
 

 

 

  

Abstract 
 

The problem of database integration has been widely 
tackled through different approaches. While data 
transformation based systems, such as Data Warehouses, 
reached the acceptation of the industry during the 80’s, in 
the last decade query translation based approaches have 
gained popularity given their adequacy to dynamic domains. 
While the former are based on gathering actual data in 
central repositories, the latter allow data to remain in the 
original databases. There still exist several issues to be 
tackled in query translation, mainly if no ad-hoc schema is 
described, such as problems with scalability and query 
processing. In this paper we describe a complete database 
integration and semantic mediation approach, borrowing 
techniques from both data transformation and local as view 
data translation methods, and addressing the cross 
referencing problem. This work has been carried out in the 
framework of ACGT (Advancing Clinico-Genomic Trials on 
Cancer) project, supported by the European Commission. 
 
1. Introduction 
 

Dynamic data environments, such as those related with 
many research activities, require database integration 
approaches that leverage the complexity in terms of data 
scalability and performance, as well as a means to maintain 
access to up to date information in the databases. For this 
reason, query translation based approaches have gained 
popularity in the last decade, even when some very 
important problems have not been already solved. There 
exist two main different ways to tackle query translation, 
namely Global as View [1] and Local as View [2]. In Global 
as View, an ad-hoc schema is created representing the 

 
 

complete integrated database set. By contrast, in Local as 
View standalone descriptions of the sources are built by 
means of a global model. When dealing with unstable 
database integration environments—i.e. where database 
schemas can change, or new databases can arrive into the 
system— Local as View based approaches behave better, 
since there is no need of updating the global schema. 
However, this type of approach leads to several problems 
that need to be taken into consideration. The main issue is 
scalability: in the worst case, all the local views need to be 
inspected to find the translation of each element in the 
original query. Another problem is related to expressiveness: 
the global model is a description of the domain, not and ad-
hoc description of the integrated repository (as in Global as 
View). This can lead to conflicts when a user formulates a 
query and what is queried is not contained in the underlying 
databases. Traditionally, Local as View approaches describe 
the way to translate the query, leaving aside the actual 
integration of results. In previous works, the data integration 
process has been defined as the union of the result sets 
retrieved from the produced queries. This implies that the 
simple union of the tables is equivalent to the results 
expected in the original query. Given the fact that most 
common query translation algorithms produce queries 
containing the variables of interest of the original query, this 
approach should work properly. However, there exist two 
situations where this is not so simple: a) there are variables 
in the original query translated to more than one variable in 
more than one database, 2) the original query contains 
constraints implying values from different databases (cross-
reference, aggregation…). It is not possible to satisfy such 
kind of constraints by simply using a union operation on the 
retrieved results. Some systems partially cover these cases 
by supporting the join operation of semantically equivalent 
fields. In our system, we address these issues by creating a 
projection of the intermediate results retrieved from the 
original databases, comprising an RDF repository. Final 
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results are retrieved using a query produced during the query 
translation process together with the dedicated queries for 
the underlying depositories. The results of this query are 
equivalent to the data expected to be retrieved from the 
original one.  

Our approach is based on the utilization of an ontology, 
acting as global model. The global schema is extracted from 
this ontology, using its underlying RDF Schema. This global 
schema has two main roles in the mediation process: 1) 
acting as semantic framework for the mapping process, and 
2) describing the complete universe of queries for the 
mediated database set. The use of ontologies for database 
integration has been widely studied and implemented in 
projects such as Ontofusion—carried out in our research lab 
[3] —, TSIMMIS [4] and KAON [5] among others.  

