

Adaptive Mobile Interfaces Through Grammar Induction

Jun Kong
North Dakota State University

jun.kong@ndsu.edu

Keven L. Ates Kang Zhang
University of Texas at Dallas

{atescomp, kzhang}@utdallas.edu

Yan Gu
North Dakota State University

yan.gu@ndsu.edu

Abstract

This paper presents a grammar-induction based ap-

proach to partitioning a Web page into several small
pages while each small page fits not only spatially but
also logically for mobile browsing. Our approach pro-
ceeds in three steps: (1) using the grammar induction
technique to generate a graph grammar, which formal-
izes design policies for presenting information in a clear
and logic structure; (2) based on the graph grammar, a
graph parser parses a Web page to recover the hierar-
chical logic structure underlying that Web page; (3) the
extracted logic structure models the content organization
in the Web page, and is used to partition the Web page
into several small pages for mobile displays.

1. Introduction

Wireless network and mobile devices make it possible
to access information from anywhere at anytime. The
ubiquitous access to Web information, however, raises a
new challenge to the Web page presentation. Currently,
most Web pages are designed for personal computers.
Without adaptation, these pages on the small screen of
mobile devices require users to frequently scroll the dis-
play window to find the content of interest, which makes
mobile browsing frustrating and annoying.

Markup languages, such as WML and XHTML Mo-
bile Profile (XHTML-MP), have been proposed to support
the rendering on mobile devices. Though the number of
Web pages in the form of WML or XHTML is growing
fast, Web pages tailored to personal computers still domi-
nate the Internet. Furthermore, keeping two versions of
presentations, one for desktops and the other for mobile
devices, is time-consuming and error-prone in mainte-
nance. Therefore, it is desirable to automatically adapt a
Web page from a desktop presentation to a mobile presen-
tation whenever needed.

One challenging issue in the adaptive presentation is to
discover closely related information in the original Web
page, i.e. page segmentation. We can classify the ap-
proaches of page segmentation into two categories: web-
site-independent heuristic approaches and website-
dependent formal approaches.

The heuristic approaches [6, 7, 12, 17, 18] analyze ei-
ther the HTML elements or the visual layout of a Web
page to detect closely related contents. Those approaches
assume that Web designers follow some common guide-
lines to present information. However, different designers
can have different understandings on the same guideline,
which can cause an inconsistency in the presentation
across different Web sites. The inconsistency can reduce
the accuracy of page segmentation. Furthermore, those
heuristic approaches only provide coarse page segmenta-
tions which cannot recognize the semantic relation be-
tween different blocks.

Zhang et al. [10, 21] proposed a formal approach for
page segmentation based on graph grammars. Instead of
requiring a common pattern of design and presentation
across different Web sites, this approach only assumes a
consistent pattern applied to Web pages within a Web
site. Based on this assumption, design patterns are formal-
ized as a graph grammar, which specifies the information
organization in a Web page. The graph grammar can be
designed to derive a fine-grained segmentation, such as
recognizing the title, publishing time and content in an
article. Based on the graph grammar, a graph parser
parses a Web page and produces a hierarchical structure,
which indicates the content organization. However, it is
time-consuming to design a graph grammar, which limits
its application in practice.

In summary, the heuristic approaches suffer from in-
consistent designs and presentations and only provide a
coarse-grained segmentation, while the grammar-based
formal approaches are not scalable to different Web sites.
This paper presents a novel approach, which combines the
grammar-based approach with grammar induction. From
a Web page, the grammar induction can automatically
derive a graph grammar, which formalizes the underlying
information organization. In other words, the grammar
induction process can replace human experts in designing
a graph grammar used to guide the page segmentation
process.

The rest of the paper is organized as the following.
Section 2 gives the overview of our approach. Section 3
introduces the basic concepts of graph grammar and
grammar induction. Section 4 illustrates how to construct
and refine a graph grammar through grammar induction.

Section 5 goes through the process of page segmentation
and gives an optimized parser. Section 6 discusses an
adaptive layout. Section 7 compares related work, fol-
lowed by the conclusion in Section 8.

