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Abstract

Boosting has been shown to improve the performance of
classifiers in many situations, including when data is im-
balanced. There are, however, two possible implementa-
tions of boosting, and it is unclear which should be used.
Boosting by reweighting is typically used, but can only be
applied to base learners which are designed to handle ex-
ample weights. On the other hand, boosting by resampling
can be applied to any base learner. In this work, we empir-
ically evaluate the differences between these two boosting
implementations using imbalanced training data. Using 10
boosting algorithms, 4 learners and 15 datasets, we find
that boosting by resampling performs as well as, or signif-
icantly better than, boosting by reweighting (which is of-
ten the default boosting implementation). We therefore con-
clude that in general, boosting by resampling is preferred
over boosting by weighting.

1 Introduction

Boosting is a meta learning technique designed to im-
prove classification performance. A weak learner’s perfor-
mance can be “boosted” by creating an ensemble of weak
hypotheses and combining them to create a final, stronger,
hypothesis. AdaBoost, a popular boosting algorithm pro-
posed by Freund and Schapire [10], has been shown to
improve the performance of any classifier with classifica-
tion performance better than random guessing. AdaBoost
iteratively builds an ensemble of classifiers, adjusting the
weights of each example based on the performance of the
iteration’s classifier. Examples that were misclassified have
their weights increased, while those that were correctly
classified have their weights decreased. Therefore, in the
next iteration the classifier is more likely to correctly clas-
sify examples that were misclassified during the current it-
eration. Once the stopping criteria is met, the classifiers
built during each iteration participate in a weighted vote to

classify unlabeled examples.

The weight changes that occur during boosting can be
implemented in two ways: reweighting or resampling.
When performing boosting by reweighting, the numerical
weights for each example are passed directly to the base
learner. The base learner uses the weighting information
when forming its hypothesis. However, not all learning al-
gorithms are designed to handle example weight informa-
tion [10]. Therefore, the alternative approach, boosting by
resampling, may be more appropriate. Rather than pass ex-
ample weights to the learner, the training data can be resam-
pled to reflect these weights. A new training dataset with
the same size as the original is created by sampling (with
replacement) from the original training dataset where the
probability that each example is selected is proportional to
its assigned weight. A model built on this resampled train-
ing data will therefore place more emphasis on examples
that were assigned higher weights because they appear more
frequently in the training data.

In this work, we examine the performance of boosting in
the context of mining imbalanced data. Data is imbalanced
if the examples of one class greatly outnumber the examples
of the other class(es). Domains such as medical diagnosis,
fraud detection, network security and software quality pre-
diction often suffer from imbalanced data. When data is
imbalanced, many traditional learners tend to favor classify-
ing examples as belonging to the majority (overrepresented)
class, frequently misclassifying examples of the minority
(underrepresented) class. In most cases, however, it is the
minority class that carries a higher cost of misclassification.
Therefore, some modifications are required to force learn-
ers to focus more on examples of the minority, or positive,
class. Boosting, while not specifically designed to address
the issue of class imbalance, has performed very well in
this regard [17]. Since examples of the minority class are
likely to be misclassified, boosting will focus on correctly
classifying these examples in later iterations. The result is
a model that is better able to distinguish between minority
and majority class examples than if the base learner was
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used alone.
We investigate the performance of AdaBoost along with

nine variations of AdaBoost when learning from imbal-
anced data. Eight of these variations [9, 18, 19, 11] mod-
ify the way AdaBoost adjusts example weights, treating ex-
amples of the minority (positive) and majority (negative)
classes differently. The final variation, SMOTEBoost [5],
combines data sampling and boosting. It is not the goal of
this work to compare the performance of each boosting al-
gorithm. That is, we are not interested in determining which
algorithm performs best in the context of class imbalance.
Instead, we investigate which implementation (reweighting
or resampling) is better for each boosting algorithm. While
identifying the best performing boosting algorithm is not
our goal, the reader may draw conclusions on this matter
based on the results presented in this work.

This work presents a comprehensive empirical study of
resampling and reweighting. A very preliminary work on
this topic was performed by Botta [3], which compared the
performance of AdaBoost by resampling and reweighting
using WWIL (an extension of his Weak Inductive Learner,
WIL). Our work includes a considerably more rigorous set
of experiments using 4 commonly used learners, 10 boost-
ing algorithms and 15 imbalanced datasets from various ap-
plication domains. All results are tested for statistical sig-
nificance, the results of which are presented and used when
drawing conclusions. Our results show that, in general,
boosting by resampling tends to perform as well or bet-
ter than boosting by reweighting. This result is important,
because boosting by reweighting tends to be the “default”
technique.