The main issue to tackle when trying to implement tools 
based on a Local as View approach is performance. It is 
known that query translation in the latter has NP-Hard 
complexity. This leads to a scalability problem difficult to 
cope with. In our tool, we restrict the set of queries by 
creating user profiles. These profiles are based in previously 
gathered user requirements, which are used during the 
mapping process to create customized integrated database 
sets. Given that the mapping process in Local as View is the 
less complex one among all query translation approach, 
updates are feasible if profiles need to be changed. Although 
not all the queries are available, the profile should allow a 
user to formulate all the different queries he/she may need in 
his/her work. Another problem that users frequently find 
when dealing with a Local as View based mediation system 
is the complexity of the global schema. In the ideal case, this 
schema is nothing but a description of the domain of data—
e.g. an ontology or the combination of several ones—. The 
schema exposed by our tool is indeed restricted to the 
allowed queries, being much simpler to understand and 
navigate.  

This paper is organized as follows. Section 2 presents a 
state of the art review in the field. Section 3 introduces the 
methods used in this system. Section 4 describes the tools 
developed. Section 5 shows a set of experiments illustrating 
the systems behavior. Finally, section 6 points out our 
conclusions.  

 
2. Background 
 

There exists a plethora of papers dedicated to the subject 
of heterogeneous database integration. Most systems 
designed for this purpose follow a mediation-based 
approach, where a global schema is used to define the space 
of possible queries that the system is able to cope with. In 
addition, mappings between the global schema and the 
schemas of the integrated sources are stored. These 
mappings contain the necessary information to translate a 
query in terms of the global schema—i.e. global query—to a 
set of queries in terms of local schemas. Global as View and 
Local as View are the two existing approaches to define the 
mappings. The final result of a global query is obtained by 
merging the results of the generated queries. Most papers in 

this area cover the problem of producing queries for the 
physical databases, but make little to none mention about 
how actual data are merged to produce a unique result set. 

Ullman [6] reviews the theoretical concepts that surround 
the query translation process in view-based integration 
systems. He considers global queries as a conjunction of 
predicates—no mention of additional constrains that bound 
the solutions to such predicates is made. The process of 
answering a query is described as a search of combinations 
of views contained in the original conjunction of predicates. 
Each of these combinations provides a partial solution to the 
original query. The procedure to obtain the final solution is 
stated in the paper as performing “the union of all these 
partial solutions”, but no further details on this topic are 
given. Xu [7] describes his own approach for a data 
integration system using a mixture of LaV and GaV 
approaches for query reformulation, however no mention 
can be found about how the final result is computed. Saw [8] 
presents his work for integrating heterogeneous XML data 
sources, focusing on coping with the structural differences of 
the schemas to integrate. No mention is made about how 
final results are produced. 

Some works briefly mention the process of obtaining a 
result to the original query by performing either a union of 
partial results—at most, a join operation is proposed. Halevi 
[9] proposes his bucket algorithm for performing query 
decomposition, stating that the result of this process is “the 
union of two conjunctive queries”. Pottinger performs a 
similar statement when describing her Minicon algorithm for 
query translation [10]. The same idea can be found in [11], 
where Cali describes his system for performing semantic 
integration of heterogeneous sources. Xiao, in his 
description of his own approach for integration of 
heterogeneous XML sources [12], states that the partial 
results are “integrated (by using union) to produce the 
answer to q”. Lehti, in his paper about integration of XML 
sources using OWL as global schema [13], mentions the 
necessity of defining join conditions when merging data 
from different sources. Camillo [14] focuses on the 
translation mechanism for producing a set of queries from a 
global query, mentioning also the necessity of including a 
mechanism “to unify query results coming from several 
XML sources into a single query result in accordance to the 
global schema”.  

Other systems do take into account global integrity 
constraints during the process of query processing and result 
merging—to cope with the problem of inconsistencies 
between sources. Proper join operations are performed when 
partial results share semantically equivalent fields. Lenzerini 
[15] mentions the inconsistent sources issue in integration 
environments, but makes no mention of cross-constrains 
solving. In [16], a method for merging partial results using 
integrity constrains is presented, however only cases where 
all integrated sources share the same schemas are described. 
In [17], a method for performing query processing under 
primary and foreign keys restrictions over the global schema 
is described. Amann et al. [18] present an approach for 
integrating heterogeneous XML sources. In it, global and 
local schemas are populated with key values. This allows 
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deciding, when possible, whether instances from different 
sources refer to the same entity, and thus require a join 
operation when merging the results. Jian et al. [19] use union 
and join operations to generate the final result from a set of 
partial results obtained from accessing the underlying 
databases.  

