Discovering Program’s Behavioral Patterns by Infering Graph-Grammars
from Execution Traces

Chunying Zhad Keven Ated, Jun Kong, Kang Zhang

The University of Texas at Dallas ’North Dakota State University
{cxz051000, atescomp, kzhang }@utdallas.edu jun.kong@ndsu.edu
Abstract of program behaviors. The inference learning apgres,

specifically grammar induction, can address thizbfam,

Frequent patterns in program executions represent Pecause grammar induction is an iterative process o
recurring sequences of events. These patterns earsed ~ building a parse tree from given sentences in ahguage
to reveal the hidden structures of a program, aadeethe ~ under study. The sentences can be considered #@gos
comprehension of legacy systems. Existing grammar-samples in the language so that a set of gramnaarde
induction approaches generally use sequential algors ~ inferred from the samples. When analyzing software
to infer formal models from program executionsyinich behaviors, one can interpret events as tokens,eapdt
program executions are represented as stringsw@odt Streams as sentences in the language, then alrextatag
developers, however, often use graphs to illustihie becomes evident [3]. The intuition behind gramnisuthat
process of program executions, such as UML diagrams @ parse tree forms a hierarchical lattice, wheehila node
flowcharts and call graphs. Taking advantage ofpirsl represents a more detailed substructure while enpaode
expressiveness and intuitiveness for human cognitie is the abstraction of its children contents. Ashsua
present a graph-grammar induction approach to hierarchical lattice formed by a grammar can rewéddien
discovering program’s behavioral patterns by anaiyz structures of program behaviors. Discovering thddén
execution traces represented in graphs. Moreover, t Structures of program behaviors can ease the tabks
improve the efficiency, execution traces are alsém to maintenance and comprehension. The inferred grasamar
filter redundant or unrelated traces. A grammar tistion can also help to model formal state machines tailsi®
environment called VEGGIE is adopted to facilitahe Program behaviors.
induction. Evaluation is conducted on an open seurc Researchers have used grammar inference techrtimues
project JHotDraw. Experimental results show the discover program behaviors. A foundation work byoko

applicability of the proposed approach. et al.[3] proposed using event-data in the form of aangév
stream, collected from software’s execution, toeinf
1. Introduction formal behavioral model. They cast the behaviocaiery

problem to the discovery of a grammar for a regular
language from given example sentences in that Eggu
[3]. A most recent work by Walkinshaet al.[13] inferred

the state machine representation of a softwareutioec
using an interactive grammar inference approacim fro
execution traces. Their work is based on the gramma
inference algorithm (QSM) of Dupogrt al [4], which
takes an initial manually generated scenario remtesl in
strings as an input, and uses it as a basis toaotieely
generate a state machine for the whole system.

Existing approaches demonstrate the feasibilitysirfig
grammar induction to infer software behaviors from
execution traces. They mostly derive grammars from
sequential textual datasets, and do not take aalgandf
the graphical representation of program behavi@raphs
have been used extensively for program represenati
such as UML diagrams, flowcharts and call graphs, e
Visual representations in diagrams and graphs someet
convey more information than texts to human’s ctgmi

Mining frequent patterns plays an important roledta
analysis by identifying recurring and meaningfelnit sets
in a large dataset. It has many successful apitatin
various research areas, such as natural languagessing,
DNA sequence interpretation, and social networkyasisg
In particular, research has shown several sucdessfu
applications in software engineering. The literatwon
software engineering, especially in reverse engingeind
program analysis, reflects a clear trend towaradshining
machine learning techniques with domain knowledfe o
software engineering. Frequent pattern miningrie of
the important reverse engineering topics [10][11].

So far, conventional techniques for pattern minimg
software engineering generally focus on recovesingjlar
structures scattered in the program. The orgaoizatif
these substructures, i.e., interactions and coiomsct
among these patterns and other components in gtensy
however, is also important, especially in dynamielgsis

Hence inferring grammars from graphical
behaviors is desirable.