2 Boosting Algorithms

With the exception of AdaBoost, each of these boost-
ing algorithms was implemented using Java by our research
group within the Weka [22] machine learning tool. Ada-
Boost is available in Weka using both the reweighting and
resampling options. In this section, we present a brief de-
scription of the ten boosting algorithms used in this study:
AdaBoost, AdaCost, CSB0, CSB1, CSB2, AdaC1, AdaC2,
AdaC3, RareBoost and SMOTEBoost. For complete details
on these algorithms, please refer to the referenced works.

AdaBoost [10] serves as the basis for all of the other
boosting algorithms explored in this work. Proposed by
Freund and Schapire, AdaBoost is the most well-known and
frequently studied boosting algorithm. This study uses Ada-
Boost.M1, one of several AdaBoost variants. AdaBoost it-
eratively builds an ensemble of weak hypotheses. During
each iteration, a weak hypothesis is formed. The error as-
sociated with the hypothesis is calculated and the weight of
each example is adjusted such that misclassified examples
have their weights increased while correctly classified ex-

amples have their weights decreased. In doing so, examples
that were misclassified by the current iteration’s hypothe-
sis are more likely to be correctly classified by the next it-
eration’s hypothesis. The hypotheses from each iteration
participate in a weighted vote to classify unlabeled exam-
ples. In this study, we use ten iterations for all boosting
algorithms. Preliminary experiments showed no significant
improvement when additional iterations were performed.

AdaCost [9] provides a cost-sensitive alternative to Ada-
Boost. The key difference between AdaCost and AdaBoost
is the formula for updating example weights. While Ada-
Boost treats examples of each class similarly, AdaCost dif-
ferentiates between examples of the positive and negative
classes. Further, it incorporates a user-specified cost ratio
into its “misclassification cost adjustment function.” In do-
ing so, AdaCost can place emphasis on positive class ex-
amples based on input from the user. Information about the
cost ratios used for this study are provided in Section 3.4.

We also examine six other variations of AdaBoost.
CSB0, CSB1 and CSB2 [19] are three cost-sensitive vari-
ations of AdaBoost. Like AdaCost, these techniques use
modified formulas for re-weighting examples in order to
minimize the number of expensive errors, and therefore
total cost. Although these algorithms are presented in
the context of cost-sensitive learning, there is a close
relationship between cost-sensitive learning and learning
from imbalanced training data. Cost sensitive learners
can be constructed by re-balancing data [8], and class im-
balance can be overcome by cost-sensitive learning [20].
AdaC1, AdaC2 and AdaC3 [18] also modify AdaBoost’s
re-weighting formula. These three techniques are presented
as cost sensitive boosting algorithms for imbalanced data.
AdaCost, CSB0, CSB1, CSB2, AdaC1, AdaC2 and AdaC3
all require a user-specified cost ratio

A somewhat different boosting algorithm is
RareBoost [11] (denoted RareBoost-1 in the refer-
enced work), another variation of AdaBoost. RareBoost
was designed specifically to address the problem of class
imbalance. Unlike cost-sensitive boosting techniques,
RareBoost does not take cost into account when reweight-
ing examples. Instead, the updated weights are based on
how well an iteration’s generated hypothesis distinguishes
between false positives and true positives as well as false
negatives and true negatives. RareBoost does not require a
user-specified cost ratio.

Finally, SMOTEBoost [5] combines data sampling
with boosting. The data sampling aspect of SMOTE-
Boost uses the Synthetic Minority Oversampling Technique
(SMOTE) [4]. SMOTE is an oversampling technique that
creates new minority class examples by finding the k near-
est neighbors [1] (we use the recommended value, k = 5)
of each minority example and extrapolating between these
examples. The number of examples created depends on a
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user specified level of oversampling. SMOTEBoost com-
bines SMOTE with AdaBoost.M2 by performing SMOTE
prior to constructing the weak hypothesis during each itera-
tion to achieve the user-specified target class distribution.