Some systems generate query processing plans which 
include relational algebra operators to merge the data 
obtained from local sources. In DISCO [20], scan, project 
and join operators over partial results are used in order to 
compose the final answers to user queries. Mena et al. [21] 
propose a system which performs data integration by storing 
partial results in an auxiliary SQL database, which is later 
queried using extended relational algebra operators in order 
to perform proper union of data. This system is however 
limited to relational databases which significantly limits its 
scope. 

Nevertheless, none of the mentioned approaches feature 
full cross-reference constrains in queries over the global 
schema. They consider semantic equivalence of fields only 
when these represent keys in the global schema, in order to 
avoid inconsistencies between sources in the final results. 

 
3. Methods 
 

Database integration can be divided in a set of different 
sub problems, tackled by different approaches. Among the 
most important sub problems we have identified schema 
level heterogeneity, instance level heterogeneity, 
performance in query translation and results retrieval, 
complexity of the mapping process and complex query 
constraints satisfaction. In our group we have developed 
different models and tools to deal with many of these issues. 
In this section we present the query translation and data 
integration complete method we use to cope with schema 
level heterogeneities and query constraints satisfaction. The 
other problems mentioned above are also tackled by our 
system (see section IV), but the specific methods are beyond 
the scope of this paper.  

This section illustrates the method used to obtain a set of 
results R from a given query over the global schema Q. The 
goal is to integrate all partial results from the local sources 
giving all possible information, while satisfying the 
constraints contained in Q. The process involves:  i) the 
generation of a set of queries in terms of the local databases 
integrated in the system, ii) the storage of the partial results 
that these queries generate into an auxiliary database, and iii) 
the extraction of the final results from this database. The 
procedure of translating a global query into a set of local 
queries has been covered in many previous publications [6, 
7, 9, 10, 11, 12, 14, 15]. The approach exposed in this work 
does not differ from them in the essence of query translation. 
However, complete support for cross constraints is provided 
by using an auxiliary database to store partial results. In 
[21], an auxiliary database is employed to store partial 
results, but only relational databases are supported, and only 
join constraints are applied over the auxiliary database. By 
contrast, our system integrates RDF-based databases—
which encloses the relational model—and supports any kind 

of constraint included in the global query, even when it 
involves data from different sources. 

Figure 1 depicts the schema of the complete process of 
answering global queries. 

 

 
 

Fig 1. General schema of the database integration system. 
 
The next subsections describe the process to obtain the 

set of local subqueries and the auxiliary query from a given 
global query, the generation of the auxiliary database for 
retrieving the final result, and the general algorithm followed 
by the system. 
 
3.1. Translation of global queries 

 
This subsection contains definitions which are later used 

to describe the general algorithm of the integration system. 
 

Definition 3.1 A query Q is a triple ሼܵ, ܸ,  ሽ, where S is theܥ
set of symbols representing the queried variables—in the 
SELECT statement—, V is the set of global views 
composing the query, and C is the set of constraints 
contained in the query. 

 
Definition 3.2 A view combination function α is a function 
that generates all possible combinations of views from a 
given set of views and a set of joining constraints: ߙሺܸ, ሻܥ ՜ ሼݒ௜|݅ݒ׌ଵ, ଶ݅ݒ א ܸ, ଵݎܽݒሺ׌ ൌ ଶሻݎܽݒ א ,ܥ ௜ݒ ൌ݆݊݅݋ ሺ݅ݒଵ,   . ଶሻሺ௩௔௥భୀ௩௔௥మሻሽ݅ݒ

 
Definition 3.3 A view translation function β is the function 
that translates global views into semantically equivalent 
local views—as defined in a given local description: ߚሺ݈݀, ሻ݅ݒ ՜ ݒሺ|ݒ ൎ ሻ݅ݒ א ݈݀, meaning ሺݒ ൎ  ሻ that v and݅ݒ
vi are mapped views in ld 
 
