
Discovering Program’s Behavioral Patterns by Inferring Graph-Grammars
from Execution Traces

Chunying Zhao1, Keven Ates1, Jun Kong2, Kang Zhang1

1The University of Texas at Dallas
{cxz051000, atescomp, kzhang }@utdallas.edu

2North Dakota State University
jun.kong@ndsu.edu

Abstract

Frequent patterns in program executions represent
recurring sequences of events. These patterns can be used
to reveal the hidden structures of a program, and ease the
comprehension of legacy systems. Existing grammar-
induction approaches generally use sequential algorithms
to infer formal models from program executions, in which
program executions are represented as strings. Software
developers, however, often use graphs to illustrate the
process of program executions, such as UML diagrams,
flowcharts and call graphs. Taking advantage of graphs’
expressiveness and intuitiveness for human cognition, we
present a graph-grammar induction approach to
discovering program’s behavioral patterns by analyzing
execution traces represented in graphs. Moreover, to
improve the efficiency, execution traces are abstracted to
filter redundant or unrelated traces. A grammar induction
environment called VEGGIE is adopted to facilitate the
induction. Evaluation is conducted on an open source
project JHotDraw. Experimental results show the
applicability of the proposed approach.

1. Introduction

Mining frequent patterns plays an important role in data
analysis by identifying recurring and meaningful item sets
in a large dataset. It has many successful applications in
various research areas, such as natural language processing,
DNA sequence interpretation, and social network analysis.
In particular, research has shown several successful
applications in software engineering. The literature on
software engineering, especially in reverse engineering and
program analysis, reflects a clear trend towards combining
machine learning techniques with domain knowledge of
software engineering. Frequent pattern mining is one of
the important reverse engineering topics [10][11].

So far, conventional techniques for pattern mining in
software engineering generally focus on recovering similar
structures scattered in the program. The organization of
these substructures, i.e., interactions and connections
among these patterns and other components in the system,
however, is also important, especially in dynamic analysis

of program behaviors. The inference learning approaches,
specifically grammar induction, can address this problem,
because grammar induction is an iterative process of
building a parse tree from given sentences in the language
under study. The sentences can be considered as positive
samples in the language so that a set of grammars can be
inferred from the samples. When analyzing software
behaviors, one can interpret events as tokens, and event
streams as sentences in the language, then a natural analog
becomes evident [3]. The intuition behind grammars is that
a parse tree forms a hierarchical lattice, where a child node
represents a more detailed substructure while a parent node
is the abstraction of its children contents. As such, a
hierarchical lattice formed by a grammar can reveal hidden
structures of program behaviors. Discovering the hidden
structures of program behaviors can ease the tasks of
maintenance and comprehension. The inferred grammars
can also help to model formal state machines to simulate
program behaviors.

Researchers have used grammar inference techniques to
discover program behaviors. A foundation work by Cook
et al. [3] proposed using event-data in the form of an event
stream, collected from software’s execution, to infer a
formal behavioral model. They cast the behavior discovery
problem to the discovery of a grammar for a regular
language from given example sentences in that language
[3]. A most recent work by Walkinshaw et al. [13] inferred
the state machine representation of a software execution
using an interactive grammar inference approach from
execution traces. Their work is based on the grammar
inference algorithm (QSM) of Dupon et al. [4], which
takes an initial manually generated scenario represented in
strings as an input, and uses it as a basis to interactively
generate a state machine for the whole system.

Existing approaches demonstrate the feasibility of using
grammar induction to infer software behaviors from
execution traces. They mostly derive grammars from
sequential textual datasets, and do not take advantage of
the graphical representation of program behaviors. Graphs
have been used extensively for program representations,
such as UML diagrams, flowcharts and call graphs, etc.
Visual representations in diagrams and graphs sometimes
convey more information than texts to human’s cognition.

Hence inferring grammars from graphical program
behaviors is desirable.

Graph grammars systems have been well-established for
decades in graphical reasoning and parsing techniques.
They are expressive in describing program’s behaviors in
terms of diagrammatic grammar rules. Inferred grammars
can expose the hidden structure of a given graph dataset.
Supplemented by a parsing system, the inferred grammars
can be validated and used to automatically parse other
datasets to verify structural properties.

We adopt VEGGIE [1][2], a Visual Environment for
Graph Grammars: Induction and Engineering, to infer
graph grammars from program execution traces. VEGGIE
essentially incorporates two subsystems: SubdueGL [6][7]
and SGG [8][9]. The former is a context-free graph-
grammar induction system, and the latter is a context-
sensitive graph-grammar parsing system. The current
implementation of the integrated visual environment
VEGGIE facilitates the (semi)automatic discovery of
program behaviors represented in context-free graph-
grammars. We are current extending the induction engine
to handle context-sensitive grammars. We adapt
SubdueGL’s substructure matching algorithm by
annotating graphs with temporal attributes since data
describing program executions naturally have temporal
attributes. To improve the induction performance, we use
an abstraction scheme to reduce redundant and unrelated
traces before the grammar induction.