Each of the above algorithms are implemented using
both reweighting and resampling. Boosting by reweight-
ing is the “default” approach to boosting. That is, if the
base learner is able to use example weight information then
boosting by reweighting is usually applied. However not all
base learners are designed to incorporate example weights
into their model building process. Boosting by resampling
is a data-level approach to boosting that can be applied to
any base learner. Rather than pass example weights to the
learner, the training data is resampled (with replacement)
according to the weight distribution to create a new training
dataset. Examples with higher weights are more likely to be
selected (often multiple times) while examples with lower
weights are less likely to be selected. A model trained on
such a resampled dataset is more likely to correctly clas-
sify examples that appear multiple times in the dataset over
those that occur only once (if at all).

Boosting by reweighting is straightforward for nine of
the ten boosting algorithms examined in this study. For
each of the algorithms (except SMOTEBoost) examples are
simply assigned weights based on the results of a given it-
eration’s weak hypothesis. However, when using SMOTE,
new examples are created and the question remains: What
weights should these new examples receive? This topic
is not addressed in the proposal of SMOTEBoost [5], and
therefore we implement boosting by reweighting in a man-
ner that is logical and approximates the boosting by resam-
pling strategy as closely as possible. SMOTE creates new
examples by selecting a point at some distance (determined
by a random number between 0 and 1) along the line seg-
ment (in feature space) connecting a minority class example
and one of its nearest neighbors. In our implementation, we
assign weights to these examples which are the same dis-
tance along the line segment between the two examples as
measured in a one dimensional feature space defined only
by the instances’ weights. That is, if instances xi and xj

are selected to create a new instance, xk, using the random
value λ, then the new example’s weight, W (xk), is defined
as λ×W (xi)+(1−λ)×W (xj ). The example weights are
then scaled so that the each class accounts for the desired
percentage of the total dataset cost. Our results show that
this implementation performs very well when compared to
SMOTEBoost by resampling.

Dataset Size # min % min # attr
SP3 3541 47 1.33 43
MAMMOGRAPHY 11183 260 2.32 7
SOLARFLAREF 1389 51 3.67 13
CAR3 1728 69 3.99 7
CCCS12 282 16 5.67 9
SP1 3649 229 6.28 43
PC1 1107 76 6.87 16
GLASS3 214 17 7.94 10
CM1 505 48 9.50 16
PENDIGITS5 10992 1055 9.60 17
SATIMAGE4 6435 626 9.73 37
ECOLI4 336 35 10.42 8
SEGMENT5 2310 330 14.29 20
CONTRA2 1473 333 22.61 10
VEHICLE1 846 212 25.06 19

Table 1. Dataset caracteristics

3 Experiments

3.1 Datasets

The results reported in this study are based on 15 datasets
from various application domains. Details about these
datasets are presented in Table 1. This table provides the
total number of examples in the dataset (Size), as well as
the number of minority examples (#min), the percentage
of examples belonging to the minority class (%min), com-
monly referred to as the level of imbalance, and the number
of attributes (#attr). The datasets are sorted by imbalance
level. The datasets SP1, SP3 and CCCS12 are proprietary
software project datasets obtained from Nortel Networks
and the Department of Defense. PC1 and CM1 are pub-
licly available software project datasets from the data met-
rics program at NASA [14]. The Mammography dataset
is from the medical diagnosis domain and was generously
provided by Dr. Nitesh Chawla [4]. The remaining datasets
were obtained from the popular UCI repository [2] and rep-
resent various application domains. Since this work consid-
ers only the binary classification problem, it was necessary
to transform some of the datasets to have a binary class.

3.2 Learners

This study uses four learning algorithms, all of which
are implemented in Weka [22], an open source data min-
ing suite. Two versions of the well-known C4.5 [16] de-
cision tree classifier are used, denoted C4.5D and C4.5N.
C4.5D uses the Weka default parameters, while C4.5N dis-
ables pruning and enables Laplace smoothing [21]. Naive
Bayes (NB) uses Bayes’ rule of conditional probability to
classify examples. Repeated Incremental Pruning to Pro-
duce Error Reduction (RIPPER) is a rule-based learner [6].
Both NB and RIPPER models were built using the default
Weka parameters.

447447447

Authorized licensed use limited to: ULAKBIM UASL - SABANCI UNIVERSITY. Downloaded on December 23, 2009 at 03:07 from IEEE Xplore.  Restrictions apply. 