Definition 3.4 A query translation function γ is the function 
that generates all local queries and the query for the 
auxiliary database from a given global query and a set of 
local descriptions LD: ߛሺܵ, ܸ, ,ܥ ሻܦܮ ՜ ሼܳܮ, ܳ௔௨௫ሽ. The 
generated elements are LQ—the set of local queries—and 
Qaux—the query for the auxiliary database. 
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LQ is itself composed by three sets of elements: ܳܮ ൌሼܵᇱ௜, ܸᇱ௜, ᇱ௜|1ܥ ൑ ݅ ൑ ௟ܰሽ, being Nl is the number of local 
descriptions—mappings with local sources. S’i represents 
the set of queried variables in local query i, V’i is the set of 
views in local query i and finally C’i is the set of constraints 
in local query i. We define these as follows: V’i is the 
translation of the views in V with ldi. ܸԢ௜ ൌ ሼݒԢ௝|݅ݒ׌ ,ܸא ,ሺ݈݀௜ߚ ሻ݅ݒ ൌ  Ԣ௝ሽ. C’i is formed by constraints containedݒ
in C whose complete set of variables exist in at least one of 
the views of the local query: ܥԢ௜ ൌ ሼܿᇱ௝|ܿᇱ௝ א ,ܥ ݎܽݒ׊ ݎܽݒ | ᇱ௞ݒ׌ ᇱ௝ܿא א  ᇱ௞ሽ. These are the necessary constraintsݒ
for correctly performing query i. Finally, the queried 
variables in the local query ܵᇱ௜ are in first place the 
intersection of the queried variables in the global query with 
the variables contained in the set of local views ܵ  ᇱ௜ —of course global variables are previouslyܸ݊ܫݏݎܽݒת
translated according the local descriptions. In addition, 
variables from cross constraints—those that affect variables 
from more than one local source—must be queried too, since 
those constraints are treated a posteriori ሼݎܽݒ௝|ܿ׌ ,ܥא ,௞ݎܽݒ׌ ,ᇱ௟ܸ׌ ,௝ݎܽݒ ௞ݎܽݒ א ܿ, ௝ݎܽݒ א ܸᇱ௜, ௞ݎܽݒ א ܸᇱ௟ሽ.  

The other product of function γ is Qaux which, again, is 
composed by a set of queried variables, a set of views, and a 
set of constraints: ܳ௔௨௫ ൌ ሼܵ, ௔ܸ௨௫,  ௔௨௫ሽ. The queriedܥ
variables are the same as in the original query, as this query 
must provide the result for that query. The views in Qaux are 
the projection of the variables in S in S’i: ܸ ൌ ሼߎௌᇲ೔ሺܹሻ|1 ൑݅ ൑ ௟ܰሽ, where W is the table containing all the variables 
from the original query. Finally, Caux is the set of cross 
constraints, that is, constrains which affect views from 
different local queries: ܥ௔௨௫ ൌ ሼܿ௜|ܿ௜ א ,ܥ ,ଵݎܽݒ׌ ,ଶݎܽݒ׌ ׌ ଵܸ א ܸᇱ௝, ׌ ଶܸ א ܸᇱ௞,ݎܽݒଵ, ଶݎܽݒ א ܿ௜, ଵݎܽݒ א ଵܸ, ଶݎܽݒ א ଶܸሽ. 

Therefore, given a global query Q posed by the user, the 
process of translating Q to generate a set of subqueries 
expressed in terms of the underlying databases is first 
applying function a—to generate all combinations of global 
views—an function c—to generate the set of local queries. 
This process also produces the auxiliary query, used to 
retrieve the final results from the auxiliary database. 

 
3.2.  Generation of the auxiliary database 
 

The RDF-based auxiliary database is populated with the 
results retrieved from the local sources. The purpose is to 
obtain the result to the original query from it. The data 
stored in it is subsequently retrieved with an auxiliary 
query—which details were given in the previous 
subsection—, enabling the use of cross constraints. 