The contribution of our work includes:
♦ A graph-grammar induction approach to

discovering program’s behavioral patterns.
♦ An abstraction scheme for enhancing the

efficiency of grammar induction.
♦ An adapted graph-grammar implementation for the

proposed approach, and experiments on an open
source software JHotDraw.

The remainder of this paper is organized as follows:
Section 2 introduces the background of visual languages
including the Spatial Graph Grammar (SGG) [9] and
graph-grammar induction. Section 3 describes an overview
of the approach. Section 4 presents the graph-grammar
approach to discovering the patterns of program behaviors
with a running example. Section 5 reports the preliminary
results of an experiment performed on an open source
software JHotDraw. Section 6 reviews related work and
Section 7 concludes the paper.

2. Background

2.1. Visual Languages and Graph Grammars

Visual programming languages allow developers to use
graphical elements such as diagrams, boxes and arrows to
represent program design and structures. Visual languages
are advantageous over traditional text-based languages
because of their expressiveness in visually representing
structures and high-level patterns. The core concepts in
visual languages include the construction and parsing of
graph grammars. Graph grammars extend Chomsky’s
generative grammars into the domain of graphs. Different
from string grammars expressing sentences in a sequence
of characters, graph grammars specify syntactic structures
in terms of diagrammatic rules. Each rule is called a
production that consists of a left graph and a right graph.

A grammar can be context-free or context-sensitive.
The difference between context-free and context-sensitive
grammars is that the latter allows for more than one
symbol in the left graph while the former allows for only
one. The left graph of a context-sensitive grammar should
be lexicographically smaller than the right graph to ensure
the termination condition in parsing.

Each graph grammar has it own specifications. We use
the Spatial Graph Grammar (SGG) [9] to illustrate related
concepts. The SGG is a context-sensitive graph grammar
formalism, capable of specifying various types of graphs
with both logical and spatial types of relationships. The
SGG formalism is expressed in a node-edge format as
shown in Figure 1. Nodes are organized into a two-level
hierarchy, where a large rectangle representing the node
itself is the first level with embedded small rectangles as
the second level called vertices. Figure 1(a) depicts a
typical SGG node including two vertices. In a node, each
vertex is uniquely labeled. A node can be viewed as a
module, a procedure or a variable, depending on the design
requirements and object granularities. A vertex functions
as a port to connect other nodes by edges. Edges can
denote any communications or relationships between
nodes.

Figure 1(b) is a typical production with a left graph and

a right graph. Applying a production to a given application
graph can be called an L-application (i.e. replacing a sub-
graph in the application graph that matches the left graph
of the production by the right graph) or R-application (i.e.
replacing a sub-graph in the application graph that matches
the right graph of the production by the left graph). A

N

D

Vertex

Node

(a) A node

:=
S

1:D

2:N

(b) A Production

P1
1:D

N

P2

2:N

D

Figure 1 Spatial graph grammar representation

S

visual language, defined by a graph grammar, can be
derived by using L-applications from an initial graph,
usually represented by a special symbol λ. On the other
hand, R-applications are used to verify the membership of
a graph, i.e. grammar parsing. If a given graph is
eventually transformed into an initial graph, the parsing
process is successful and the graph is considered to
represent the type of design with the structural properties
specified by the graph grammar.

Due to the multi-dimensional nature of graphs,
mechanisms are needed to address the embedding issue in
subgraph replacements, i.e. establishing relationships
between the surrounding of the replaced subgraph and its
replacing subgraph in the given graph. The SGG addresses
the embedding issue by a marking technique [9]. In a
production, a vertex is marked by prefixing its label with a
unique integer as shown in Figure 1(b). The SGG parser
has a polynomial computational complexity [9].

2.2. Grammar Induction

Grammar induction, also known as grammatical
inference, is a particular instance of inductive learning
which can be formulated as the task of iteratively
discovering common structures in examples [4]. In this
case, a set of examples, also called positive samples, is
usually a set of strings defined on a specific alphabet. A
negative sample is a set of strings not belonging to the
target language [4]. Informally, grammar induction is
defined as [3]:

Given some sample sentences in a language, and
perhaps some sentences specifically not in that language,
infer a grammar that represents the language.

