

Abstract

The problem of database integration has been widely
tackled through different approaches. While data
transformation based systems, such as Data Warehouses,
reached the acceptation of the industry during the 80’s, in
the last decade query translation based approaches have
gained popularity given their adequacy to dynamic domains.
While the former are based on gathering actual data in
central repositories, the latter allow data to remain in the
original databases. There still exist several issues to be
tackled in query translation, mainly if no ad-hoc schema is
described, such as problems with scalability and query
processing. In this paper we describe a complete database
integration and semantic mediation approach, borrowing
techniques from both data transformation and local as view
data translation methods, and addressing the cross
referencing problem. This work has been carried out in the
framework of ACGT (Advancing Clinico-Genomic Trials on
Cancer) project, supported by the European Commission.

1. Introduction

Dynamic data environments, such as those related with
many research activities, require database integration
approaches that leverage the complexity in terms of data
scalability and performance, as well as a means to maintain
access to up to date information in the databases. For this
reason, query translation based approaches have gained
popularity in the last decade, even when some very
important problems have not been already solved. There
exist two main different ways to tackle query translation,
namely Global as View [1] and Local as View [2]. In Global
as View, an ad-hoc schema is created representing the

complete integrated database set. By contrast, in Local as
View standalone descriptions of the sources are built by
means of a global model. When dealing with unstable
database integration environments—i.e. where database
schemas can change, or new databases can arrive into the
system— Local as View based approaches behave better,
since there is no need of updating the global schema.
However, this type of approach leads to several problems
that need to be taken into consideration. The main issue is
scalability: in the worst case, all the local views need to be
inspected to find the translation of each element in the
original query. Another problem is related to expressiveness:
the global model is a description of the domain, not and ad-
hoc description of the integrated repository (as in Global as
View). This can lead to conflicts when a user formulates a
query and what is queried is not contained in the underlying
databases. Traditionally, Local as View approaches describe
the way to translate the query, leaving aside the actual
integration of results. In previous works, the data integration
process has been defined as the union of the result sets
retrieved from the produced queries. This implies that the
simple union of the tables is equivalent to the results
expected in the original query. Given the fact that most
common query translation algorithms produce queries
containing the variables of interest of the original query, this
approach should work properly. However, there exist two
situations where this is not so simple: a) there are variables
in the original query translated to more than one variable in
more than one database, 2) the original query contains
constraints implying values from different databases (cross-
reference, aggregation…). It is not possible to satisfy such
kind of constraints by simply using a union operation on the
retrieved results. Some systems partially cover these cases
by supporting the join operation of semantically equivalent
fields. In our system, we address these issues by creating a
projection of the intermediate results retrieved from the
original databases, comprising an RDF repository. Final

Enabling Cross Constraint Satisfaction in RDF-based Heterogeneous
Database Integration

Luis Martín

Polytechnic University of Madrid, Campus
de Montegancedo, Boadilla del Monte, CP

28660 Spain
email: lmartin@infomed.dia.fi.upm.es

Alberto Anguita
Polytechnic University of Madrid, Campus
de Montegancedo, Boadilla del Monte, CP

28660 Spain
email: aanguita@infomed.dia.fi.upm.es

Ana Jiménez

Polytechnic University of Madrid, Campus
de Montegancedo, Boadilla del Monte, CP

28660 Spain
email: ajimenez@infomed.dia.fi.upm.es

José Crespo
Polytechnic University of Madrid, Campus
de Montegancedo, Boadilla del Monte, CP

28660 Spain
email: jcrespo@infomed.dia.fi.upm.es

2008 20th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/08 $25.00 © 2008 IEEE

DOI 10.1109/ICTAI.2008.67

349

2008 20th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/08 $25.00 © 2008 IEEE

DOI 10.1109/ICTAI.2008.67

349

2008 20th IEEE International Conference on Tools with Artificial Intelligence

1082-3409/08 $25.00 © 2008 IEEE

DOI 10.1109/ICTAI.2008.67

341

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on July 8, 2009 at 07:57 from IEEE Xplore. Restrictions apply.

results are retrieved using a query produced during the query
translation process together with the dedicated queries for
the underlying depositories. The results of this query are
equivalent to the data expected to be retrieved from the
original one.

Our approach is based on the utilization of an ontology,
acting as global model. The global schema is extracted from
this ontology, using its underlying RDF Schema. This global
schema has two main roles in the mediation process: 1)
acting as semantic framework for the mapping process, and
2) describing the complete universe of queries for the
mediated database set. The use of ontologies for database
integration has been widely studied and implemented in
projects such as Ontofusion—carried out in our research lab
[3] —, TSIMMIS [4] and KAON [5] among others.