2. Overview

Figure 1 gives an overview of our approach, which
mainly includes three parts: grammar design, page seg-
mentation and layout adaptation. In order to keep a con-
sistent layout across a Web site, Web designers in general
follow some guidelines to organize and present informa-
tion. Such guidelines can be formalized as a graph gram-
mar. Instead of designing the graph grammar from
scratch, the grammar induction process automatically
generates from sample Web pages a graph grammar,
which is verified and elaborated by human experts. This
automation significantly reduces the effort of designing a
graph grammar. Based on the graph grammar, a graph
parser parses a Web page to derive the hierarchical or-
ganization of contents underlying a Web page. Finally,
according to a specific layout policy, such as adapting the
original Web page to a one-column presentation, the lay-
out module produces an adaptive layout suitable for mo-
bile display and browsing.

Based on the derived graph grammar, a graph gram-
mar parser is used to segment a Web page. Therefore, the
time complexity of the grammar parser is critical to the
overall performance. However, even for the most restricted
classes of graph grammars, the membership problem is
NP-hard [15]. The high time complexity is mainly caused
by backtracking during the parsing process. We design an
optimized grammar parser, which automatically applies
grammatical rules in a certain order based on the hierar-
chical nature of information organization. The optimized
parser avoids backtracking and runs in polynomial time.

3. Preliminary

3.1. Spatial graph grammar

A graph grammar includes a set of grammatical rules

(i.e. productions). Each production has two graphs, called
left graph and right graph, and models a local informa-
tion organization. For example, a museum is displaying
its collections online. The presentation of each collection

includes a picture and a textual description, enclosed in a
table. Such an information organization can be formalized
as a production in Figure 2(a).

Applying a production to a graph (i.e. a host graph) is
referred to as a graph transformation, which can be classi-
fied as an L-application (in a forward direction) or R-
application (in a reverse direction). In particular, an R-
application replaces the right graph in a production with
the left graph in a host graph. In the page segmentation,
we are using R-applications (i.e. the parsing process) to
analyze the information organization.

The spatial graph grammar (SGG) [10] introduces spa-
tial notions to the abstract syntax. In the SGG, nodes and
edges, together with spatial relations, construct the pre-
condition of a production application. The distinct spatial
capability in the SGG allows the designer to formalize
design patterns from both the DOM structure and the vis-
ual layout. For example, in the above example, the fact
that the picture should be placed on top of the textual de-
scription can be defined by a spatial specification in an
SGG production in Figure 2(a). Our current implementa-
tion of grammar induction does not support spatial induc-
tion, and designers need to manually revise the induced
productions to add spatial configurations.

Due to the multi-dimensional nature of graphs, some
mechanism is needed to establish relationships between
the surrounding of a redex (i.e. a sub-graph in the host
graph which is isomorphic to the right graph in an R-
application) and its replacing graph in the host graph [14].
Inherited from the Reserved Graph Grammar [19], the
SGG addresses the embedding issue by the marking tech-
nique. In the SGG, a node has a two-level structure: the
node itself and the small rectangles embedded in the node
called vertices. In order to identify any graph elements
that should be reserved during the transformation process,
we mark each isomorphic vertex in a production graph by
prefixing its label with an integer unique in the node. For

Layout
Module

Layout
style

A Graph
Grammar

Grammar
induction

Sample
Web
pages

Human
experts

An optimized
parser

An HTML
Web Page

……Page segmen-
tation

Adaptive
Layouts

Grammar
design

Page segmenta-
tion

Layout
adaptation

Figure 1: Overview of an adaptive presentation

Figure 2: The Spatial Graph Grammar Formalism

Table

TR

TD

Picture

Body

Text

(b) A host graph

top_disjoint (Picture, Text)

spatial specifi-
cation

(a) An SGG production

Collection

(c) Removing
nodes from the

host graph

……

(d) Redirecting
through marked

vertices

……

P

T

P

T

P

T

T

T

P

T
Body

P

T

T

Body
P

T

T

:=

Picture T

P
TR
T

P
Table

1:T

Text

Collection
1:T

Left graph Right
graph

P
TR
T

T

example, in Figure 2(a), vertex T in node Table is marked.
Figure 2(b) gives a host graph, in which a redex is high-
lighted within a dotted rectangle. Since vertex T in node
Table in the redex has its isomorphic vertex marked in the
right graph, it is preserved during the graph transforma-
tion as shown in Figure 2(c). Then, the preserved vertex
facilitates to embed the newly created node Collection to
the host graph in Figure 2(d).

