. 

 

 

4.2. Deriving a Graph Grammar  
 

In order to capture domain specific aspects, it is desir-
able to construct a graph grammar targeting a specific 
Web site. The grammar construction starts from an induc-
tion process, which transforms the sample Web pages into 
their respective graph equivalents, i.e. essentially the 
DOM structures for the Web pages, as shown in Figure 
3(b). In a Web page’s graphical representation, nodes 
represent HTML tags (such as TABLE and P) and infor-
mation blocks (such as Text and Image); undirected edges 
denote DOM structural relations.  

These DOM graphs are input as a set to the induction 
processor, which produces a graph grammar. As the 
DOM structures are trees, the induction process generally 
produces optimal results. The resulting graph grammar is 
comparable to a DTD specification for XML documents 
based on the given DOM structures. This graph grammar 
can then be reviewed by a human designer for correctness 
and revision, if necessary, to enhance the grammar’s 
specification. The graph grammar is then used to specify 
the way of structuring Web pages and derive the semantic 
structure of a given Web page by parsing its DOM struc-
ture. 

As an example, the tree shown in Figure 3(b) is given 
to the induction processor to produce the graph grammar 
in Figure 4. As the induction process is destructive on the 
given graph set, the production rules induced for the 
grammar are applied to compress the graph at the end of 
each induction. The first induced rule, Figure4 (a), was 
found to have the highest cost substructure. The second 
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induced rule, Figure 4(b), is a recursive rule for the first 
rule. This second rule demonstrated how several instances 
of a substructure could overlap on a single common node. 
The induction processor found that instances of the sub-
structure overlapped on a single node—a “Div”  node—
and created the recursive rule to handle the overlap. In 
practice, the parser would apply the first rule to generate 
the “SUB_1”  node and then apply the second rule as 
needed to process other overlapping instances. The next 
four production rules provide similar induction solutions. 
Figures 4 (c) and (d) respectively demonstrate the next 
highest common substructure and its recursion. Figures 4 
(e) and (f) respectively demonstrate the last common sub-
structure and its recursion. These rules also show the in-
dependence between the discovered substructures - the 
latter rules do not include nodes generated in prior rules. 
The last induced production rule, Figure 4(g), is the 
“ root”  production rule. This rule ends the induction proc-
ess by using the remaining graph as a final substructure. 
For the given graph, this “ root”  rule finally shows the 
dependence on the previous rules. 

 

4.3. Revision and Refinement  
 

The induction process looks at a graph in terms of how 
to best compress it based on a cost calculation, such as 
minimum description length or size. However, the induc-
tion processor lacks the knowledge of applications. There-
fore, designers need to elaborate the induced productions.  

Since the induction process cannot automatically iden-
tify marked vertices, human designers have to define 
marked vertices. For example, the induced Production 1 in 
Figure 4 needs to be refined to the production in Figure 5 
by manually defining marked vertices. In addition to 

marked vertices, designers can also manually add spatial 
configurations to the induced productions.    

The designer can also elaborate the induced produc-
tions by introducing domain semantics to the productions. 
For example, the root production in Figure 4 does not 
divide the top part from the bottom part. So the designer 
can divide the root production to three individual produc-
tions as in Figure 6. Productions 7 and 8 define the top 
part and the bottom part respectively, and Production 9 
combines the top and bottom parts together.   

 

5. Page Segmentation  
 

5.1. Deriving the content organization  
 

Productions 1 to 6 in Figure 4 and Productions 7 to 9 
in Figure 6 construct a graph grammar, which specifies 
the derivation of semantic structures for the template in 
Figure 3. In a graph grammar, we classify nodes into 
HTML nodes and information nodes. An HTML element 
is considered to be an HTML node and any other node is 
considered to be an information node. An information 
node can be further classified as terminal information 
nodes and non-terminal ones. Each production defines a 
local composition of information. More specifically, the 
left graph in a production includes one and only one non-
terminal information node (others are contextual nodes), 
and the right graph contains several (non-)terminal infor-
mation nodes and HTML nodes. Then, the non-terminal 
node in the left graph is made up of the (non-)terminal 
nodes in the right graph. For example, Figure 7(a) gives a 
host graph, where a redex matching the right graph of 
Production 1 is enclosed in a dotted rectangle. The appli-
cation of Production 1 indicates that object SUB_1 con-
sists of two single information objects, i.e. Text. Figure 
7(b) is obtained after applying Production 1 to the host 
graph. Based on Production 1, we derive an information 
organization as shown in Figure 7(c).  