The main issue to tackle when trying to implement tools
based on a Local as View approach is performance. It is
known that query translation in the latter has NP-Hard
complexity. This leads to a scalability problem difficult to
cope with. In our tool, we restrict the set of queries by
creating user profiles. These profiles are based in previously
gathered user requirements, which are used during the
mapping process to create customized integrated database
sets. Given that the mapping process in Local as View is the
less complex one among all query translation approach,
updates are feasible if profiles need to be changed. Although
not all the queries are available, the profile should allow a
user to formulate all the different queries he/she may need in
his/her work. Another problem that users frequently find
when dealing with a Local as View based mediation system
is the complexity of the global schema. In the ideal case, this
schema is nothing but a description of the domain of data—
e.g. an ontology or the combination of several ones—. The
schema exposed by our tool is indeed restricted to the
allowed queries, being much simpler to understand and
navigate.

This paper is organized as follows. Section 2 presents a
state of the art review in the field. Section 3 introduces the
methods used in this system. Section 4 describes the tools
developed. Section 5 shows a set of experiments illustrating
the systems behavior. Finally, section 6 points out our
conclusions.

2. Background

There exists a plethora of papers dedicated to the subject
of heterogeneous database integration. Most systems
designed for this purpose follow a mediation-based
approach, where a global schema is used to define the space
of possible queries that the system is able to cope with. In
addition, mappings between the global schema and the
schemas of the integrated sources are stored. These
mappings contain the necessary information to translate a
query in terms of the global schema—i.e. global query—to a
set of queries in terms of local schemas. Global as View and
Local as View are the two existing approaches to define the
mappings. The final result of a global query is obtained by
merging the results of the generated queries. Most papers in

this area cover the problem of producing queries for the
physical databases, but make little to none mention about
how actual data are merged to produce a unique result set.

Ullman [6] reviews the theoretical concepts that surround
the query translation process in view-based integration
systems. He considers global queries as a conjunction of
predicates—no mention of additional constrains that bound
the solutions to such predicates is made. The process of
answering a query is described as a search of combinations
of views contained in the original conjunction of predicates.
Each of these combinations provides a partial solution to the
original query. The procedure to obtain the final solution is
stated in the paper as performing “the union of all these
partial solutions”, but no further details on this topic are
given. Xu [7] describes his own approach for a data
integration system using a mixture of LaV and GaV
approaches for query reformulation, however no mention
can be found about how the final result is computed. Saw [8]
presents his work for integrating heterogeneous XML data
sources, focusing on coping with the structural differences of
the schemas to integrate. No mention is made about how
final results are produced.

Some works briefly mention the process of obtaining a
result to the original query by performing either a union of
partial results—at most, a join operation is proposed. Halevi
[9] proposes his bucket algorithm for performing query
decomposition, stating that the result of this process is “the
union of two conjunctive queries”. Pottinger performs a
similar statement when describing her Minicon algorithm for
query translation [10]. The same idea can be found in [11],
where Cali describes his system for performing semantic
integration of heterogeneous sources. Xiao, in his
description of his own approach for integration of
heterogeneous XML sources [12], states that the partial
results are “integrated (by using union) to produce the
answer to q”. Lehti, in his paper about integration of XML
sources using OWL as global schema [13], mentions the
necessity of defining join conditions when merging data
from different sources. Camillo [14] focuses on the
translation mechanism for producing a set of queries from a
global query, mentioning also the necessity of including a
mechanism “to unify query results coming from several
XML sources into a single query result in accordance to the
global schema”.

Other systems do take into account global integrity
constraints during the process of query processing and result
merging—to cope with the problem of inconsistencies
between sources. Proper join operations are performed when
partial results share semantically equivalent fields. Lenzerini
[15] mentions the inconsistent sources issue in integration
environments, but makes no mention of cross-constrains
solving. In [16], a method for merging partial results using
integrity constrains is presented, however only cases where
all integrated sources share the same schemas are described.
In [17], a method for performing query processing under
primary and foreign keys restrictions over the global schema
is described. Amann et al. [18] present an approach for
integrating heterogeneous XML sources. In it, global and
local schemas are populated with key values. This allows

350350342

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on July 8, 2009 at 07:57 from IEEE Xplore. Restrictions apply.

deciding, when possible, whether instances from different
sources refer to the same entity, and thus require a join
operation when merging the results. Jian et al. [19] use union
and join operations to generate the final result from a set of
partial results obtained from accessing the underlying
databases.