3.2. Grammar Induction

The graph grammar induction system used is a deriva-

tive of the SUBDUE Grammar Learner [2]. The SUBDUE
induction process is based primarily on the idea of graph
compression. Graphs can be compressed in a similar
manner to file compression. Like popular file compression
techniques, the compression process looks for common
substructures within the data, i.e., the graph, and com-
presses the data by recording the substructure and replac-
ing all instances by a marker. As substructures are cap-
tured, this process models a simple context-free grammar
induction process. Like string-based data compression,
graph-based data compression relies on a substructure
matching technique to find instances within the data.
However, unlike string-based data compression, for exact
sub-graph matching, graph-based data compression re-
quires an exponential runtime graph matching algorithm.
Since sub-graph size is generally constrained to less than
half of the originating graph and Web page graphs are
relatively small, the runtime for the graph matching proc-
ess has limited impact on the grammar induction process.

4. Grammar Construction

This section discusses the grammar construction based
on grammar induction by going through a case study.

4.1. A Case Study

Web designers often have a design pattern to organize
and present information when creating a Web page. Such
a pattern helps keeping a consistent layout across the
whole Web site. Consider an example that the metropoli-
tan museum of arts (http://www.metmuseum.org/) has
thousands of artworks, exhibited online using a common
design pattern. As illustrated in Figure 3(a), an artwork is
presented in a top-bottom style. The top part presents a
picture of the artwork at the left side and a brief descrip-
tion at the right side. At the bottom, the left side provides
a list of links and the right side presents the detailed in-
formation. The corresponding DOM tree is presented in
Figure 3(b), in which the top part is separated from the
bottom one by using the Div elements. The following sub-
section describes the grammar induction process based on
the above example.

4.2. Deriving a Graph Grammar

In order to capture domain specific aspects, it is desir-
able to construct a graph grammar targeting a specific
Web site. The grammar construction starts from an induc-
tion process, which transforms the sample Web pages into
their respective graph equivalents, i.e. essentially the
DOM structures for the Web pages, as shown in Figure
3(b). In a Web page’s graphical representation, nodes
represent HTML tags (such as TABLE and P) and infor-
mation blocks (such as Text and Image); undirected edges
denote DOM structural relations.

These DOM graphs are input as a set to the induction
processor, which produces a graph grammar. As the
DOM structures are trees, the induction process generally
produces optimal results. The resulting graph grammar is
comparable to a DTD specification for XML documents
based on the given DOM structures. This graph grammar
can then be reviewed by a human designer for correctness
and revision, if necessary, to enhance the grammar’s
specification. The graph grammar is then used to specify
the way of structuring Web pages and derive the semantic
structure of a given Web page by parsing its DOM struc-
ture.

As an example, the tree shown in Figure 3(b) is given
to the induction processor to produce the graph grammar
in Figure 4. As the induction process is destructive on the
given graph set, the production rules induced for the
grammar are applied to compress the graph at the end of
each induction. The first induced rule, Figure4 (a), was
found to have the highest cost substructure. The second

(a) A sample page

(b) The DOM structure Figure 3: A Case study

HTML
Body

Form
Div

IMG
Image

Table
tr

td
Text

Text Div

Div
A

Text
A

Text
A

Text
Div

Label
Text

Text
Div

Label
Text

Text
Div

Label
Text

Text

…

SUB_3

SUB_1

SUB_2

induced rule, Figure 4(b), is a recursive rule for the first
rule. This second rule demonstrated how several instances
of a substructure could overlap on a single common node.
The induction processor found that instances of the sub-
structure overlapped on a single node—a “Div” node—
and created the recursive rule to handle the overlap. In
practice, the parser would apply the first rule to generate
the “SUB_1” node and then apply the second rule as
needed to process other overlapping instances. The next
four production rules provide similar induction solutions.
Figures 4 (c) and (d) respectively demonstrate the next
highest common substructure and its recursion. Figures 4
(e) and (f) respectively demonstrate the last common sub-
structure and its recursion. These rules also show the in-
dependence between the discovered substructures - the
latter rules do not include nodes generated in prior rules.
The last induced production rule, Figure 4(g), is the
“ root” production rule. This rule ends the induction proc-
ess by using the remaining graph as a final substructure.
For the given graph, this “ root” rule finally shows the
dependence on the previous rules.