Graph grammars systems have been well-establisined f
decades in graphical reasoning and parsing tecésiqu
They are expressive in describing program’s behavio
terms of diagrammatic grammar rules. Inferred gransm
can expose the hidden structure of a given graphsda
Supplemented by a parsing system, the inferred meam
can be validated and used to automatically parkerot
datasets to verify structural properties.

We adopt VEGGIE [1][2], aVisual Environment for
Graph Grammars: Induction and Engineerintp infer
graph grammars from program execution traces. VEGGI
essentially incorporates two subsystems: SubdudHI][
and SGG [8][9]. The former is a context-free graph-
grammar induction system, and the latter is a otnte

program

Visual programming languages allow developers ® us
graphical elements such as diagrams, boxes andsatoo
represent program design and structures. Visuguges
are advantageous over traditional text-based layepia
because of their expressiveness in visually reptegp
structures and high-level patterns. The core cdscep
visual languages include the construction and parsif
graph grammars. Graph grammars extend Chomsky’s
generative grammars into the domain of graphs.ebsfit
from string grammars expressing sentences in aesequ
of characters, graph grammars specify syntacticttres
in terms of diagrammatic rules. Each rule is calked
productionthat consists of keft graphand aright graph

A grammar can be context-free or context-sensitive.
The difference between context-free and contexsitea
grammars is that the latter allows for more thare on

sensitive graph-grammar parsing system. The currentsymbol in the left graph while the former allows fanly

implementation of the integrated visual environment
VEGGIE facilitates the (semi)automatic discovery of

one. The left graph of a context-sensitive gramshenuld
be lexicographically smaller than the right grapretisure

program behaviors represented in context-free graph the termination condition in parsing.

grammars. We are current extending the inductiaginen
to handle context-sensitive grammars.
SubdueGL’s substructure matching algorithm by
annotating graphs with temporal attributes sincéada
describing program executions naturally have tempor
attributes. To improve the induction performance, wse
an abstraction scheme to reduce redundant andatedel
traces before the grammar induction.

The contribution of our work includes:

¢ A graph-grammar induction approach to
discovering program’s behavioral patterns.

¢ An abstraction scheme for enhancing the
efficiency of grammar induction.

¢ An adapted graph-grammar implementation for the

Each graph grammar has it own specifications. We us

We adaptthe Spatial Graph Grammar (SGG) [9] to illustrakated

concepts. The SGG is a context-sensitive graph meam
formalism, capable of specifying various types cdpins
with both logical and spatial types of relationshi he
SGG formalism is expressed in a node-edge format as
shown in Figure 1. Nodes are organized into a wvell
hierarchy, where a large rectangle representingntiae
itself is the first level with embedded small rexjkes as
the second level calledertices Figure 1(a) depicts a
typical SGG node including two vertices. In a nodach
vertex is uniquely labeled. A node can be viewedaas
module, a procedure or a variable, depending oxléiseyn
requirements and object granularities. A vertexcfioms

proposed approach, and experiments on an oper®S a port to connect other nodes by edges. Edges ca

source software JHotDraw.

The remainder of this paper is organized as follows
Section 2 introduces the background of visual laggs
including the Spatial Graph Grammar (SGG) [9] and
graph-grammar induction. Section 3 describes anviwe
of the approach. Section 4 presents the graph-gaeamm
approach to discovering the patterns of progranatiehs
with a running example. Section 5 reports the prielary
results of an experiment performed on an open sourc
software JHotDraw. Section 6 reviews related wonkl a
Section 7 concludes the paper.

2. Background

2.1. Visual Languages and Graph Grammars

denote any communications or relationships between
nodes.

Vertex [Lof
P1
d .
S s | |
L B
Node P
(a) A node (b) A Production

Figure 1 Spatial graph grammar representation

Figure 1(b) is a typical production with a left ghaand
a right graph. Applying a production to a given laggtion
graph can be called drrapplication (i.e. replacing a sub-
graph in the application graph that matches thiedefph
of the production by the right graph) Brapplication (i.e.
replacing a sub-graph in the application graph thatiches
the right graph of the production by the left grapA