Some systems generate query processing plans which
include relational algebra operators to merge the data
obtained from local sources. In DISCO [20], scan, project
and join operators over partial results are used in order to
compose the final answers to user queries. Mena et al. [21]
propose a system which performs data integration by storing
partial results in an auxiliary SQL database, which is later
queried using extended relational algebra operators in order
to perform proper union of data. This system is however
limited to relational databases which significantly limits its
scope.

Nevertheless, none of the mentioned approaches feature
full cross-reference constrains in queries over the global
schema. They consider semantic equivalence of fields only
when these represent keys in the global schema, in order to
avoid inconsistencies between sources in the final results.

3. Methods

Database integration can be divided in a set of different
sub problems, tackled by different approaches. Among the
most important sub problems we have identified schema
level heterogeneity, instance level heterogeneity,
performance in query translation and results retrieval,
complexity of the mapping process and complex query
constraints satisfaction. In our group we have developed
different models and tools to deal with many of these issues.
In this section we present the query translation and data
integration complete method we use to cope with schema
level heterogeneities and query constraints satisfaction. The
other problems mentioned above are also tackled by our
system (see section IV), but the specific methods are beyond
the scope of this paper.

This section illustrates the method used to obtain a set of
results R from a given query over the global schema Q. The
goal is to integrate all partial results from the local sources
giving all possible information, while satisfying the
constraints contained in Q. The process involves: i) the
generation of a set of queries in terms of the local databases
integrated in the system, ii) the storage of the partial results
that these queries generate into an auxiliary database, and iii)
the extraction of the final results from this database. The
procedure of translating a global query into a set of local
queries has been covered in many previous publications [6,
7, 9, 10, 11, 12, 14, 15]. The approach exposed in this work
does not differ from them in the essence of query translation.
However, complete support for cross constraints is provided
by using an auxiliary database to store partial results. In
[21], an auxiliary database is employed to store partial
results, but only relational databases are supported, and only
join constraints are applied over the auxiliary database. By
contrast, our system integrates RDF-based databases—
which encloses the relational model—and supports any kind

of constraint included in the global query, even when it
involves data from different sources.

Figure 1 depicts the schema of the complete process of
answering global queries.

Fig 1. General schema of the database integration system.

The next subsections describe the process to obtain the

set of local subqueries and the auxiliary query from a given
global query, the generation of the auxiliary database for
retrieving the final result, and the general algorithm followed
by the system.

3.1. Translation of global queries

This subsection contains definitions which are later used

to describe the general algorithm of the integration system.

Definition 3.1 A query Q is a triple ሼܵ, ܸ, ሽ, where S is theܥ
set of symbols representing the queried variables—in the
SELECT statement—, V is the set of global views
composing the query, and C is the set of constraints
contained in the query.

Definition 3.2 A view combination function α is a function
that generates all possible combinations of views from a
given set of views and a set of joining constraints: ߙሺܸ, ሻܥ ՜ ሼݒ௜|݅ݒ׌ଵ, ଶ݅ݒ א ܸ, ଵݎܽݒሺ׌ ൌ ଶሻݎܽݒ א ,ܥ ௜ݒ ൌ݆݊݅݋ ሺ݅ݒଵ, . ଶሻሺ௩௔௥భୀ௩௔௥మሻሽ݅ݒ

Definition 3.3 A view translation function β is the function
that translates global views into semantically equivalent
local views—as defined in a given local description: ߚሺ݈݀, ሻ݅ݒ ՜ ݒሺ|ݒ ൎ ሻ݅ݒ א ݈݀, meaning ሺݒ ൎ ሻ that v and݅ݒ
vi are mapped views in ld

Definition 3.4 A query translation function γ is the function
that generates all local queries and the query for the
auxiliary database from a given global query and a set of
local descriptions LD: ߛሺܵ, ܸ, ,ܥ ሻܦܮ ՜ ሼܳܮ, ܳ௔௨௫ሽ. The
generated elements are LQ—the set of local queries—and
Qaux—the query for the auxiliary database.

351351343

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on July 8, 2009 at 07:57 from IEEE Xplore. Restrictions apply.