4.3. Revision and Refinement

The induction process looks at a graph in terms of how
to best compress it based on a cost calculation, such as
minimum description length or size. However, the induc-
tion processor lacks the knowledge of applications. There-
fore, designers need to elaborate the induced productions.

Since the induction process cannot automatically iden-
tify marked vertices, human designers have to define
marked vertices. For example, the induced Production 1 in
Figure 4 needs to be refined to the production in Figure 5
by manually defining marked vertices. In addition to

marked vertices, designers can also manually add spatial
configurations to the induced productions.

The designer can also elaborate the induced produc-
tions by introducing domain semantics to the productions.
For example, the root production in Figure 4 does not
divide the top part from the bottom part. So the designer
can divide the root production to three individual produc-
tions as in Figure 6. Productions 7 and 8 define the top
part and the bottom part respectively, and Production 9
combines the top and bottom parts together.

5. Page Segmentation

5.1. Deriving the content organization

Productions 1 to 6 in Figure 4 and Productions 7 to 9
in Figure 6 construct a graph grammar, which specifies
the derivation of semantic structures for the template in
Figure 3. In a graph grammar, we classify nodes into
HTML nodes and information nodes. An HTML element
is considered to be an HTML node and any other node is
considered to be an information node. An information
node can be further classified as terminal information
nodes and non-terminal ones. Each production defines a
local composition of information. More specifically, the
left graph in a production includes one and only one non-
terminal information node (others are contextual nodes),
and the right graph contains several (non-)terminal infor-
mation nodes and HTML nodes. Then, the non-terminal
node in the left graph is made up of the (non-)terminal
nodes in the right graph. For example, Figure 7(a) gives a
host graph, where a redex matching the right graph of
Production 1 is enclosed in a dotted rectangle. The appli-
cation of Production 1 indicates that object SUB_1 con-
sists of two single information objects, i.e. Text. Figure
7(b) is obtained after applying Production 1 to the host
graph. Based on Production 1, we derive an information
organization as shown in Figure 7(c).

A recursive production, in which the left graph and the
right graph include the same type of non-terminal infor-
mation nodes, is used to recognize the information block,

Figure 4: An induced graph grammar

SUB_1 Div

(a) Production Rule 1

:= Div Label Text

Text

(b) Production Rule 2

SUB_1 := Div Label Text

Text

SUB_1

(c) Production Rule 3

SUB_2 Div := A Text

(d) Production Rule 4

SUB_2 := A Text SUB_2

(e) Production Rule 5

SUB_3 td := Text

(f) Production Rule 6

SUB_3 := Text SUB_3

(g) Root Production

Root HTM Body Form Div IMG Image

Table tr SUB_3

SUB_1 SUB_2

:=

Figure 5. A refinement of Production 1 in Figure 4

 := SUB_1 1:T 2:B Div 1:T 2:B Div T B Label T B Text T B

 Text T B

Figure 6. Fine-grained productions

(a) Production rule 7

 := Top 1:T B Div 1:T B IMG T B Image T B

 Table T B tr T B SUB_3 T B

 := Bottom 1:T B SUB_2 T B SUB_1 1:T B

(b) Production rule 8

 := Root T B Top T B

 Bottom T B

 HTML T B Body T B Form T B

(c) Production rule 9

which is repeatedly presented with the same pattern. For
example, Production 4 in Figure 4 is a recursive produc-
tion, used to derive the structure SUB_2, which consists
of a series of sentences. In the structure SUB_2, Produc-
tion 3 is first applied to recognize the first sentence and
then Production 4 is repeatedly applied to identify the
remaining sentences. Correspondingly, Productions 3 and
4 can derive a hierarchical structure of information or-
ganization as presented in Figure 8(a). Since the SUB_2
node at the right graph in Production 4 functions as a con-
text node (though it is not a real context node), which
connects the previous production application with the next
one, we can simplify the structure in Figure 8(a) to Figure
8(b) by excluding context-like nodes. Then, Figure 8(b)
can be further simplified to Figure 8(c) by removing in-
termediate nodes.