3.3 Performance Metrics

When dealing with imbalanced data, it is inappropriate
to use a performance measure such as overall correct classi-
fication rate. Such a performance metric can be misleading
when evaluating a model that heavily favors classifying ex-
amples as belonging to the majority class. Instead, we pre-
fer metrics which take into account the model’s ability to
identify examples of each class. We have selected two such
measures for use in this work: area under the ROC curve
and area under the PRC curve.

A receiver operating characteristic curve (ROC) [15]
plots the true positive rate on the y-axis versus the false pos-
itive rate on the x-axis. The resulting curve represents the
trade off between correctly identifying positive class exam-
ples and false alarms across the complete range of possible
decision thresholds. A single numeric value, the area under
the ROC curve (AROC), is used to measure the performance
of a classifier. Another curve, the precision-recall operating
characteristic curve (P-ROC) [13], is also used to measure
classifier performance. This curve plots the true positive
rate (recall) versus precision across the complete range of
decision thresholds. As with ROC, the area under the P-
ROC curve (APRC) is used to evaluate the performance of
a classifier. An in depth analysis of the relationship between
ROC and P-ROC curves is presented in [7].

3.4 Experimental Design

All experiments were performed using 10-fold cross val-
idation. Each dataset is broken into ten partitions, nine of
which are used to train a model, while the remaining parti-
tion is used to test the model. This process is repeated ten
times so that each partition acts as test data once. In addi-
tion, 10 independent runs of 10-fold cross validation were
performed to alleviate any biasing that may occur during the
random partitioning process. Using 10 runs of 10-fold cross
validation and 15 base datasets (described in Section 3.1), a
total of 1500 training datasets were used in our experiments.

Each of the 4 learners (described in Section 3.2) were
used in conjunction with each of the 10 boosting algorithms
(described in Section 2). In addition, each learner was used
to build models without boosting, providing a baseline for
comparison. Two versions of each boosting algorithm were
implemented (resampling and reweighting). Therefore, a
total of 4 × (10 × 2 + 1) = 84 models were built for each
training dataset. The total number of models evaluated for
this study is 84 × 1500 = 126,000.

For those boosting algorithms that require a cost ratio to
be specified, the cost ratio was determined on a per-dataset
basis. The cost ratio was selected to create an effective class
distribution of 35:65, with 35% of the examples belonging
to the minority class. Specifically, the cost ratio was se-

Dataset C45D C45N NB RIPPER
SP3 .503 .738 .809 .508

Mammography .827 .901 .920 .785
SolarFlareF .514 .875 .898 .538

Car3 .500 .991 .975 .721
CCCS12 .783 .853 .960 .825

SP1 .590 .751 .793 .543
PC1 .672 .840 .698 .583

Glass3 .748 .801 .720 .525
CM1 .561 .685 .772 .516

Pendigits5 .971 .991 .865 .977
SatImage4 .751 .917 .920 .748

Ecoli4 .773 .870 .935 .777
Segment5 .941 .981 .833 .923

Contra2 .685 .688 .721 .601
Vehicle1 .756 .818 .698 .663
Average .705 .847 .834 .682

Table 2. Performance (A-ROC) of learners

without boosting

lected such that the sum of the costs of all minority class
examples was equal to 35% of the sum of the costs of all
examples in the training data. This approach is based on
Elkan’s [8] theorem for adjusting the class distribution to
achieve a desired cost ratio. SMOTEBoost was also per-
formed to achieve a class balance of 35:65. This ratio of
minority to majority class examples was chosen based on a
previous study showing this to be a favorable class distri-
bution [12]. Experiments were also performed using ratios
of 50:50 as suggested by [21] and 65:35, producing results
similar to those reported in this study.

4 Empirical Results

4.1 Learner Performance

We begin by examining the relative “strengths” of the
learners used in this study, with respect to learning from
imbalanced data. The performance of all four learners on
each dataset is provided as measured using the area under
both the ROC and PRC curves (A-ROC and A-PRC, respec-
tively).