LQ is itself composed by three sets of elements: ܳܮ ൌሼܵᇱ௜, ܸᇱ௜, ᇱ௜|1ܥ ൑ ݅ ൑ ௟ܰሽ, being Nl is the number of local
descriptions—mappings with local sources. S’i represents
the set of queried variables in local query i, V’i is the set of
views in local query i and finally C’i is the set of constraints
in local query i. We define these as follows: V’i is the
translation of the views in V with ldi. ܸԢ௜ ൌ ሼݒԢ௝|݅ݒ׌ ,ܸא ,ሺ݈݀௜ߚ ሻ݅ݒ ൌ Ԣ௝ሽ. C’i is formed by constraints containedݒ
in C whose complete set of variables exist in at least one of
the views of the local query: ܥԢ௜ ൌ ሼܿᇱ௝|ܿᇱ௝ א ,ܥ ݎܽݒ׊ ݎܽݒ | ᇱ௞ݒ׌ ᇱ௝ܿא א ᇱ௞ሽ. These are the necessary constraintsݒ
for correctly performing query i. Finally, the queried
variables in the local query ܵᇱ௜ are in first place the
intersection of the queried variables in the global query with
the variables contained in the set of local views ܵ ᇱ௜ —of course global variables are previouslyܸ݊ܫݏݎܽݒת
translated according the local descriptions. In addition,
variables from cross constraints—those that affect variables
from more than one local source—must be queried too, since
those constraints are treated a posteriori ሼݎܽݒ௝|ܿ׌ ,ܥא ,௞ݎܽݒ׌ ,ᇱ௟ܸ׌ ,௝ݎܽݒ ௞ݎܽݒ א ܿ, ௝ݎܽݒ א ܸᇱ௜, ௞ݎܽݒ א ܸᇱ௟ሽ.

The other product of function γ is Qaux which, again, is
composed by a set of queried variables, a set of views, and a
set of constraints: ܳ௔௨௫ ൌ ሼܵ, ௔ܸ௨௫, ௔௨௫ሽ. The queriedܥ
variables are the same as in the original query, as this query
must provide the result for that query. The views in Qaux are
the projection of the variables in S in S’i: ܸ ൌ ሼߎௌᇲ೔ሺܹሻ|1 ൑݅ ൑ ௟ܰሽ, where W is the table containing all the variables
from the original query. Finally, Caux is the set of cross
constraints, that is, constrains which affect views from
different local queries: ܥ௔௨௫ ൌ ሼܿ௜|ܿ௜ א ,ܥ ,ଵݎܽݒ׌ ,ଶݎܽݒ׌ ׌ ଵܸ א ܸᇱ௝, ׌ ଶܸ א ܸᇱ௞,ݎܽݒଵ, ଶݎܽݒ א ܿ௜, ଵݎܽݒ א ଵܸ, ଶݎܽݒ א ଶܸሽ.

Therefore, given a global query Q posed by the user, the
process of translating Q to generate a set of subqueries
expressed in terms of the underlying databases is first
applying function a—to generate all combinations of global
views—an function c—to generate the set of local queries.
This process also produces the auxiliary query, used to
retrieve the final results from the auxiliary database.

3.2. Generation of the auxiliary database

The RDF-based auxiliary database is populated with the
results retrieved from the local sources. The purpose is to
obtain the result to the original query from it. The data
stored in it is subsequently retrieved with an auxiliary
query—which details were given in the previous
subsection—, enabling the use of cross constraints.

The population of the auxiliary database implies two
steps: i) a sequential input of each of the partial results
obtained from the underlying databases, and ii) the
generation of the RDF database representing the integration
of such results. During the first step, an internal structure
storing the contents of the included partial results is
maintained. Each time a new result set is added, its rows are
added—or merged if necessary—to the rows of previous
results stored in this structure. The procedure to decide

whether a new row must be merged with an existing row is
as follows: the intersecting values of both rows are
examined—i.e. the fields containing values in both rows—,
and if in every field the values are equivalent, then the rows
are merged in a single row resulting from the union of both
rows. This process provides the simplest form of data
integration, as the task of detecting inconsistencies or errors
in the integrated data is handled by other tools in the
system—see section IV. Once all partial results have been
added, the second step is executed. An RDF database is
created from the contents of the internal structure. This RDF
contains a unique class ResultSet. For each of the fields in
the integrated results, a datatype property is added to this
class. Finally, each row in the internal structure produces an
instance of the ResultSet class, filling its datatype values
with the values in such row. The resulting RDF database
effectively holds the integration of the partial results
acquired from the local databases, and thus can be queried to
obtain the result to the original query posed in the system.
Figure 2 represents the process of integrating the individual
resultsd and generating the RDF auxiliary database.