visual language, defined by a graph grammar, can beextual information like strings, graph grammaruation
derived by usingL-applications from an initial graph, works on graphs, and produce diagrammatic rewriting
usually represented by a special symbolOn the other rules (i.e. productions, where aforementioned LK $he
hand,R-applicationsare used to verify the membership of left graph and RHS is the right graph). In a grggmmar,
a graph, i.e. grammar parsing. If a given graph is a graphG can be denoted as a tupl,<€> whereN is the
eventually transformed into an initial graph, tharging set of nodes anBl 0 N x N is the set of edges in the graph.
process is successful and the graph is consideved tA production ruler is in the formaS:= P, | P,.... BothS
represent the type of design with the structurapprties andP; are graphs. Graph grammar induction benefits from
specified by the graph grammar. the graphical properties of some standard repratens
Due to the multi-dimensional nature of graphs, of program behaviors, e.g. call graphs. Figure @wsha
mechanisms are needed to address the embeddirgimssu call graph and its two inferred productions.
subgraph replacements, i.e. establishing relatipash

between the surrounding of the replaced subgraphitan
replacing subgraph in the given graph. The SGGeades
the embedding issue by a marking technique [9]aln
production, a vertex is marked by prefixing itsdbtwith a
unique integer as shown in Figure 1(b). The SGGegrar
has a polynomial computational complexity [9].

2.2. Grammar Induction

Grammar induction also known asgrammatical
inference is a particular instance of inductive learning
which can be formulated as the task of iteratively
discovering common structures in examples [4]. His t
case, a set of examples, also calfsbitive samples, is
usually a set of strings defined on a specific algt. A
negativesample is a set of strings not belonging to the
target language [4]. Informally, grammar inductids
defined as [3]:

Given some sample sentences in a language, and

perhaps some sentences specifically not in thajuage,
infer a grammar that represents the language

The development of grammar induction gain lots of
algorithmic supports from machine learning techei&ju
Induction algorithm iteratively finds common sulbstiures
from a given set of data, and organizes the hidden
hierarchical substructures in a grammatical way.eiWh
common frequent substructure is found, a grammar
production will be created. This newly created i&ng
rule consists of two parts: left hand side(LHS) and a
right hand side(RHS). The substructure consisting of
terminal symbols identified from the given data péas is
represented as the right hand side of the productiad
new non-terminal symbols will be created as theHahd
side. Then the newly-created production will belegopto
current dataset, i.e. a match of RESwill be replaced by
the LHS. The procedure opattern mining — production
creation — substructure replacemewill be recursively
performed on the original dataset until there arly aon-
terminal symbols, or a threshold, i.e. a stop ddte
defined by the wuser, is reached. Different from
conventional grammar inductions that primarily wark

o fco

Figure 2 A graph with an inferred grammar

3. Approach Overview

Figure 3 is the overview of our approach. The dVera
process includes four stepdrace collection trace
preprocessinggrammar inductionandgrammar parsing

GraphML
L
1t Abstracted
T call-graph
Aspects
repository
H_J

Trace collection Trace Preprocessing

. o= Graph-gramma|
Parsing e parsing = j— induction
Productiony |subystem o
VEGGIE
Y —

GrammarValidatior Grammar hductior

Figure 3 Overview of our approach

An aspect-oriented approach is used to collectrarag
traces as it has less perturbation to the prograiernstudy
than those putting extra tracing codes into theyioai
program. We first build an aspect repository. Tmgci
aspects are then compiled together with the scxode to
generate execution traces, and saved in text filiésr that,
the traces are reconstructed into a call-graphesgmted in
a linked-list. Objects and method invocations areoeled

as attributes of the nodes and edges in the cafigrTo To be compatible with the input data format in the
support scalability, a filter is used to preproctss raw VEGGIE system, the call graph is converted into the
data by removing loops and pruning low-level braasch GraphML format. The information of objects and nueth
the call-graph, and produce an abstracted calllgrape invocation corresponds to the GraphML syntax, sash
abstraction is tunable by users with adjusting paters. elements, attributes, nodes, and edges, etc. kdkera