The development of grammar induction gain lots of
algorithmic supports from machine learning techniques.
Induction algorithm iteratively finds common substructures
from a given set of data, and organizes the hidden
hierarchical substructures in a grammatical way. When a
common frequent substructure is found, a grammar
production will be created. This newly created rewriting
rule consists of two parts: a left hand side (LHS) and a
right hand side (RHS). The substructure consisting of
terminal symbols identified from the given data samples is
represented as the right hand side of the production, and
new non-terminal symbols will be created as the left hand
side. Then the newly-created production will be applied to
current dataset, i.e. a match of the RHS will be replaced by
the LHS. The procedure of pattern mining – production
creation – substructure replacement will be recursively
performed on the original dataset until there are only non-
terminal symbols, or a threshold, i.e. a stop criterion
defined by the user, is reached. Different from
conventional grammar inductions that primarily work on

textual information like strings, graph grammar induction
works on graphs, and produce diagrammatic rewriting
rules (i.e. productions, where aforementioned LHS is the
left graph and RHS is the right graph). In a graph grammar,
a graph G can be denoted as a tuple <N, E> where N is the
set of nodes and E ⊂ N × N is the set of edges in the graph.
A production rule r is in the format S := P1  P2…. Both S
and Pi are graphs. Graph grammar induction benefits from
the graphical properties of some standard representations
of program behaviors, e.g. call graphs. Figure 2 shows a
call graph and its two inferred productions.

3. Approach Overview

Figure 3 is the overview of our approach. The overall
process includes four steps: trace collection, trace
preprocessing, grammar induction, and grammar parsing.

An aspect-oriented approach is used to collect program

traces as it has less perturbation to the program under study
than those putting extra tracing codes into the original
program. We first build an aspect repository. Tracing
aspects are then compiled together with the source code to
generate execution traces, and saved in text files. After that,
the traces are reconstructed into a call-graph represented in
a linked-list. Objects and method invocations are encoded

GraphML

Trace Preprocessing

Grammar Validation

Figure 3 Overview of our approach

Grammar Induction

Graph-grammar
parsing
subsystem of
VEGGIE

…..

Productions

Graph-grammar
induction
subsystem of
VEGGIE

:=

Trace collection

Abstracted
call-graph

Trace
logs in
text

System
under
study

Aspects
repository

Parsing
results

Figure 2 A graph with an inferred grammar

b
a

c
S1 :=

S2 := a

S1

S1
a

a
b

c

b

c

a

as attributes of the nodes and edges in the call-graph. To
support scalability, a filter is used to preprocess the raw
data by removing loops and pruning low-level branches in
the call-graph, and produce an abstracted call-graph. The
abstraction is tunable by users with adjusting parameters.
To be compatible with the data format used in the
induction system, the abstracted call graph is then
converted to a GraphML format. GraphML is an extension
of XML, and is specialized in describing the structural
properties of graphs. Strictly complying with GraphML
specifications, the graph dataset is used as an input to the
graph-grammar induction subsystem of VEGGIE. The
induction subsystem implements a common substructure
mining algorithm. In addition to the isomorphism for
common substructures, we augment nodes in substructures
with temporal attributes. Therefore, a set of graph-
grammar rules could be inferred. To validate the grammar,
the SGG in VEGGIE is used to parse the given traces
represented in graphs based on the inferred grammars. A
valid parsing result indicates the syntactic correctness of
the inferred grammar against its corresponding program
executions.

4. Methodology

This section explains how to apply the graph-grammar
induction approach to discovering the structures of
program behaviors using a running example.

4.1 Program Preprocessing

Data Acquisition: To define an instrumentation aspect
using AspectJ, we declare (1) join points (i.e. the specific
points in the execution of the program), (2) pointcuts (i.e.
the collection of join points), and (3) advice (i.e. the piece
of code that is executed when a pointcut is reached). The
following information is recorded for each method
invocation:
� Class, object, method, and thread names, and

arguments.
� Method invocation: enter-exit of static and non-static

method.
Call graphs can be derived from the nested relationships

of the enter-exits of method invocations.
Data Representation: Intuitively, data traced from a

running program records the actual behaviors of objects in
the program. Hence the caller-callee relationship among
objects in terms of call graph can be used to illustrate
program scenarios. Initially the call graph is saved in a
linked list. Each caller maintains a pointer to each of its
callees. For instance, Figure 4 is a call graph of a toy
program.

To be compatible with the input data format in the
VEGGIE system, the call graph is converted into the
GraphML format. The information of objects and method
invocation corresponds to the GraphML syntax, such as
elements, attributes, nodes, and edges, etc. Essentially, a
node representing an object in method invocation in
GraphML has attributes on threads, objects and classes.
Similar to the edges in call graphs, edges in GraphML
connect two method invocations. Each edge is directed and
explicitly connecting a starting node and an ending node.

Data Abstraction: In traditional analysis of software
execution, developers would notice that there exists
redundancy in execution traces, but they may be unaware
of the impact of redundancy manifested themselves as
noise in the mining process. To facilitate the induction
process, we need to create a concise representation of the
program by pruning unrelated information that does not
contribute to the structural features. We used an
abstraction mechanism for method invocations captured in
program execution. It includes two abstraction criteria:

♦ continuous repetitions;
♦ low-level methods.