Fig 2. Generating the RDF Schema of the auxiliary database from the result

of several local sources

Special care is taken in order to preserve the types of the
extracted data in the generated auxiliary database. The
datatype elements associated to the underlying databases
fields are typed accordingly to such fields. At the end of the
process, the auxiliary database acts like a temporary global
database, storing the collected and integrated data for a
single query.

3.3. General algorithm

Having described all elements and functions that take part

in the process of answering queries posed in the system, we
can now define the general algorithm followed by the system
to obtain a result from a global query.

352352344

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on July 8, 2009 at 07:57 from IEEE Xplore. Restrictions apply.

Given Q: a global query posed in the system, composed
by S—the set of queried variables—, V—the set of views
composing Q—and, C—a set of constraints over variables in
V.

Given LD: the set of local descriptions containing the
mappings between the global schema and the schemas of the
local sources.

1. Apply function α to V and C in order to obtain all
possible combinations of views. Use the newly
generated set of views in Q instead of V.

2. Apply function γ to Q and LD in order to obtain the
set of local queries LQ and the auxiliary query Qaux.

3. For each local query Qi in LQ:
a. Launch Qi against the local source,

obtaining the result Ri.
b. Generate the part of the RDF Schema of the

auxiliary database corresponding to Ri.
c. Populate the auxiliary database with the

data rows contained in Ri.
4. Perform query Qaux over the auxiliary database,

obtaining the results R.
5. Return R.

4. Tools

The ACGT Semantic Mediation layer is comprised by
several tools designed to answer and optimize queries.
Database integration can be divided in a range of sub
problems that mostly need to be solved using different
approaches (see section III). In our system we have
developed a range of collaborating services supporting the
different aspects of the general task. These services interact
with the query and data to obtain consistent results. The
architecture of the ACGT Semantic Mediation Layer is
shown in figure 3.

As can be seen, the Semantic Mediator acts as the core of
this system, enabling interactions with the rest of tools.
OntoQueryClean [22] and OntoDataClean [23], two systems
developed in our group and reported before, are both
devoted to solve instance level heterogeneities. Their
services are invoked by the mediator when necessary, using
the defined interfaces. Although it is not within the query
translation process itself, we have decided to include the
Mapping Tool as part of the system, given the importance of
the mapping process in mediation. The mapping tool aids in
the construction of mappings between the global schema and
the data repositories. By using these mappings, the mediator
is able to automatically produce the required local views and
restricted global schemas, necessary for the given database
integration approach.

Fig 3: Architecture of the Semantic Mediation Layer

The interfaces used for communicating the services, both

internally and externally, are based in web service
technologies. An entity acts as a client of a service if it needs
something or as a supplier when it is needed. The main
internal client of the ACGT Semantic Mediation Layer is the
Semantic Mediator, given that it coordinates the work of all
the other components. The Semantic Mediator requests, for
example, to OntoDataClean to homogenize a set of retrieved
data before proceeding with its integration in the general
result set.

Data representation in the ACGT Semantic Mediation
Layer is based on RDF. We use an RDF Schema (RDFS) to
represent the data structure. This global schema represents
the possible queries that a client can formulate. The user
then gets the perception of querying a unique RDF
repository. Regarding the query language, SPARQL [24]
was chosen due to its intermediate level of expressiveness
and suitability for general purpose applications, as the
integration of heterogeneous data sources. A query in
SPARQL contains a description of a subset of the global
schema in terms of views. Each one of these views has a
meaning that is mapped to the corresponding view in one or
more underlying databases. The SPARQL query contains a
description of the structure of the results and a set of
constraints.

This software was built using java technologies, and is
exposed as an OGSA-DAI service. The Semantic Mediator
is the core tool of this layer. It has two main services: 1) to
launch a query, and 2) to browse the schema. The former
offers the possibility of sending a query formulated in terms
of the global schema for a given integrated set of databases.
The Semantic Mediator returns the results in a selected
format, together with a metadata file, containing semantic
annotations for these data. The second service shows a
restricted version of the global schema, representing only the
queries that are possible in the integrated database set

Requests are sent to the Semantic Mediator in form of an
OGSA-DAI request document [25, 26]. This document
contains a very simple workflow, comprised by OGSA-DAI
activities. In the case of the Semantic Mediator, this
document contains a chain of activities invocations

353353345

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on July 8, 2009 at 07:57 from IEEE Xplore. Restrictions apply.

specifying things like the query, in which form the client
wants results to be retrieved or where they have to be
delivered.