To be compatible with the data format used in the node representing an object in method invocation in
induction system, the abstracted call graph is thenGraphML has attributes on threads, objects andsefas
converted to a GraphML format. GraphML is an exiems Similar to the edges in call graphs, edges in Qviiph
of XML, and is specialized in describing the struat connect two method invocations. Each edge is diceahd
properties of graphs. Strictly complying with Grafih explicitly connecting a starting node and an endiade.
specifications, the graph dataset is used as art topthe Data Abstraction:In traditional analysis of software
graph-grammar induction subsystem of VEGGIE. The execution, developers would notice that there sgxist
induction subsystem implements a common substrictur redundancy in execution traces, but they may bevarea
mining algorithm. In addition to the isomorphismrfo of the impact of redundancy manifested themselh®s a
common substructures, we augment nodes in substesct noise in the mining process. To facilitate the itiin
with temporal attributes. Therefore, a set of graph process, we need to create a concise representdtibie
grammar rules could be inferred. To validate theamgnar, program by pruning unrelated information that does
the SGG in VEGGIE is used to parse the given tracescontribute to the structural features. We used an
represented in graphs based on the inferred grasnmar abstraction mechanism for method invocations capltum
valid parsing result indicates the syntactic cdmess of program execution. It includes two abstractionetidt

the inferred grammar against its corresponding ammg ¢ continuous repetitions;

executions. ¢ low-level methods.

4. Methodology

This section explains how to apply the graph-gramma
induction approach to discovering the structures of
program behaviors using a running example.

divide > multiply

4.1 Program Preprocessing

Data Acquisition To define an instrumentation aspect Figure 4 A call graph of a toy program
using AspectJ, we declare (1) join points (i.e. shecific
points in the execution of the program), (2) pairsc(i.e.
the collection of join points), and (3) advice (itee piece
of code that is executed when a pointcut is regchBuke
following information is recorded for each method
invocation:

e Class, object, method, and thread names, and

arguments. multiply }Y getNum
e Method invocation: enter-exit of static and nortista

method.

Call graphs can be derived from the nested relstiips
of the enter-exits of method invocations.

Data Representationintuitively, data traced from a
running program records the actual behaviors oéatbjin
the program. Hence the caller-callee relationshiprag Eliminating the redundant or fine-grained structucan
objects in terms of call graph can be used to tithte help the later induction to focus on the high-level
program scenarios. Initially the call graph is shve a behaviors. It can also avoid mining the behaviadrkcal
linked list. Each caller maintains a pointer to lread its components. Figure 5(a) shows an abstracted griieh a
callees. For instance, Figure 4 is a call graphadby removing the repetition on methoaddOne Similarly,
program. using the second abstraction criterion, methods datpths

in a call chain greater than a user-specified Hulelscould

The first type is to reduce the possible redundaces.
The second one prunes unrelated sub-branches mghid
low-level details. For instancaddOneandgetNumcan be
considered as details with respectntiltiply. It allows
developers to decide whether to reduce them or not.

multiply

(a) Reducing loops (b) Reducing low-level branches
Figure 5 Loop abstractions on the call graph

be pruned. Figure 5(b) shows an abstracted cgblhgadter
being pruned off the third-level branches. Users ca
choose not to prune sub-branches, so that theraotst
multiply-getNum-addn this example could be a recurring
structure.

4.2 The Grammar Induction System
Inferring meaningful grammars from graphs imposes

great challenges. Several issues need to be addreden
inferring a graph-grammar, such as the selectiod an

graph grammar productions. Details of SubdueGL
algorithm can be found in Jonyer [6]. The most fiexat
substructure does not necessarily compress thén dregt.
For instance, the ratio of compressing substrustofesize
one with a frequency of five is less than compressi
substructures of size ten with a frequency of titence
frequency is not always the best factor in graph
compression. The beauty of this grammar inductjtesn
lies in that it has the most powerful compressiapability,
and needs the least amount of iterations to redugeph

to the minimum.

replacement of subgraphs. To address these problems

graph-grammar induction uses graph-based substeuctu
mining algorithms instead of sequential based minin
techniques. Aubstructures defined as a representation of
the recurring subgraphs. Amstanceis defined as one
instance of such substructure in the graph dajaket