Corresponding to the example page in Figure 3, a
complete hierarchical structure of information organiza-
tion detected through a parsing process is presented in
Figure 9, in which the leaf nodes are atomic information
blocks and intermediate ones are composite information
blocks.

5.2. An optimized parsing algorithm

In our grammar-based approach, the time complexity
of the grammar parser is critical to the overall perform-
ance. Based on the hierarchical nature of information or-
ganization, we can enforce on productions an application
order, which can eliminate the backtracking in the parsing
process. More specifically, a composite information block
at a high level is made up of composite/atomic informa-
tion blocks at a low level. Correspondingly, the parser
needs to proceed in a bottom-top fashion, which recog-
nizes low-level information blocks before high-level in-
formation blocks. In other words, if information block B2
transitively or directly includes information block B1, Pro-
duction X defined to recognize B1 must be applied before
Production Y defined to recognize B2. This observation
motivates an optimized parsing algorithm, which auto-
matically sequences productions and then applies produc-
tions to Web pages in a certain order. The optimized pars-
ing algorithm is running in polynomial time.

Given a production p� (L,R), in which L represents the
left graph and R indicates the right graph, we define the
following node sets:

• LG(p): the set of nodes in the left graph;
• RG(p): the set of nodes in the right graph;
• L/RG(p): the set of non-context nodes in the left

graph; and
• R/LG(p): the set of non-context nodes in the right

graph.
Given a node set N, Type(N) denotes the set of node la-
bels. For example, given Production 1 in Figure 4,
Type(LG(P1))={SUB_1} and Type(RG(P1))={Div, Label,
Text}.

If the application of Production Pj depends on the ob-
ject Oi, which is created by the application of Production
Pi, Pi must be applied before Pj. In other words, Pj de-
pends on Pi. Such a dependent relation can be formalized
in Definition 1.
Definition 1: Production Pj is dependent on Production Pi
if Type(L/RG(Pi))

�
Type(RG(Pj))� Ø.

Based on Definition 1, a recursive production depends
on itself, i.e., self-dependent. For example, given Produc-
tion 2 in Figure 4, Type(L/RG(P2))={ SUB_1} and
Type(RG(P2))={ SUB_1, Div, Label, Text} . Therefore,

…
…

Div

…
…

Div
Label

Text
Text

Div
Label

Text
Text

Div
Label

Text
Text

…

(a) The host graph
(b) The graph after application of

Production 1

Figure 7. A semantic derivation

…
…

SUB_1

…
…

Div
Label

Text
Text

Div
Label

Text
Text

…

…
(c) An information

organization

SUB_1

Text Text

Figure 8. Recursive applications

(a)

SUB_2

Text

SUB_2

Text

… (b)

SUB_2

Text

SUB_2

…

SUB_2

SUB_2

Text
Text

…

(c)

Text

SUB_2

…

Text …

Root

Top Bottom

Image SUB_3

Text Text …

SUB_1 SUB_2

SUB_1 SUB_1

Text Text Text Text

… Text Text …

Figure 9. The information organization

Type(L/RG(P2)) � Type(RG(P2))� Ø, which indicates that
P2 is self-dependent. The application of a self-dependent
production may trigger another round of applications of
itself. Semantically, a self-dependent production discloses
a nested composition.

Based on the dependent relations among productions,
we generate a dependency graph through the following
steps:

• Each production is represented as a node; and
• if Production Pj is dependent on Production Pi, a

directed edge is inserted to connect from Pi to Pj.
A dependency

graph gives a
global view on
dependent rela-
tions among pro-
ductions. In a de-
pendency graph, a
node with an in-
coming edge indi-
cates that the ap-
plication of its

corresponding production depends on the application of
other productions. On the other hand, a node with an out-
going edge implies that the application of its correspond-
ing production may trigger the application of another pro-
duction. Figure 10 illustrates a dependency graph for the
graph grammar in Figures 4 and 6.