The population of the auxiliary database implies two 
steps: i) a sequential input of each of the partial results 
obtained from the underlying databases, and ii) the 
generation of the RDF database representing the integration 
of such results. During the first step, an internal structure 
storing the contents of the included partial results is 
maintained. Each time a new result set is added, its rows are 
added—or merged if necessary—to the rows of previous 
results stored in this structure. The procedure to decide 

whether a new row must be merged with an existing row is 
as follows: the intersecting values of both rows are 
examined—i.e. the fields containing values in both rows—, 
and if in every field the values are equivalent, then the rows 
are merged in a single row resulting from the union of both 
rows. This process provides the simplest form of data 
integration, as the task of detecting inconsistencies or errors 
in the integrated data is handled by other tools in the 
system—see section IV. Once all partial results have been 
added, the second step is executed. An RDF database is 
created from the contents of the internal structure. This RDF 
contains a unique class ResultSet. For each of the fields in 
the integrated results, a datatype property is added to this 
class. Finally, each row in the internal structure produces an 
instance of the ResultSet class, filling its datatype values 
with the values in such row. The resulting RDF database 
effectively holds the integration of the partial results 
acquired from the local databases, and thus can be queried to 
obtain the result to the original query posed in the system. 
Figure 2 represents the process of integrating the individual 
resultsd and generating the RDF auxiliary database. 
 
 

 
 
Fig 2. Generating the RDF Schema of the auxiliary database from the result 

of several local sources 
 

Special care is taken in order to preserve the types of the 
extracted data in the generated auxiliary database. The 
datatype elements associated to the underlying databases 
fields are typed accordingly to such fields. At the end of the 
process, the auxiliary database acts like a temporary global 
database, storing the collected and integrated data for a 
single query. 

 
3.3. General algorithm 

 
Having described all elements and functions that take part 

in the process of answering queries posed in the system, we 
can now define the general algorithm followed by the system 
to obtain a result from a global query. 

 
 
 
 
 
 

352352344

Authorized licensed use limited to: Univ Politecnica de Madrid. Downloaded on July 8, 2009 at 07:57 from IEEE Xplore.  Restrictions apply.



 

 

 

Given Q: a global query posed in the system, composed 
by S—the set of queried variables—, V—the set of views 
composing Q—and, C—a set of constraints over variables in 
V. 

Given LD: the set of local descriptions containing the 
mappings between the global schema and the schemas of the 
local sources. 

1. Apply function α to V and C in order to obtain all 
possible combinations of views. Use the newly 
generated set of views in Q instead of V. 

2. Apply function γ to Q and LD in order to obtain the 
set of local queries LQ and the auxiliary query Qaux. 

3. For each local query Qi in LQ: 
a. Launch Qi against the local source, 

obtaining the result Ri. 
b. Generate the part of the RDF Schema of the 

auxiliary database corresponding to Ri. 
c. Populate the auxiliary database with the 

data rows contained in Ri. 
4. Perform query Qaux over the auxiliary database, 

obtaining the results R. 
5. Return R. 

4. Tools 
 

The ACGT Semantic Mediation layer is comprised by 
several tools designed to answer and optimize queries. 
Database integration can be divided in a range of sub 
problems that mostly need to be solved using different 
approaches (see section III). In our system we have 
developed a range of collaborating services supporting the 
different aspects of the general task. These services interact 
with the query and data to obtain consistent results. The 
architecture of the ACGT Semantic Mediation Layer is 
shown in figure 3. 

As can be seen, the Semantic Mediator acts as the core of 
this system, enabling interactions with the rest of tools. 
OntoQueryClean [22] and OntoDataClean [23], two systems 
developed in our group and reported before, are both 
devoted to solve instance level heterogeneities. Their 
services are invoked by the mediator when necessary, using 
the defined interfaces. Although it is not within the query 
translation process itself, we have decided to include the 
Mapping Tool as part of the system, given the importance of 
the mapping process in mediation. The mapping tool aids in 
the construction of mappings between the global schema and 
the data repositories. By using these mappings, the mediator 
is able to automatically produce the required local views and 
restricted global schemas, necessary for the given database 
integration approach.  