4.3 Patterns with Temporal Properties

Behavioral patterns describe activities that happemn
order. To reflect this, we adapted the SubdueGhrignm
by augmenting patterns with temporal attributesth@dit

The substructures produced from grammar inductiontemporal ordering, the inferred common patterns maty

procedure reveal hidden recurrent patterns withéngraph
dataset. The hierarchical relations within the greamncan
aid developers
construction of large and complex legacy systentmse

be correct even if they are isomorphic.
We attach logical timestamps to a sequence of syent

in understanding and analyzing thekeep track of the events order. For instance, aeseg

that action A happened 5 seconds before actiorisB

grammars can also be used to create size-constraineconsidered the same as that a sequantien A happened

graphs to simulate the growth of a system. Furtbeem

2 seconds before.B

researchers can compare the inferred grammar &gains Each substructur& is represented as a tupl®& <E>

predefined grammar rules, if exist, for the systemerify
the designs.
The variety of substructure mining algorithms [10]

where N is a set of nodes, and is a set of edges
connecting nodes in the substructure (i.e. subgrdpdch
node in the subgraph has one additional attribute:

results in several graph grammar induction systemstimestamp represented by for noden;. The timestamp is

[6][14][5]. For instance, Liet al. [10] use frequent
subgraph mining to find substructures. Instead sifigi

generated when the node is produced. In the GraphML
representation, each node in the graph will haviantager

frequency, the VEGGIE's subsystem SubdueGL uses aimestamp. A node vectolg represents an ordered

compression-based frequent pattern discovery afgorio
identify substructures, and compresses the sulbstasc
having the highest compression ratio [6].

sequence of nodes within the substruc@re.e.v; = {ny,
N, Ng,..., N} where t; < t,.. That means; happens before
n;. Two substructure®, = {Ny, E;} and G, = {N,, E;} are

SubdueGL emphasizes on the compressing of graplcommon structures if and only if they are isomocpdind

datasets instead of purely searching for the fregue
subgraphs. The compression value for each substeurst
calculated based on a minimum description lengtBI(M
and the substructure with the highest compressainev

have the same node vector.

The time attribute is considered when grammar
induction performs subgraph matching. For instaribe,
two graphs in Figure 6 where integer figures regmes

among the competing substructures are selected. Théogical timestamps are not common structures sthee

substructure found in each iteration may not be st
frequent substructure but
compression ratio for the given graph, i.e. theiorat
between the original and resulting graphs afterirferred

subgraphs are compressed. By iteratively discogerin
substructures with the largest compression ratio,

SubdueDL replaces subgraphs in the given graph. The

iterations ultimately turn the given graph into aremore
non-terminal nodes, or no qualified substructurgiste

node vectorsNultiply, getNum, addOneand Multiple,

it can produce the bestaddOne, getNujrare not equivalent.

1

2 3

4
Multiply

6 5

Figure 6 Two graphs with temporal attributes

Users can also set the threshold for the number of
interactions. The steps of compression constitute a4.4 Grammar Validation

structural hierarchical lattice that correspondsatset of

Grammar validation is a process of checking the <edgetype="E" directed="false” source="1" target="2
syntactic correctness of the grammar by parsingnpies </gra5pc;]”>r°e‘°°":"{ma'”}" targetport="{multiply}'/>
in the language. We employ the SGG to parse thengiv. /g apnmi>
traces represented in graphs based on the inferred
grammars. A valid parsing result ensures the stiotac The VEGGIE grammar system has a user-friendly
correctness of the inferred grammar against its interface which includes three parts as shown gureés 7,
corresponding program execution. 8 and 9: the type editor, the graph editor, andgtiaenmar

The SGG initially developed independently for visua editor. These editors are closely related and sesmiyi
languages and spatial parsing reasoning [9], han be working together.
integrated in VEGGIE. The parsing system sharesanee
visual interface with the induction system, but keor BB YEGGIE [Version 1.0)
independently. Therefore, SGG can be used to ctiexk s e
correctness of the inferred grammars. Moreover, the ; T
context-sensitivity makes the SGG powerful enough t
parse any context-free grammars inferred by thedtidn
process.