Table 2 shows the performance of the four learners (mea-
sured using A-ROC) for each of the 15 datasets used in our
experiments. Table 3 shows the same information using
A-PRC to measure performance. A bold value indicates
that the learner resulted in the highest A-ROC (or A-PRC)
for the given dataset while an italicized value indicates the
worst performing learner. The last row labeled “Average”
provides the average performance across all datasets for
each learner. This table shows that of the four learners, NB
and C4.5N are the two “stronger” learners, while RIPPER
and C4.5D are relatively weak. This distinction will be im-
portant to the subsequent analysis presented in this work.
While boosting often results in significant improvement us-
ing a weaker base learner, it typically (as will be shown in
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Dataset C45D C45N NB RIPPER
SP3 .016 .082 .078 .023

Mammography .532 .625 .509 .509
SolarFlareF .049 .282 .316 .096

Car3 .040 .789 .610 .343
CCCS12 .512 .536 .682 .502

SP1 .158 .207 .209 .109
PC1 .282 .382 .265 .187

Glass3 .387 .443 .341 .127
CM1 .147 .220 .370 .119

Pendigits5 .943 .973 .675 .945
SatImage4 .454 .612 .635 .445

Ecoli4 .561 .648 .736 .514
Segment5 .835 .914 .411 .823

Contra2 .404 .401 .458 .316
Vehicle1 .525 .608 .495 .436
Average .390 .515 .453 .366

Table 3. Performance (A-PRC) of learners

without boosting

the following sections) does not result in a major improve-
ment when stronger learners are used (although it can).

The claim that NB and C4.5N are “strong”, while C4.5D
and RIPPER are relatively “weak”, is supported by the data
presented in Tables 2 and 3. Regardless of performance
metric, C4.5N and NB obtain the highest average perfor-
mances across all 15 datasets, with C4.5N outperforming
NB. Both C4.5N and NB outperform C4.5D and RIPPER
by a large margin, while C4.5D outperforms RIPPER by a
relatively small margin.

4.2 Boosting: Resampling vs. Reweighting

We now investigate the impact of boosting on learning
from imbalanced data. The objective of this work, however,
is not to identify which boosting algorithms are superior,
but instead to compare each algorithm’s performance using
resampling and reweighting. In other words, when imple-
menting each of these boosting algorithms, how should ex-
ample weights be passed to the base learner?

4.2.1 Results: Strong Learners

Table 4 (top) shows the performance of C4.5N using each
of the boosting algorithms as measured by A-ROC (left)
and A-PRC (right). Both the mean μ and standard devia-
tion σ are provided based on the A-ROC and A-PRC values
obtained using all 15 datasets. A pairwise t-test was per-
formed for each boosting technique - if resampling resulted
in a significantly higher A-ROC or A-PRC (using a 95%
confidence level), the value is underlined. For example, the
mean A-ROC obtained by resampling AdaC1 is .831, which
is significantly better than the mean A-ROC obtained by
reweighting AdaC1. As shown in Table 4, three (out of ten)
boosting algorithms, AdaC1, AdaCost and CSB0, perform

A-ROC A-PRC
Sampling Weighting Sampling Weighting

Technique μ σ μ σ μ σ μ σ
AdaBoost .849 .143 .851 .137 .571 .305 .571 .306
AdaC1 .831 .148 .792 .167 .568 .307 .523 .315
AdaC2 .848 .141 .845 .143 .570 .311 .567 .308
AdaC3 .865 .125 .862 .130 .563 .298 .559 .295
AdaCost .857 .134 .815 .152 .573 .308 .516 .309
CSB0 .849 .135 .751 .162 .563 .303 .391 .286
CSB1 .845 .143 .845 .141 .569 .312 .567 .307
CSB2 .856 .135 .855 .139 .579 .307 .582 .309
RareBoost .855 .138 .853 .144 .588 .310 .585 .313
SMOTEBoost .878 .115 .881 .117 .596 .303 .594 .303

AdaBoost .813 .139 .813 .134 .395 .240 .392 .237
AdaC1 .773 .139 .743 .148 .359 .240 .315 .238
AdaC2 .830 .125 .835 .125 .420 .225 .438 .231
AdaC3 .839 .111 .840 .112 .384 .200 .384 .203
AdaCost .712 .232 .706 .222 .273 .165 .247 .162
CSB0 .794 .147 .787 .156 .316 .182 .307 .178
CSB1 .647 .217 .623 .225 .294 .226 .286 .217
CSB2 .747 .176 .725 .186 .335 .233 .320 .229
RareBoost .842 .129 .840 .131 .495 .250 .492 .251
SMOTEBoost .844 .130 .847 .121 .483 .254 .481 .252

Table 4. Comparing the results using sam-

pling and weighting with C4.5N (top) and

Naive Bayes (bottom).

significantly better when resampling is used, regardless of
performance metric.