5. Experiments and results

In this section, we address the issue of proving the
feasibility and fitness of the selected approach, together with
the performance of the presented tools. We have tested our
system with a range of heterogeneous databases of the
biomedical domain. Previous experiments, including image
(DICOM) and relational sources, with preliminary versions
of the system were performed and documented [27]. To
achieve this goal, we have classified the different types of
conflicts that can be present at different levels.

We identify four conflict categories: a) instance level
conflicts, b) schema level conflicts, c) instance-schema
conflicts and d) cross constraint conflicts. Instance level
conflicts can be present in the retrieved data or in the
original query. These conflicts are treated by OntoDataClean
and OntoQueryClean tools. Experiments in this area have
been documented in previous works [23, 24]. Schema level
and instance-schema level conflicts are registered in the
mapping files and solved by the mediation algorithm. A
schema level conflict is a semantic heterogeneity among two
or more databases related to elements in their schemas.
When a schema element in the global schema needs to be
mapped to instance level knowledge in an underlying
database, we say that we have an instance-schema conflict.
These conflicts are solved at the mapping level as well.
Finally, we find a cross constraint conflict when the original
query contains a restriction that involves information from
different databases.

In our experiments, we have selected as global schema
the semantic core of the ACGT platform: the ACGT Master
Ontology on Cancer (MO) [28]. This ontology covers the
domain of clinical trials on cancer, so we built ad-hoc
databases in this field presenting the different cases of
heterogeneity included on purpose. This way, we knew the
expected results for every query, being able to evaluate the
behavior of the system.

5.1. Case Study

This subsection presents in detail the execution of one of
the tested queries, explaining how the system acts in each of
the steps and what products are obtained from it. Figure 4
shows the global query performed in the system.

Fig 4: Global query involving data from two repositories

This query retrieves data contained in two different

repositories. Namely, the patient’s personal data, including
age, and the date of registration are stored separately from
the date of diagnosis. Data from these sources is related by a
patient identifier field. From the two constraints contained in
the query, the one involving only the age of the patients can
be dealt directly in the sources. The second constraint
however involves data from more than one source, thus must
be tackled a posteriori—it will be appropriately included in
the auxiliary query.

The system identifies the elements contained in the query
and applies the mapping information in order to generate the
queries for the local repositories. The query for the first
repository retrieves the patient’s id, , age and registration
date, properly restricting for values of age greater than 35.
The query for the second repository gathers patient
identifiers together with dates of diagnosis. The results
obtained from these two queries are partially shown in figure
5.

Fig 5: Part of the result sets obtained with the generated subqueries

These results sets are integrated as described in section III

in order to generate the auxiliary database. In this case, the
only intersecting field is the patient id, thus two different
rows will be merged when this value is equivalent in both.
The result will be rows with four fields: the shared id, the
age and registration date from the first result set, and the
diagnosis date from the second result set. Figure 6 depicts
the contents of the internal structure after having added both
results.

354354346

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on July 8, 2009 at 07:57 from IEEE Xplore. Restrictions apply.

Fig 6: the previous step to the auxiliary database generation produces an

internal structure storing the integration of all results sets

The next step is producing the actual auxiliary RDF

database from the contents of the internal structure. This
involves generating one class with four datatypes—one for
each of the previous fields. The id and age datatypes are of
integer type, while reg_date and diag_date store date values.
The schema of this database is shown in figure 7.

Fig 7: auxiliary database RDF Schema for the presented example

For each row of integrated results an instance of the

ResultSet class is generated. Thus, for example, the first row
in figure XXX produces an instance whose datatype values
are respectively instantiated to ‘1’, ‘45’, ’12-05-2005’ and
’01-02-2005’. Parallel to the population of this database, the
system automatically generates the auxiliary query, devoted
to extracting the final results from the auxiliary database.
Figure 8 shows the auxiliary query generated for this
experiment.

Fig 8: auxiliary query generated by the system

 This query includes the second constraint contained in the
original query, since it could not be treated by the individual
sources. This way, we ensure that the results obtained from
this query represent indeed the results corresponding to the
global query posed by the user. Fig 9 shows the results
retrieved from the auxiliary database.

Fig 9: final results retrieved from the auxiliary query and returned by the

system

As can be seen, the results contain the product of a proper
merging between the partial results of the two involved local
repositories. The identifier field was used to perform the join
of similar data. The cross constraint was successfully
processed, and no unexpected data was included in the final
results.