The SGG can also be used to check the structure of
other programs. For instance, if developers warthteck

Modes |
{Rookk |
head

main

roulkiply

gethum

addone

prink |
divide

I EEEEEER]

e m|
if a new program satisfies the constraints spetifig the = =
inferred grammar, they can use the inferred pradostto
parse the new program. A valid parsing result me¢hat T _
the program satisfies these properties. [Types]| Grammar || Sroch | Hegative Graph |

4.5 A Supporting Environment

A data preprocessor callebstraceris built for data
collection and preprocessing, including tracing sgstem
under study, producing logs, reducing redundantreoise
traces with tunable parameters, and generating Hthp

files. Following the terminology of GraphML spectition, &
we represent the caller-callee relationships infthien of e
schemas where objects and method invocations arq| e cams |G| fiegative craph|
denoted as nodes and edges, respectively. Therenir 0 Production rudes | o |
starting and ending points for each edge withoytather » %
attributes. Therefore the method names are incliréde e
corresponding nodes’ attributes. Each node hasiguen Lo Root
integer id, a type for its name, and a positiothia graph | |
. ¢ ¥l ¥
editor. J| 52 RS _
For instance, a GraphML example for the structure Figure 9 Grammar editor
“main- multiply” is shown as follows:] o))
<?xml version="1.0" encoding="UTF-8"?> The type editor as show in Figure 7 lists propsrsiech
<l-- SGG Graph Data --> _ as the types, attributes and ports for all the soaed
<graphml xmins = http://graphml.graphdrawing.orgfxs> edges in the given input graph. The left panelldes
<graph edgedefault = "directed" xmins = . f fi bout nod d ed The head nogseis
http://viscomp.utdallas.edu/VEGGIE > Information a out noaes an_ eages. . € headn .
<node id="1" type="main" pos="995 945"> as a root without any special meaning. The graptored
<port id="{main}"/> can import and display graphs generated by Abgtrace

<data key="attrib">

att) the GraphML format. Figure 8 shows the graphical
<attrib id="Terminal" type="2" bool="true"/>

representation of the program in the display palmethis

</data> _ . .
</node> directed graph, each edges directs from a node aith
<node id="2" type="multiply" pos="878 252"> smaller integer to a node with a larger integee Tritegers

<port id="{multiply}"/> associated with nodes specify the temporal ordee Calc

<data key="attrib">
<attrib id="Terminal" type="2" bool="true"/>
</data>
</node>

button on the interface provides two actions fod-asers

to perform either grammar induction or grammar ipgrs
on the given graph.

redundant traces were abstracted away. We intend to
evaluate if the induction can identify the repegtin

If the user issues the induction command, the graphbehaviors tirawing’ as productions.

grammar can be displayed in the grammar editor. As

shown in Figure 9, the leftmost panel lists thedpiion
rules inferred from the toy program. By clicking one of
the productions, the corresponding details will
displayed in the middle and right panels, représgrhe
left graph and right graph of the inferred produoati
Figure 9 shows the first graph production inferreyl
VEGGIE, and the right graph of which is the first
compressed substructure. By analyzing these priohsct
developers can get a hierarchical structure ofptiogrram
behavior. Besides displaying the productions, ttferied
grammar rules can be exported, and saved in thehGta
format.

VEGGIE not only assists grammar induction from
graphs, but also supports parsing existing grammsirgy
the SGG parser as described earlier. One can virify
syntactic correctness of any given graph by parsimg
graph using the inferred grammar. To realize iveltepers
can use thgarse command ofCalc button in the graph
editor in Figure 8. Then VEGGIE will popup a window
and report the parsing result: valid or invalid.

The visual environment increases the expressivesfess
visual languages with a friendly and easy-to-useriace.
The technical details on trace processing, grapimgrar
induction and parsing are hidden from users.

be

5. Case Study
5.1 Experiments Design

To evaluate our approach in a real-world applicgtio
we experimented on an open-source project JHotDvésv.
use Version 6.0 Beta that contains 136 classes301,3
methods, and 19 interfaces. The source codes hese b
used in many previous evaluations.