When using A-PRC to measure the performance of
C4.5N (right side of Table 4), the same three boosting algo-
rithms (AdaC1, AdaCost and CSB0) perform significantly
better when implemented with resampling. CSB0 (with
reweighting) was the only boosting algorithm to result in a
performance decrease when compared to C4.5N built with-
out boosting. C4.5N (without boosting) achieved an A-PRC
of .515 (Table 3), while achieving an A-PRC of only .391
(a decrease of 24%) when CSB0 was used with reweight-
ing. With resampling, however, the performance of CSB0
is greatly improved, resulting in an A-PRC of .563. Even
a “strong” learner can be improved by boosting, especially
when the boosting algorithm is implemented using resam-
pling.

Using A-ROC to evaluate the models built using NB
(bottom of Table 4), three boosting algorithms (AdaC1,
CSB0 and CSB1) showed a significant improvement when
resampling was used. As was the case with C4.5N, boost-
ing by resampling performs as well as or significantly bet-
ter than boosting by reweighting with all ten boosting al-
gorithms. This is an interesting conclusion since boosting
by reweighting is the “default” method of boosting (if the
base learner can incorporate example weights in its decision
making process, then reweighting is typically used).

The results are slightly different when A-PRC is used
to evaluate performance. Two boosting algorithms (AdaC1
and AdaCost) perform significantly better when imple-
mented with resampling. However, there is one boosting
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A-ROC A-PRC
Sampling Weighting Sampling Weighting

Technique μ σ μ σ μ σ μ σ
AdaBoost .849 .144 .852 .142 .574 .308 .578 .308
AdaC1 .815 .160 .772 .177 .554 .307 .503 .325
AdaC2 .843 .144 .842 .146 .564 .312 .570 .315
AdaC3 .803 .179 .769 .194 .510 .328 .476 .344
AdaCost .861 .134 .830 .146 .578 .304 .530 .305
CSB0 .853 .130 .762 .157 .559 .297 .385 .273
CSB1 .845 .141 .839 .145 .563 .308 .552 .304
CSB2 .852 .139 .855 .139 .577 .310 .577 .309
RareBoost .858 .139 .847 .153 .587 .309 .585 .316
SMOTEBoost .862 .132 .876 .121 .590 .304 .589 .299

AdaBoost .848 .141 .852 .140 .561 .299 .564 .305
AdaC1 .813 .157 .777 .177 .545 .304 .512 .322
AdaC2 .844 .146 .850 .137 .571 .312 .558 .310
AdaC3 .810 .184 .777 .203 .543 .339 .489 .351
AdaCost .866 .131 .865 .141 .583 .307 .529 .293
CSB0 .859 .136 .814 .142 .549 .294 .391 .273
CSB1 .840 .144 .835 .157 .542 .307 .548 .320
CSB2 .851 .138 .855 .137 .570 .312 .568 .312
RareBoost .853 .141 .840 .162 .579 .312 .565 .315
SMOTEBoost .851 .137 .865 .127 .566 .299 .583 .302

Table 5. Comparing the results using sam-

pling and weighting with C4.5D (top) and RIP-

PER (bottom).

algorithm, AdaC2, that performs significantly better when
the reweighting version is used. This is the only combi-
nation of learner and boosting algorithm that violates the
general trend we have seen thus far. Besides SMOTEBoost,
AdaC2 (measured relative to A-PRC) is the only scenario in
all of our experiments where reweighting performs signifi-
cantly better than resampling.

4.2.2 Results: Weak Learners

Somewhat more interesting is the performance of these
boosting algorithm implementations when applied to weak
learners. It is, after all, weak learners that benefit most from
boosting. In this section we compare the performance of
boosting by resampling to boosting by reweighting using
the two relatively “weak” learners, C4.5D and RIPPER.

Table 5 shows the performance of the various boosting
algorithms using C4.5D (top) and RIPPER (bottom). For
these two learning algorithms, resampling is clearly the pre-
ferred method for implementing boosting. For all boost-
ing algorithms (except SMOTEBoost), resampling results
in performance that is as good as or better than reweight-
ing. SMOTEBoost with reweighting performs significantly
better relative to the A-ROC than SMOTEBoost with re-
sampling for both C4.5D and RIPPER. In 17 of the 40 sce-
narios in Table 5, however, resampling significantly outper-
forms reweighting, while conversely, reweighting signifi-
cantly outperforms resampling only twice.