5.2. Results

We built two integrated repositories presenting different
types of heterogeneities using the databases mentioned
above. A set of queries were designed to test the behavior of
the system in different scenarios. These queries tested not
only isolated heterogeneities, but also cases of combination.
The system was running in a single Intel Core 2 Duo 3Gb+,
8Gb RAM computer. A set of 20 queries were built to test
the different cases of heterogeneity present in both
repositories.
 In all cases, heterogeneities were solved and constraints
were satisfied. The automatic construction and storage of the
temporal repository did not lead to complexity problems.
However, no formal tests regarding performance were done.
We understand that the creation of the temporal repository is
not more complex than unifying separate results directly. We
plan to study performance issues in future studies.

6. Conclusion

Classical Local as View database integration approaches
are based on union operations to join the individual results
and build an integrated data set. In this work we present a
method uses a temporal RDF data repository to allow more
complex constraints in the original query, involving data
from different data sources. In future releases of our system,
we plan to include features such as aggregation operators.
Although aggregation is not yet supported by SPARQL, this
type of specifications could be easily added to the query
system, and applied directly to the temporal repository.

ACKNOWLEDGMENT
We would like to thank all partners in the ACGT project

for their technical advisory. We want to thank also Prof.
Victor Maojo for his comments on this work.

355355347

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on July 8, 2009 at 07:57 from IEEE Xplore. Restrictions apply.

7. References

[1] J. D. Ullman, “Information integration using logical views”, in

Proceedings of the International Conference on Database
Theory (Delphi, Greece), 1997, pp 19–40.

[2] A.Y. Levy, A. Rajaraman, and J.J. Ordille, “Querying
heterogeneous information sources using source descriptions”,
in Proceedings of the Twenty-second International Conference
on Very Large Data Bases (VLDB’96), Mumbai (Bombay),
India, September 1996, pp. 251–262.

[3] D. Pérez-Rey, V. Maojo, M. García-Remesal, R. Alonso-
Calvo, H. Billhardt, F. Martin-Sánchez and A. Sousa,
“ONTOFUSION: Ontology-based integration of genomic and
clinical databases”, in Computers in Biology and Medicine, In
Press, Corrected Proof, Available online 6 September 2005

[4] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y.
Papakonstantinou, J. Ullman, and J Widom, “The TSIMMIS
project: Integration of heterogeneous information sources”, in
Proceedings of the 10th Meeting of the Information
Processing Society of Japan, , Tokyo, Japan, October 1994,
pp. 7–18.

[5] Bozsak E. et al. “KAON - Towards a Large Scale Semantic
Web”. In K. Bauknecht, A. Min Tjoa, and G. Quirchmayr,
editors, EC-Web 2002, volume 2455 of Lecture Notes in
Computer Science, Springer, September 2002, pp. 304–313.

[6] [Ullman00] J.D. Ullman, “Information integration using
logical views”, Proc. of the 6th Int. Conf. on Database Theory
(ICDT’97), volume 1186 of Lecture Notes in Computer
Science, Springer, 1997, pp. 19-40.

[7] L. Xu, and D.W. Embley, “Combining the Best of Global-as-
View and Local-as-View for Data Integration”, Proceedings of
ISTA 2004: 3rd International Conference on Information
Systems Technology and its Applications, Salt Lake City,
USA, 2004, pp. 123-136.

[8] N.T.H. Saw, and K.H.S. Hla, “Semantic Interoperating and
Accessing Heterogeneous and Autonomous XML Sources”,
Proceedings of the 2006 IEEE/WIC/ACM international
conference on Web Intelligence and Intelligent Agent
Technology (WI-IAT'06), Hong Kong, 2006, pp. 216-219.

[9] A.Y. Halevy, “Answering queries using views: A survey”,
VLDB Journal, 10:4, 2001, pp. 270-294.

[10] R. Pottinger, and A. Halevy, “Minicon: a scalable algorithm
for answering queries using views”, VLDB J. 10(2), 2001, pp.
182-198.

[11] A. Calì, D. Calvanese, G. De Giacomo, M. Lenzerini, P.
Naggar, and F. Vernacotola, “IBIS: Semantic data integration
at work”, Proc. of the 15th Int. Conf. on Advanced
Information Systems Engineering (CAiSE 2003), volume
2681 of Lecture Notes in Computer Science, Springer, 2003,
pp. 79-94.

[12] H. Xiao, and I.F. Cruz, “Integrating and Exchanging XML
Data Using Ontologies”, LNCS Journal on Data Semantics,
Springer Verlag, 2006, pp. 67-89.