JHotDraw supports many drawing activities. Commonly
used activities includeRun JHotDraw and Initiate the
drawing environment; Create new display view; Draw
graphs such as rectangle and triangle; Start andl en
animation; Close JhotDraw,etc Using Aspect], we
defined the instrumentation aspect by specify thatint
as follows:execution (* *. * (..)) && ! within (org. lib.
instrumentation) && within (org. jhotdraw. sampgle* .

*). We designed four scenarios in the experiment.

Scenario ldraw a rectangleNo abstraction was made
on the raw trace. This intends to evaluate the gram
induction ability for identifying structures withbu
abstractions.

Scenario 2draw one triangle four tinee We apply the
first criterion in abstraction process, i.e. coatins

Scenario 3draw one triangle four timedVe apply two
criteria of abstraction process, i.e. both loopd arethod
invocations with call depths larger than three he tall
chain were removed automatically. We intend to carap
with Scenario 2, and evaluate the influence of the
abstraction on induction. We used the same rave taadn
Scenario 2.

Scenario 4:draw a triangle and an eclipse, and start
and end animation twiceContinuous redundant traces
were abstracted away. This intends to evaluatpaltterns
inferred from various activities.

5.2 Discussions
Preliminary results are shown in Table 1. We eualua
the related metrics of the approach, such as the i

trace, the number of reductions, and execution.time

Table 1 Preliminary results of four scenarios

Scenar | Lines Lines of # of # of Exec.
io of abstract | events | produc time
trace ed trace tions (sec)

1 200 n/a 99 25 86.996

2 348 100 50 12 0.911

3 348 90 50 10 0.521

4 1774 208 90 7 64.092

Based on the information in Table 1, we notice that
reduction on loops and pruned traces can subdtgntia
increase the efficiency of induction. Compared with
Scenario 1, Scenario 4 has much larger traces; its
execution time, however, is less than Scenarioeltduhe
abstraction. Similarly, Scenario 3 spent less tithan
Scenario 2 because its lower-level branches wereegpk.
We also notice that the number of inferred produngihas
no direct correspondence to the number of eventhéan
system. Scenarios 1 and 4 provide the evidenceedier,
the abstraction ratio is the same for all the sdesalt
may depend on the topology of the trace structure.

Since the induction algorithm is based on
compression-based subgraph mining, a substrucbumsdf
during each round of iterations may not have a EBec
meaning. Thus the grammar may not be necessagly th
best in representing semantically relevant progeaents,
since a grammar describes the syntax, rather than t
semantics, of the given graph.

6. Related Work included in the subgraph mining algorithm, whilereatly
we only include the temporal constraint. Systematic
Related work includes software pattern mining, €valuations are planed as well. Empirical evaluatioll
dynamic program behavior discoveryl and app”catw)n be performed to eXpertS and novices to test thlness
grammar induction in software engineering. of the inferred grammars.
Cook et al. [3] discovered formal models of software
process from event-based data using grammar inferen 8. References
They evaluated the strengths and weakness of Ktalil,
Markov, and neural-network-based discovery methods.[1] K. Ates, J.P. Kukluk, L.B. Holder, D.J. Cook, K. iy,
They used textual information in these methodseamstof “Graph Grammar Induction on Structural Data for vék
graphs. A most recent and related work by Walkinsea Programming”, InProc. IEEE International Conference on Tools
al.[13] applied the QSM algorithms of Dupcett al. [4] to with Artificial Intelligence 2006, pp. 232-242.
reverse engineer finite state machine of progranaiers [2] K. Ates and K. Zhang, “Constructing VEGGIE: Mage
from execution traces by interactive grammar infeee Learning for Context-Sensitive Graph GrammarsPic. IEEE

. ; . . International Conference on Tools with Artificiahtélligence
They mapped methods in traces to six predefinectifums 2007, pp. 456-463.

to reduce the traces. This means that there age sl 31 3 E Cook and A.L. Wolf, “Discovering Models Software
symbols in that language. The QSM algorithm wasiuee process from Event-Based DataACM Transactions on
select and merge the symbols, and generate anséat@ine. Software Engineering and Methodologyol. 7, issue 3, 1996,
Our approach abstracts original methods, and minespp. 215-249.