 

 
 

Fig 3: Architecture of the Semantic Mediation Layer 
 
The interfaces used for communicating the services, both 

internally and externally, are based in web service 
technologies. An entity acts as a client of a service if it needs 
something or as a supplier when it is needed. The main 
internal client of the ACGT Semantic Mediation Layer is the 
Semantic Mediator, given that it coordinates the work of all 
the other components. The Semantic Mediator requests, for 
example, to OntoDataClean to homogenize a set of retrieved 
data before proceeding with its integration in the general 
result set.   

Data representation in the ACGT Semantic Mediation 
Layer is based on RDF. We use an RDF Schema (RDFS) to 
represent the data structure. This global schema represents 
the possible queries that a client can formulate.  The user 
then gets the perception of querying a unique RDF 
repository. Regarding the query language, SPARQL [24] 
was chosen due to its intermediate level of expressiveness 
and suitability for general purpose applications, as the 
integration of heterogeneous data sources. A query in 
SPARQL contains a description of a subset of the global 
schema in terms of views. Each one of these views has a 
meaning that is mapped to the corresponding view in one or 
more underlying databases. The SPARQL query contains a 
description of the structure of the results and a set of 
constraints.  

This software was built using java technologies, and is 
exposed as an OGSA-DAI service. The Semantic Mediator 
is the core tool of this layer. It has two main services: 1) to 
launch a query, and 2) to browse the schema. The former 
offers the possibility of sending a query formulated in terms 
of the global schema for a given integrated set of databases. 
The Semantic Mediator returns the results in a selected 
format, together with a metadata file, containing semantic 
annotations for these data. The second service shows a 
restricted version of the global schema, representing only the 
queries that are possible in the integrated database set 

Requests are sent to the Semantic Mediator in form of an 
OGSA-DAI request document [25, 26]. This document 
contains a very simple workflow, comprised by OGSA-DAI 
activities. In the case of the Semantic Mediator, this 
document contains a chain of activities invocations 
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specifying things like the query, in which form the client 
wants results to be retrieved or where they have to be 
delivered.  

 
5. Experiments and results 
 

In this section, we address the issue of proving the 
feasibility and fitness of the selected approach, together with 
the performance of the presented tools. We have tested our 
system with a range of heterogeneous databases of the 
biomedical domain. Previous experiments, including image 
(DICOM) and relational sources, with preliminary versions 
of the system were performed and documented [27]. To 
achieve this goal, we have classified the different types of 
conflicts that can be present at different levels.  

We identify four conflict categories: a) instance level 
conflicts, b) schema level conflicts, c) instance-schema 
conflicts and d) cross constraint conflicts. Instance level 
conflicts can be present in the retrieved data or in the 
original query. These conflicts are treated by OntoDataClean 
and OntoQueryClean tools. Experiments in this area have 
been documented in previous works [23, 24]. Schema level 
and instance-schema level conflicts are registered in the 
mapping files and solved by the mediation algorithm. A 
schema level conflict is a semantic heterogeneity among two 
or more databases related to elements in their schemas. 
When a schema element in the global schema needs to be 
mapped to instance level knowledge in an underlying 
database, we say that we have an instance-schema conflict. 
These conflicts are solved at the mapping level as well. 
Finally, we find a cross constraint conflict when the original 
query contains a restriction that involves information from 
different databases.  

In our experiments, we have selected as global schema 
the semantic core of the ACGT platform: the ACGT Master 
Ontology on Cancer (MO) [28]. This ontology covers the 
domain of clinical trials on cancer, so we built ad-hoc 
databases in this field presenting the different cases of 
heterogeneity included on purpose. This way, we knew the 
expected results for every query, being able to evaluate the 
behavior of the system.  

 
5.1. Case Study 
 

This subsection presents in detail the execution of one of 
the tested queries, explaining how the system acts in each of 
the steps and what products are obtained from it. Figure 4 
shows the global query performed in the system. 