A-ROC A-PRC
Sampling Weighting Sampling Weighting

Technique μ σ μ σ μ σ μ σ
AdaBoost .839 .142 .842 .139 .525 .299 .526 .301
AdaC1 .808 .153 .771 .169 .507 .303 .463 .314
AdaC2 .841 .139 .843 .138 .531 .299 .533 .298
AdaC3 .829 .155 .812 .169 .500 .304 .477 .310
AdaCost .824 .176 .804 .179 .502 .307 .455 .299
CSB0 .839 .139 .779 .157 .497 .293 .369 .259
CSB1 .794 .185 .785 .194 .492 .312 .488 .313
CSB2 .827 .155 .822 .162 .515 .310 .512 .312
RareBoost .852 .137 .845 .148 .562 .299 .557 .302
SMOTEBoost .859 .130 .867 .122 .559 .294 .562 .294

Table 6. Comparing the results of using sam-

pling and weighting for each Boosting Tech-

nique

A-ROC A-PRC
Sampling Weighting Sampling Weighting

Learner μ σ μ σ μ σ μ σ
C45D .844 .146 .824 .158 .566 .309 .535 .316
C45N .853 .136 .835 .148 .574 .306 .546 .310
NB .784 .171 .776 .176 .375 .234 .366 .236
RIPPER .843 .147 .833 .157 .561 .309 .531 .316

Table 7. Summary comparison of sampling

and weighting by learner

4.2.3 Summarized Results

This section presents a summary of the results compar-
ing resampling and reweighting for each of the ten boost-
ing algorithms. The left side of Table 6 shows the perfor-
mance of the ten boosting algorithms using A-ROC to mea-
sure learner performance based on the average performance
across all four learners. For seven of the ten boosting al-
gorithms, there is a significant difference between resam-
pling and reweighting. In every case except SMOTEBoost,
resampling performs as well as or better than reweighting.
For SMOTEBoost, reweighting performs significantly bet-
ter than resampling. The improvement in performance of
CSB0 is particularly interesting, as it is the worst of the
CSB algorithms using reweighting, but it is the best of the
CSB algorithms using resampling.

The results are similar when A-PRC is used to measure
performance, as shown in on the right side of Table 6. Here,
we see that four (AdaC1, AdaC3, AdaCost and CSB0) of
the ten boosting algorithms are significantly impacted by
the selection of resampling or reweighting. Once again, re-
sampling always results in performance that is at least as
good as, and often significantly better than, reweighting.

Table 7 compares resampling and reweighting using both
the A-ROC and A-PRC measures for each learner individ-
ually. In other words, the A-ROC and A-PRC values were
averaged for all 10 boosting techniques over all 15 datasets
for each learner. Resampling is significantly better than

450450450

Authorized licensed use limited to: ULAKBIM UASL - SABANCI UNIVERSITY. Downloaded on December 23, 2009 at 03:07 from IEEE Xplore.  Restrictions apply. 



reweighting for each learner based on both performance
measures.

5 Conclusion

This work presented a thorough empirical comparison of
boosting by reweighting and boosting by resampling using
a variety of boosting algorithms, 4 learners and 15 datasets
with various levels of imbalance. Since this is an empirical
study of the performance of these boosting techniques on
imbalanced data, all boosting algorithms evaluated in this
work are variations of AdaBoost designed to be used in a
cost-sensitive or imbalanced data environment. Our results
show that, in general, boosting by resampling (which can be
applied to any base learner) performs as well as, or better
than, boosting by reweighting. This conclusion is important
because boosting by reweighting is typically used when the
base learner is able to incorporate examples weights into
the learning process. The primary exception to this general
result is SMOTEBoost, which sometimes performed better
when using boosting by reweighting. Since there were no
guidelines set forth regarding how to implement SMOTE-
Boost with reweighting, we provide our own implementa-
tion, finding that it often outperforms SMOTEBoost by re-
sampling.

Future work will include an investigation of these two
boosting implementations using alternate boosting algo-
rithms (which are not designed for imbalanced data), in-
cluding but not limited to LogitBoost and InfoBoost. Ex-
periments will also be performed using additional learners
and datasets that present challenges other than imbalance,
such as noise.
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