behavioral patterns represented in graphs. Thesebmma [4] P. Dupont, B. Lambeau, C. Damas, and A. V.Lagende,
graphical symbols denoting method invocations deci “The QSM Algorithm and its Application to SoftwaBehavior
by the inferred grammars. Ii/lgdzel ZIg%Léct[l)(l)On”,?épﬂlgd Artificial IntelligenceVol. 22, Issue

Sartipi et al. [12] combined sequential pattern mining et A
and concept analysis to recovery software strustén@m [51 R. Jin, C. Wang, D. Polshakov, S. Parthasaratind G.

. . Agrawal, “Discovering Frequent Topological Struesirfrom
loop-free execution traces. Patterns were minedtaed Graph Datasets”, IfProc. 11th ACM SIGKDD International

used to build a concept lattice. In our work, commo conference on Knowledge Discovery in Data Mini§05,
patterns are subgraphs representing the methodativas pp.606-611.

between objects, while the sequential patterns atann [6] I. Jonyer, “Context-Free Graph Grammar Inducti®ased on
represent and display objects’ interactions diyectl the Minimum Description Length PrinciplePh.D. Dissertation
Furthermore, we built hierarchical lattice natyraduring ~ The University of Texas at Arlington, 2003.

the construction of grammars which is more effitieur glpfécgr‘:]ﬂlr‘lr'R';Clﬂgil\?:ré ;ﬁ] g'ra%c’rg:r "gﬁireg&?‘hms?iiﬁ
:tgtrtlg?]ecasge?:;?irss\ihﬂ;e tﬁgﬂsngilignolg{gggag‘;m International Conference on Data Mining006, pp.544-548.

o . .) . [8] J. Kong, “Visual Programming Languages and Aggilons”,
distribution of functions in the lattice for thensa scenario. pp p. DissertationThe University of Texas at Dallas, 2006.

[9] J. Kong, K. Zhang, and X. Q. Zeng, “Spatial fna

7. Conclusion and Future Work Grammars for Graphical User InterfaceACM Transactions on
Computer-Human Interactiorvol.13, No.2, 2006, pp. 268-307.

This paper has presented a graph-grammar inductio 9 Z- Li. S. Lu, S. Myagmar, and Y. Zhou, “CP-Min A Tool
or Finding Copy-paste and Related Bugs in OpegaBgstem”,

ap.proach to the. d|sc0ver.y of programs ?Ctual biengy In Proc. 6th Symposium on Operating System Design and
using a semi-automatic visual environment. We Implementation2004, pp. 289-302.

investigated the graph representation of prograhatiers, [11] H. Safyallah and K. Sartipi, “Dynamic Analysi§ Software
and applied well-established graph-grammar formmis Systems using Execution Pattern Mining”, Pnoc. 14th IEEE
Inferred graph-grammars can be used to understaad t International Conference on Program ComprehensR906, pp.
hidden structures of the program behavior. They als 84-88.

provide clues to the construction of complex oralgg [12] K. Sartipi and H. Safyallah, “Application ofxEcution
systems. The common substructures found throughpattem Mining and Concept Lattice Analysis on ®afe

induction are possible reusable software componentsgg;’nfvt;:: EEr:""‘ilrL]‘:gg:"' izﬁr%’howg&”?i%m&'inio:;fﬁerggce on
Based on our preliminary study, we believe thas thi 302-308 9 9 9 gineeriagos, pp.
approach could be extended to model formal state[13] N. Walkinshaw. K. Bogdanov, M. Holcombe, and S

machines using the inferred graph grammars. SalaHuddin, “Reverse Engineering State Machinetgyactive
As the future work, we will conduct more experim®ent Grammar Inference”, IrProc. 14th Working Conference on

on real-world systems and investigate issues likdability Reverse Engineerin@007, pp. 209-218.

and efficiency. Software semantic constraints can b

[14] X. Yan and J. Han, “gSpan: Graph-Based Subsire Mining, 2002, pp. 721.
Pattern Mining”, InProc. International Conference on Data