Based on the de-
pendency graph, we
can assign each pro-
duction an applica-
tion priority. In a
dependency graph, a
production without
any incoming edge

has the highest application priority and the application
priority of productions is decreased along the directed
edges. In order to assign each production a unique appli-
cation priority, the dependency graph must be cycle-free.
However, context elements and self-dependent produc-
tions can introduce cycles to a dependency graph. For
example, two productions in Figure 11 depend on each
other, which can form a cycle. The following steps are
used to remove cycles and generate a cycle-free depend-
ency graph:

1. Detect all the cycles in the dependency graph;
2. All of the productions involved in a cycle form a

cycle set;
3. If two cycle sets have common productions, merge

those two sets;
4. Repeat Step 3 until all sets are disjoint;
5. Each disjoint set indicates a super-node;
6. Redirect the incoming and outgoing edges of a

production in a cycle set to its corresponding su-

per-node, and then delete the production from the
set;

7. Repeat Step 6 until all productions in cycle sets are
deleted.

In a cycle-free dependency graph, a single node de-
notes a production and a super-node presents a set of pro-
ductions. Based on the cycle-free dependency graph, Fig-
ure 12 presents an algorithm to calculate the application
priority of each production. A production at level 1 has the
highest application priority. All productions in a super-
node have the same application priority.

Figure 13 gives a parsing algorithm for a set of ordered
productions. The parsing process initially applies produc-
tion(s) in the level 1 (i.e. the highest application priority),
and then proceeds with productions in the next level after
no production in the current level is applicable to the host
graph. If multiple productions are at the same level, we
arbitrarily select a production, since productions in the
same level are neither conflicted under the confluent con-
dition nor dependent on each other. Informally, the conflu-
ence condition indicates that different sequences of pro-
duction applications can achieve the same result. Many
real world applications can be specified through confluent
grammars, evidenced by over 1000 pages of specifications
using PROGRES [8].
Theorem 1: Under the confluent condition, the parsing
time is bounded at O(MN2), where M represents the num-
ber of productions, and N denotes the number of nodes in
the host graph being parsed.

:= D

C
X

C

Y

<Pi>

:= C

C

D

<Pj>

Figure 11. A cycle

Figure 13. A parsing algorithm

Parsing (HostGraph G)
{
 currentLevel � 1;
 while (currentLevel � MaxLevel) {
 for (any Production p in the currentLevel) {
 for (any node n ∈ G) {
 if p is a single production
 TreeComparision(G, n, p); }

 if p is a super-production{
 for (any production q in the p)
 TreeComparision(G, n, p); }
 }
 }
 currentLevel ++;
 }
}

Figure 10. A dependency graph

P1 P2

P3 P4

P5 P6 P7

P8

P9

Figure 12. Calculating the application priority of
each production

AssignLevels(Graph G)
{
 Level � 1;
 While (G is not empty) {
 for any (super-)node without an incoming edge
 the level of its corresponding production(s) � Level;
 Remove all nodes without incoming edge and their outgoing edges;
 Level � Level+1;
 }
}

Proof: With a production p, we need to traverse the host
graph and apply each node to p. If node a in the host
graph matches node b in the right graph of p, finding in
the host graph a sub-tree, which matches the right graph,
needs O(N) in the worst case. Therefore, it needs O(N2) to
apply each node to a production. With a total of M produc-
tions, the time is O(MN2).

6. An Adaptive Layout

Most heuristic approaches take a straightforward par-
tial screen dump from the source page as an adaptive lay-
out for mobile devices. Instead, our approach can perform
a fine-grained page segmentation, which allows designers
to flexibly re-organize and re-present the information in an
adaptive layout. Related information, which may not even
be displayed in proximity in the original Web page, can be
grouped together on a small screen. Based on the fine-
grained segmentation, this paper presents a multi-page
layout while we can easily extend our approach to other
styles of adaptive layout, such as a zoom-based presenta-
tion [3] or a narrow-column layout [13].

The multi-page presentation separates each detected
topic into a small page, called a sub page. In general, each
sub page presents semantically related information, suit-
able for browsing on a small screen with the minimal
scrolling. A complicated web page in general includes a
large number of different topics. Therefore, it is necessary
to provide an overview, e.g. a table of contents [1], in a
multi-page presentation. A table of contents summarizes
different topics in the original Web page and provides
quick access to a specific topic. For example, correspond-
ing to the hierarchical structure in Figure 9, Figure 14(a)
presents a table of contents. After a user clicks on a spe-
cific link in the table of contents, the user is directed to a
specific subpage for a detailed reading as in Figure 14(b).