A recursive production, in which the left graph and the 
right graph include the same type of non-terminal infor-
mation nodes, is used to recognize the information block, 

Figure 4: An induced graph grammar 

SUB_1 Div 

(a) Production Rule 1  

:= Div Label Text 

Text 

(b) Production Rule 2 

SUB_1 := Div Label Text 

Text 

SUB_1 

(c) Production Rule 3  

SUB_2 Div := A Text 

(d) Production Rule 4 

SUB_2 := A Text SUB_2 

(e) Production Rule 5  

SUB_3 td := Text 

(f) Production Rule 6 

SUB_3 := Text SUB_3 

(g) Root Production 

Root HTM Body Form Div IMG Image 

Table tr SUB_3 

SUB_1 SUB_2 

:= 

Figure 5. A refinement of Production 1 in Figure 4 

 := SUB_1 1:T 2:B  Div 1:T 2:B  Div T B  Label T B  Text T B 

 Text T B 

Figure 6. Fine-grained productions 

(a) Production rule 7 

 := Top 1:T B  Div 1:T B  IMG T B  Image T B 

 Table T B  tr T B  SUB_3 T B 

 := Bottom 1:T B  SUB_2 T B  SUB_1 1:T B 

(b) Production rule 8 

 := Root T B  Top T B 

 Bottom T B 

 HTML T B  Body T B  Form T B 

(c) Production rule 9 



 

 

which is repeatedly presented with the same pattern. For 
example, Production 4 in Figure 4 is a recursive produc-
tion, used to derive the structure SUB_2, which consists 
of a series of sentences. In the structure SUB_2, Produc-
tion 3 is first applied to recognize the first sentence and 
then Production 4 is repeatedly applied to identify the 
remaining sentences. Correspondingly, Productions 3 and 
4 can derive a hierarchical structure of information or-
ganization as presented in Figure 8(a). Since the SUB_2 
node at the right graph in Production 4 functions as a con-
text node (though it is not a real context node), which 
connects the previous production application with the next 
one, we can simplify the structure in Figure 8(a) to Figure 
8(b) by excluding context-like nodes. Then, Figure 8(b) 
can be further simplified to Figure 8(c) by removing in-
termediate nodes.  

Corresponding to the example page in Figure 3, a 
complete hierarchical structure of information organiza-
tion detected through a parsing process is presented in 
Figure 9, in which the leaf nodes are atomic information 
blocks and intermediate ones are composite information 
blocks. 

 
 

5.2. An optimized parsing algorithm 
 

In our grammar-based approach, the time complexity 
of the grammar parser is critical to the overall perform-
ance. Based on the hierarchical nature of information or-
ganization, we can enforce on productions an application 
order, which can eliminate the backtracking in the parsing 
process. More specifically, a composite information block 
at a high level is made up of composite/atomic informa-
tion blocks at a low level. Correspondingly, the parser 
needs to proceed in a bottom-top fashion, which recog-
nizes low-level information blocks before high-level in-
formation blocks. In other words, if information block B2 
transitively or directly includes information block B1, Pro-
duction X defined to recognize B1 must be applied before 
Production Y defined to recognize B2. This observation 
motivates an optimized parsing algorithm, which auto-
matically sequences productions and then applies produc-
tions to Web pages in a certain order. The optimized pars-
ing algorithm is running in polynomial time. 

Given a production p� (L,R), in which L represents the 
left graph and R indicates the right graph, we define the 
following node sets: 

• LG(p): the set of nodes in the left graph; 
• RG(p): the set of nodes in the right graph; 
• L/RG(p): the set of non-context nodes in the left 

graph; and 
• R/LG(p): the set of non-context nodes in the right 

graph. 
Given a node set N, Type(N) denotes the set of node la-
bels. For example, given Production 1 in Figure 4, 
Type(LG(P1))={SUB_1} and Type(RG(P1))={Div, Label, 
Text}. 

If the application of Production Pj depends on the ob-
ject Oi, which is created by the application of Production 
Pi, Pi must be applied before Pj. In other words, Pj de-
pends on Pi. Such a dependent relation can be formalized 
in Definition 1.   
Definition 1: Production Pj is dependent on Production Pi 
if Type(L/RG(Pi))

�
Type(RG(Pj))� Ø. 

Based on Definition 1, a recursive production depends 
on itself, i.e., self-dependent. For example, given Produc-
tion 2 in Figure 4, Type(L/RG(P2))={ SUB_1}  and 
Type(RG(P2))={ SUB_1, Div, Label, Text} . Therefore, 
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Type(L/RG(P2)) � Type(RG(P2))� Ø, which indicates that 
P2 is self-dependent. The application of a self-dependent 
production may trigger another round of applications of 
itself. Semantically, a self-dependent production discloses 
a nested composition. 