[13] P. Lehti, and P. Fankhauser, “XML Data Integration with
OWL: Experiences and Challenges”, 2004 Symposium on
Applications and the Internet (SAINT 2004), 2004, pp. 160-
170.

[14] S.D. Camillo, C.A. Heuser, and R. dos Santos Mello,
“Querying Heterogeneous XML Sources through a
Conceptual Schema”, Proceedings of the 22nd International
Conference on Conceptual Modeling (ER 2003), 2003, pp.
186-199.

[15] M. Lenzerini, “Data integration: A theoretical perspective”,
Proceedings of the Symposium on Principles of Database
Systems (PODS), 2002, pp. 233-246.

[16] J. Lin, and A.O. Mendelzon, “Merging databases under
constraints”, Int. J. of Cooperative Information Systems, 7(1),
1998, pp. 55-76.

[17] D. Lembo, M. Lenzerini, and R. Rosati, “Source inconsistency
and incompleteness in data integration”, Proc. of the 9th Int.
Workshop on Knowledge Representation meets Databases
(KRDB 2002), 2002.

[18] B. Amann, C. Beeri, I. Fundulaki, and M. Scholl, “Ontology-
Based Integration of XML Web Resources”, Proceedings of
the 1st International Semantic Web Conference (ISWC 2002),
2002, pp. 117-131.

[19] L. Jian, and J. Beihong, “Query Division and Reformulation in
Ontology-Based Heterogeneous Information Integration”, 15th
International Conference on Computing (CIC '06), Mexico
City, Nov. 2006, pp. 186-196.

[20] A. Tomasic, L. Raschid, and Patrick Valduriez, “Scaling
Access to Heterogeneous Data Sources with DISCO”, IEEE
Transactions on Knowledge and Data Engineering, v.10 n.5,
September 1998, pp.808-823.

[21] E. Mena, V. Kashyap, A.P. Sheth, and A. Illarramendi,
“OBSERVER: An Approach for Query Processing in Global
Information Systems based on Interoperation across Pre-
existing Ontologies”, Proceedings of the 1st IFCIS
International Conference on Cooperative Information Systems
(CoopIS 1996), 1996, pp. 14-25.

[22] A. Anguita, L. Martín, J. Crespo, and M. Tsiknakis, "An
Ontology Based Method to Solve Query Identifier
Heterogeneity in Post-Genomic Clinical Trials", Proceedings
of the 21st International Congress of the European Federation
for Medical Informatics (MIE2008), Göteborg (Sweden), May
25-28, 2008, pp. 3-8.

[23] D. Perez-Rey, A. Anguita, and J. Crespo, “OntoDataClean:
Ontology-based Integration and Preprocessing of Distributed
Data”, Lec. notes in Computer Science 4345, 2006, pp. 262-
272.

[24] [SPARQL] SPARQL Query Language for RDF. Available at:
http://www.w3.org/TR/rdf-sparql-query/

[25] The OGSA-DAI Project. Available at:
http://www.ogsadai.org.uk/

[26] M. Antonioletti, M.P. Atkinson, R. Baxter, A. Borley, N.P.
Chue Hong, B. Collins, N. Hardman, A. Hume, A. Knox, M.
Jackson, A. Krause, S. Laws, J. Magowan, N.W. Paton, D.
Pearson, T. Sugden, P. Watson, and M. Westhead. “The
Design and Implementation of Grid Database Services in
OGSA-DAI”. Concurrency and Computation: Practice and
Experience, Volume 17, Issue 2-4, February 2005, pp. 357-
376.

[27] L. Martín, E. Bonsma, A. Anguita, J. Vrijnsen, M. García-
Remesal, J. Crespo, M. Tsiknakis, V. Maojo, “Data Access
and Management in ACGT: Tools to Solve Syntactic and
Semantic Heterogeneities Between Clinical and Image
Databases”, in Advances in Conceptual Modeling –
Foundations and Applications, Lecture Notes in Computer
Science, 2007, pp. 24-33.

[28] M. Brochhausen, G. Weiler, C. Cocos, H. Stenzhorn, N. Graf,
M. Doerr, M. Tsiknakis, “The ACGT Master Ontology on
Cancer - a New Terminology Source for Oncological
Practice”, in IEEE CBMS 2008: 21st IEEE International
Symposium on Computer-Based Medical Systems, Jyväskylä,
Finland, June 17-19, 2008.

356356348

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on July 8, 2009 at 07:57 from IEEE Xplore. Restrictions apply.