The splitting procedure traverses the derived hierarchi-
cal structure from top to bottom, and determines which
nodes are placed in the same sub page based on the size of
each node:

1. If the node is an intermediate node and it is larger
than the screen size, the information enclosed in

this node is too large to be displayed in a single
sub page. This node should be further divided.

2. If the node is an intermediate node and it has a
similar size as the screen, the information enclosed
in the node is displayed in a single subpage.

3. If an intermediate node is smaller than the screen
size, traverse its siblings and combine this node
with its siblings to construct a single subpage until
the last sibling is reached or the combined size is
larger than the screen.

4. If a leaf node is reached, the information enclosed
in the node is displayed in a single subpage.

7. Related work

In our approach, graph grammar induction is an impor-
tant step for the adaptation of multimedia documents. The
induction process allows for a wide variety of web do-
mains to be easily adapted and maintained, and signifi-
cantly reduces the setup costs over a manual system. Ad-
ditionally, the induction process adds value to the process
by providing structural insight into the domain. Important
structures that may be overlooked in a manual process are
captured from the sample set. Our approach is the only
known approach that applies grammar induction to gener-
ate adaptive layouts

CSS [16] associated with HTML provides flexible
markups for multiple alternative layouts. Constraint-based
approaches [4, 11] are capable of dynamically generating
multimedia presentations, which are adaptive to the
change of media contents, display environment and user
intention. Zhang et al. [21] proposed a grammatical ap-
proach for adaptive layouts by specifying a high level
structure and spatial relations among information objects
through a graph grammar. Those approaches provide
powerful authoring tools to specify adaptive layouts when
the viewing condition is dynamically changed. However,
redesigning existing pages would be time-consuming.
Instead of providing an authoring tool to support adaptive
presentations, our approach adapts the existing Web
pages for mobile devices.

Many heuristic approaches [5, 6, 9, 12] use HTML
structural tags (like Table) to partition a Web page.
Kaasinen et al. [9] proposed an HTML/WML conversion
proxy server, which converts HTML-based Web contents
to WML by mapping HTML structures to WML specifi-
cations. Buyukkokten et al. [5, 6] divided a Web page into
several semantic textual units with the help of HTML
tags, e.g. the Tag P may serve as the boundary between
two semantic textual units. This method, however, only
focused on texts without supporting graphics. The Smart-
View [12] uses a thumbnail to provide a visual overview
of a page and partitions a page into logic units according
to table tags. Opera [13] provides a small-screen render-
ing technology, which stacks Web contents vertically to

Figure 14. A sub-page layout

(a) (b)

avoid horizontal scrolling. This method may falsely sepa-
rate closely related contents or combine unrelated informa-
tion together. Yang et al. [17] evaluated the visual simi-
larities of HTML contents, detected the pattern of visual
similarity, and generated a hierarchical representation of
the HTML page. Chen et al. [7] first divided a Web page
into several high level information blocks according to
their sizes and locations, and then identified explicit and
implicit separators inside each high level block.

Visual language formalisms have been used to analyze
the information organization underlying a Web page, such
as Web queries [20] and adaptive layouts [10]. However,
they do not use grammar induction techniques technique
and thus require human expertise to manually design
grammar rules.

8. Conclusion

Unlike heuristic approaches, our approach is built on a
formal basis of the Spatial Graph Grammar formalism.
The derivation of an information organization underlying
a Web page is essentially a parsing process, which incre-
mentally exploits the hierarchical information composition
from bottom to top. Our approach uses the grammar in-
duction technique to automate the grammar construction.
The automation process significantly reduces the manual
effort of designing a graph grammar, which increases the
applicability of our approach. Based on the hierarchical
nature of information organization, we have designed an
optimized parsing algorithm, which can reach polynomial
time under the confluent condition. Based on the derived
hierarchical structure, we can re-organize and present
related information on a small screen. In future work, we
will consider providing alternative presentations for dy-
namic contents in Web pages.

9. References

[1] H. Ahmadi and J. Kong, "Efficient Web Browsing on
Small Screens", Proc. ACM AVI'2008, 2008.