Based on the dependent relations among productions, 
we generate a dependency graph through the following 
steps: 

• Each production is represented as a node; and 
• if Production Pj is dependent on Production Pi, a 

directed edge is inserted to connect from Pi to Pj. 
A dependency 

graph gives a 
global view on 
dependent rela-
tions among pro-
ductions. In a de-
pendency graph, a 
node with an in-
coming edge indi-
cates that the ap-
plication of its 

corresponding production depends on the application of 
other productions. On the other hand, a node with an out-
going edge implies that the application of its correspond-
ing production may trigger the application of another pro-
duction. Figure 10 illustrates a dependency graph for the 
graph grammar in Figures 4 and 6. 

Based on the de-
pendency graph, we 
can assign each pro-
duction an applica-
tion priority. In a 
dependency graph, a 
production without 
any incoming edge 

has the highest application priority and the application 
priority of productions is decreased along the directed 
edges. In order to assign each production a unique appli-
cation priority, the dependency graph must be cycle-free. 
However, context elements and self-dependent produc-
tions can introduce cycles to a dependency graph. For 
example, two productions in Figure 11 depend on each 
other, which can form a cycle. The following steps are 
used to remove cycles and generate a cycle-free depend-
ency graph: 

1. Detect all the cycles in the dependency graph; 
2. All of the productions involved in a cycle form a 

cycle set; 
3. If two cycle sets have common productions, merge 

those two sets; 
4. Repeat Step 3 until all sets are disjoint; 
5. Each disjoint set indicates a super-node; 
6. Redirect the incoming and outgoing edges of a 

production in a cycle set to its corresponding su-

per-node, and then delete the production from the 
set; 

7. Repeat Step 6 until all productions in cycle sets are 
deleted. 

In a cycle-free dependency graph, a single node de-
notes a production and a super-node presents a set of pro-
ductions. Based on the cycle-free dependency graph, Fig-
ure 12 presents an algorithm to calculate the application 
priority of each production. A production at level 1 has the 
highest application priority. All productions in a super-
node have the same application priority.   

Figure 13 gives a parsing algorithm for a set of ordered 
productions. The parsing process initially applies produc-
tion(s) in the level 1 (i.e. the highest application priority), 
and then proceeds with productions in the next level after 
no production in the current level is applicable to the host 
graph. If multiple productions are at the same level, we 
arbitrarily select a production, since productions in the 
same level are neither conflicted under the confluent con-
dition nor dependent on each other. Informally, the conflu-
ence condition indicates that different sequences of pro-
duction applications can achieve the same result. Many 
real world applications can be specified through confluent 
grammars, evidenced by over 1000 pages of specifications 
using PROGRES [8]. 
Theorem 1: Under the confluent condition, the parsing 
time is bounded at O(MN2), where M represents the num-
ber of productions, and N denotes the number of nodes in 
the host graph being parsed. 
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Parsing (HostGraph G) 
{  
      currentLevel �  1; 
      while (currentLevel �  MaxLevel) {  
          for (any Production p in the currentLevel) {  
                 for (any node n ∈ G) {  
                        if p is a single production 
                             TreeComparision(G, n, p); }  
 
                        if p is a super-production{  
                             for (any production q in the p) 
                                  TreeComparision(G, n, p); }  
                 }  
          }  
          currentLevel ++; 
      }  
}  
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{  
   Level �  1; 
   While (G is not empty) {  
      for any (super-)node without an incoming edge 
         the level of its corresponding production(s) �  Level; 
      Remove all nodes without incoming edge and their outgoing edges; 
      Level �  Level+1; 
   }  
}  



 

 

Proof: With a production p, we need to traverse the host 
graph and apply each node to p. If node a in the host 
graph matches node b in the right graph of p, finding in 
the host graph a sub-tree, which matches the right graph, 
needs O(N) in the worst case. Therefore, it needs O(N2) to 
apply each node to a production. With a total of M produc-
tions, the time is O(MN2). 
 

6. An Adaptive Layout  
 

Most heuristic approaches take a straightforward par-
tial screen dump from the source page as an adaptive lay-
out for mobile devices. Instead, our approach can perform 
a fine-grained page segmentation, which allows designers 
to flexibly re-organize and re-present the information in an 
adaptive layout. Related information, which may not even 
be displayed in proximity in the original Web page, can be 
grouped together on a small screen. Based on the fine-
grained segmentation, this paper presents a multi-page 
layout while we can easily extend our approach to other 
styles of adaptive layout, such as a zoom-based presenta-
tion [3] or a narrow-column layout [13].   