 
Fig 4: Global query involving data from two repositories 

 
This query retrieves data contained in two different 

repositories. Namely, the patient’s personal data, including 
age, and the date of registration are stored separately from 
the date of diagnosis. Data from these sources is related by a 
patient identifier field. From the two constraints contained in 
the query, the one involving only the age of the patients can 
be dealt directly in the sources. The second constraint 
however involves data from more than one source, thus must 
be tackled a posteriori—it will be appropriately included in 
the auxiliary query. 

The system identifies the elements contained in the query 
and applies the mapping information in order to generate the 
queries for the local repositories. The query for the first 
repository retrieves the patient’s id, , age and registration 
date, properly restricting for values of age greater than 35. 
The query for the second repository gathers patient 
identifiers together with dates of diagnosis. The results 
obtained from these two queries are partially shown in figure 
5.  

 
Fig 5: Part of the result sets obtained with the generated subqueries 

 
These results sets are integrated as described in section III 

in order to generate the auxiliary database. In this case, the 
only intersecting field is the patient id, thus two different 
rows will be merged when this value is equivalent in both. 
The result will be rows with four fields: the shared id, the 
age and registration date from the first result set, and the 
diagnosis date from the second result set. Figure 6 depicts 
the contents of the internal structure after having added both 
results. 
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Fig 6: the previous step to the auxiliary database generation produces an 

internal structure storing the integration of all results sets 
 
The next step is producing the actual auxiliary RDF 

database from the contents of the internal structure. This 
involves generating one class with four datatypes—one for 
each of the previous fields. The id and age datatypes are of 
integer type, while reg_date and diag_date store date values. 
The schema of this database is shown in figure 7. 

 

 
Fig 7: auxiliary database RDF Schema for the presented example 

 
For each row of integrated results an instance of the 

ResultSet class is generated. Thus, for example, the first row 
in figure XXX produces an instance whose datatype values 
are respectively instantiated to ‘1’, ‘45’, ’12-05-2005’ and 
’01-02-2005’.  Parallel to the population of this database, the 
system automatically generates the auxiliary query, devoted 
to extracting the final results from the auxiliary database. 
Figure 8 shows the auxiliary query generated for this 
experiment. 

 

 
Fig 8: auxiliary query generated by the system  

 
 This query includes the second constraint contained in the 
original query, since it could not be treated by the individual 
sources. This way, we ensure that the results obtained from 
this query represent indeed the results corresponding to the 
global query posed by the user. Fig 9 shows the results 
retrieved from the auxiliary database. 
 

 
Fig 9: final results retrieved from the auxiliary query and returned by the 

system 
 

As can be seen, the results contain the product of a proper 
merging between the partial results of the two involved local 
repositories. The identifier field was used to perform the join 
of similar data. The cross constraint was successfully 
processed, and no unexpected data was included in the final 
results.  

 
5.2. Results 
 

We built two integrated repositories presenting different 
types of heterogeneities using the databases mentioned 
above. A set of queries were designed to test the behavior of 
the system in different scenarios. These queries tested not 
only isolated heterogeneities, but also cases of combination. 
The system was running in a single Intel Core 2 Duo 3Gb+, 
8Gb RAM computer. A set of 20 queries were built to test 
the different cases of heterogeneity present in both 
repositories.  
 In all cases, heterogeneities were solved and constraints 
were satisfied. The automatic construction and storage of the 
temporal repository did not lead to complexity problems. 
However, no formal tests regarding performance were done. 
We understand that the creation of the temporal repository is 
not more complex than unifying separate results directly. We 
plan to study performance issues in future studies.  
 
6. Conclusion 
 

Classical Local as View database integration approaches 
are based on union operations to join the individual results 
and build an integrated data set. In this work we present a 
method uses a temporal RDF data repository to allow more 
complex constraints in the original query, involving data 
from different data sources. In future releases of our system, 
we plan to include features such as aggregation operators. 
Although aggregation is not yet supported by SPARQL, this 
type of specifications could be easily added to the query 
system, and applied directly to the temporal repository.  
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