[2] K. Ates, J. Kukluk, L. Holder, D. Cook, and K. Zhang,
“Graph Grammar Inference on Structural Data for Visual
Programming” , Proc. IEEE ICTAI’06, 2006.

[3] P. Baudisch, X. Xie, C. Wang, W. Ma, “Collapse-to-
Zoom: Viewing Web Pages on Small Screen Devices by
Interactively Removing Irrelevant Content” , Proc. UIST, 91-
94, 2004.

[4] A. Borning, R. K. Lin, and K. Marriott, “Constraint-
based Document Layout for the Web” , Multimedia systems,
8, pp.177-189, 2000.

[5] O. Buyukkokten, H. Garcia-Molina, A. Paepcke, “Seeing
the Whole in Parts: Text Summarization for Web Browsing
on Handheld Devices” , Proc. WWW’01, 2001.

[6] O. Buyukkokten, H. Garcia-Molina, and A. Paepcke,
“Accordion Summarization for End-Game Browsing on

PDAs and Cellular Phones” , Proc. ACM SIGCHI’ , pp.213-
220, 2001.

[7] Y. Chen, W. Y. Ma, and H. J. Zhang, “Detecting Web
Page Structure for Adaptive Viewing on Small Form Factor
Devices” , Proc. WWW’03, pp. 225-233, 2003.

[8] T. Fischer, J. Niere, L. Torunski, and A. Zündorf, “Story
Diagrams: A New Graph Rewrite Language Based on the
Unified Modeling Language and Java” , Proc. Theory and
Application to Graph Transformations, LNCS 1764,
pp. 296-309, 1998.

[9] E. Kaasinen, M. Aaltonene, J. Kolari, S. Melakoski, and
T. Laakko, “Two Approaches to Bringing Internet Services
to WAP Devices” , The International Journal of Computer
and Telecommunications Networking, 33, pp. 231 – 246,
2000.

[10] J. Kong, K. Zhang, and X.Q. Zeng, “Spatial Graph
Grammar for Graphic User Interfaces” , ACM Transactions
on Human-Computer Interaction, Vol.13(2), pp. 268-307,
2006.

[11] K. Marriott, B. Meyer, and L. Tardif, “Fast and Effi-
cient Client-side Adaptability for SVG”, Proc. WWW’02, pp.
496-507, 2002.

[12] N. Milic-Frayling, and R. Sommerer, “SmartView:
Flexible Viewing of Web Page Contents” , Proc. WWW’ ,
2002.

[13] Opera Software ASA,
http://www.opera.com/products/mobile/smallscreen, 2008.

[14] J. Rekers and A. Schürr, “Defining and Parsing Visual
Languages with Layered Graph Grammars” , Journal of
Visual Languages and Computing, 8(1), pp.27-55, 1997.

[15] G. Rozenberg and E. Welzl, “Boundary NLC Graph
Grammars - Basic Definitions, Normal Forms, and Com-
plexity” , Information and Control 69, pp.136-167, 1986.

[16] W3C, Cascading Style Sheets (CSS), 2005.

[17] Y. D. Yang and H. J. Zhang, “HTML Page Analysis
Based on Visual Cues” , Proc. 6th International Conference
on Document Analysis and Recognition, pp. 859-864, 2001.

[18] S. P. Yu, D. Cai, J. R. Wen, and W. Y. Ma, “ Improving
Pseudo-Relevance Feedback in Web Information Retrieval
Using Web Page Segmentation” , Proc. WWW’03, pp.11-18,
2003.

[19] D. Q. Zhang, K. Zhang, and J. Cao, “A Context-
Sensitive Graph Grammar Formalism for the Specification
of Visual Languages” , The Computer Journal, (44)3,
pp.187-200, 2001.

[20] Z. Zhang, B. He, and K. C.-C. Chang, “Understanding
Web Query Interfaces: Best-Effort Parsing with Hidden
Syntax” , Proc. 2004 ACM SIGMOD, pp.107-118, 2004.

[21] K. Zhang, J. Kong, M.K. Qiu, and G.L. Song,
“Multimedia Layout Adaptation Through Grammatical
Specifications” , Multimedia Systems, 10(3), pp.245-260,
2005.