The multi-page presentation separates each detected 
topic into a small page, called a sub page. In general, each 
sub page presents semantically related information, suit-
able for browsing on a small screen with the minimal 
scrolling. A complicated web page in general includes a 
large number of different topics. Therefore, it is necessary 
to provide an overview, e.g. a table of contents [1], in a 
multi-page presentation. A table of contents summarizes 
different topics in the original Web page and provides 
quick access to a specific topic. For example, correspond-
ing to the hierarchical structure in Figure 9, Figure 14(a) 
presents a table of contents. After a user clicks on a spe-
cific link in the table of contents, the user is directed to a 
specific subpage for a detailed reading as in Figure 14(b).  

The splitting procedure traverses the derived hierarchi-
cal structure from top to bottom, and determines which 
nodes are placed in the same sub page based on the size of 
each node: 

1. If the node is an intermediate node and it is larger 
than the screen size, the information enclosed in 

this node is too large to be displayed in a single 
sub page. This node should be further divided. 

2. If the node is an intermediate node and it has a 
similar size as the screen, the information enclosed 
in the node is displayed in a single subpage.  

3. If an intermediate node is smaller than the screen 
size, traverse its siblings and combine this node 
with its siblings to construct a single subpage until 
the last sibling is reached or the combined size is 
larger than the screen.  

4. If a leaf node is reached, the information enclosed 
in the node is displayed in a single subpage.  

 

7. Related work 
 

In our approach, graph grammar induction is an impor-
tant step for the adaptation of multimedia documents. The 
induction process allows for a wide variety of web do-
mains to be easily adapted and maintained, and signifi-
cantly reduces the setup costs over a manual system. Ad-
ditionally, the induction process adds value to the process 
by providing structural insight into the domain. Important 
structures that may be overlooked in a manual process are 
captured from the sample set. Our approach is the only 
known approach that applies grammar induction to gener-
ate adaptive layouts 

CSS [16] associated with HTML provides flexible 
markups for multiple alternative layouts. Constraint-based 
approaches [4, 11] are capable of dynamically generating 
multimedia presentations, which are adaptive to the 
change of media contents, display environment and user 
intention. Zhang et al. [21] proposed a grammatical ap-
proach for adaptive layouts by specifying a high level 
structure and spatial relations among information objects 
through a graph grammar. Those approaches provide 
powerful authoring tools to specify adaptive layouts when 
the viewing condition is dynamically changed. However, 
redesigning existing pages would be time-consuming. 
Instead of providing an authoring tool to support adaptive 
presentations, our approach adapts the existing Web 
pages for mobile devices. 

Many heuristic approaches [5, 6, 9, 12] use HTML 
structural tags (like Table) to partition a Web page. 
Kaasinen et al. [9] proposed an HTML/WML conversion 
proxy server, which converts HTML-based Web contents 
to WML by mapping HTML structures to WML specifi-
cations. Buyukkokten et al. [5, 6] divided a Web page into 
several semantic textual units with the help of HTML 
tags, e.g. the Tag P may serve as the boundary between 
two semantic textual units. This method, however, only 
focused on texts without supporting graphics. The Smart-
View [12] uses a thumbnail to provide a visual overview 
of a page and partitions a page into logic units according 
to table tags. Opera [13] provides a small-screen render-
ing technology, which stacks Web contents vertically to 

Figure 14. A sub-page layout 
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avoid horizontal scrolling. This method may falsely sepa-
rate closely related contents or combine unrelated informa-
tion together. Yang et al. [17] evaluated the visual simi-
larities of HTML contents, detected the pattern of visual 
similarity, and generated a hierarchical representation of 
the HTML page. Chen et al. [7] first divided a Web page 
into several high level information blocks according to 
their sizes and locations, and then identified explicit and 
implicit separators inside each high level block.  

Visual language formalisms have been used to analyze 
the information organization underlying a Web page, such 
as Web queries [20] and adaptive layouts [10]. However, 
they do not use grammar induction techniques technique 
and thus require human expertise to manually design 
grammar rules.  

 

8. Conclusion 
 

Unlike heuristic approaches, our approach is built on a 
formal basis of the Spatial Graph Grammar formalism. 
The derivation of an information organization underlying 
a Web page is essentially a parsing process, which incre-
mentally exploits the hierarchical information composition 
from bottom to top. Our approach uses the grammar in-
duction technique to automate the grammar construction. 
The automation process significantly reduces the manual 
effort of designing a graph grammar, which increases the 
applicability of our approach. Based on the hierarchical 
nature of information organization, we have designed an 
optimized parsing algorithm, which can reach polynomial 
time under the confluent condition.  Based on the derived 
hierarchical structure, we can re-organize and present 
related information on a small screen. In future work, we 
will consider providing alternative presentations for dy-
namic contents in Web pages.  
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