The first type is to reduce the possible redundant traces.

The second one prunes unrelated sub-branches by hiding
low-level details. For instance, addOne and getNum can be
considered as details with respect to multiply. It allows
developers to decide whether to reduce them or not.

Eliminating the redundant or fine-grained structures can

help the later induction to focus on the high-level
behaviors. It can also avoid mining the behaviors of local
components. Figure 5(a) shows an abstracted graph after
removing the repetition on method addOne. Similarly,
using the second abstraction criterion, methods with depths
in a call chain greater than a user-specified threshold could

Figure 5 Loop abstractions on the call graph

(a) Reducing loops (b) Reducing low-level branches

getNum

addOne

main

multiply

print

divide

print

multiply

main

multiply

divide

print

print

addOne

getNum

Figure 4 A call graph of a toy program

addOne

multiply
addOne

getNum

addOne

addOne

be pruned. Figure 5(b) shows an abstracted call-graph after
being pruned off the third-level branches. Users can
choose not to prune sub-branches, so that the substructure
multiply-getNum-add in this example could be a recurring
structure.

4.2 The Grammar Induction System

Inferring meaningful grammars from graphs imposes
great challenges. Several issues need to be addressed when
inferring a graph-grammar, such as the selection and
replacement of subgraphs. To address these problems,
graph-grammar induction uses graph-based substructure
mining algorithms instead of sequential based mining
techniques. A substructure is defined as a representation of
the recurring subgraphs. An instance is defined as one
instance of such substructure in the graph dataset [2].

The substructures produced from grammar induction
procedure reveal hidden recurrent patterns within the graph
dataset. The hierarchical relations within the grammar can
aid developers in understanding and analyzing the
construction of large and complex legacy systems. Those
grammars can also be used to create size-constrained
graphs to simulate the growth of a system. Furthermore,
researchers can compare the inferred grammar against
predefined grammar rules, if exist, for the system to verify
the designs.

The variety of substructure mining algorithms [10]
results in several graph grammar induction systems
[6][14][5]. For instance, Li et al. [10] use frequent
subgraph mining to find substructures. Instead of using
frequency, the VEGGIE’s subsystem SubdueGL uses a
compression-based frequent pattern discovery algorithm to
identify substructures, and compresses the substructures
having the highest compression ratio [6].

SubdueGL emphasizes on the compressing of graph
datasets instead of purely searching for the frequent
subgraphs. The compression value for each substructure is
calculated based on a minimum description length (MDL)
and the substructure with the highest compression value
among the competing substructures are selected. The
substructure found in each iteration may not be the most
frequent substructure but it can produce the best
compression ratio for the given graph, i.e. the ratio
between the original and resulting graphs after the inferred
subgraphs are compressed. By iteratively discovering
substructures with the largest compression ratio,
SubdueDL replaces subgraphs in the given graph. The
iterations ultimately turn the given graph into one or more
non-terminal nodes, or no qualified substructures exist.
Users can also set the threshold for the number of
interactions. The steps of compression constitute a
structural hierarchical lattice that corresponds to a set of

graph grammar productions. Details of SubdueGL
algorithm can be found in Jonyer [6]. The most frequent
substructure does not necessarily compress the graph best.
For instance, the ratio of compressing substructures of size
one with a frequency of five is less than compressing
substructures of size ten with a frequency of two. Hence
frequency is not always the best factor in graph
compression. The beauty of this grammar induction system
lies in that it has the most powerful compression capability,
and needs the least amount of iterations to reduce a graph
to the minimum.

4.3 Patterns with Temporal Properties

Behavioral patterns describe activities that happen in an
order. To reflect this, we adapted the SubdueGL algorithm
by augmenting patterns with temporal attributes. Without
temporal ordering, the inferred common patterns may not
be correct even if they are isomorphic.

We attach logical timestamps to a sequence of events to
keep track of the events order. For instance, a sequence
that action A happened 5 seconds before action B is
considered the same as that a sequence action A happened
2 seconds before B.

Each substructure G is represented as a tuple <N, E>
where N is a set of nodes, and E is a set of edges
connecting nodes in the substructure (i.e. subgraph). Each
node in the subgraph has one additional attribute:
timestamp represented by tni for node ni. The timestamp is
generated when the node is produced. In the GraphML
representation, each node in the graph will have an integer
timestamp. A node vector vG represents an ordered
sequence of nodes within the substructure G, i.e. vt = {n1,
n2, n3,…, nn} where tni < tnj. That means ni happens before
nj. Two substructures G1 = {N1, E1} and G2 = {N2, E2} are
common structures if and only if they are isomorphic and
have the same node vector.

The time attribute is considered when grammar
induction performs subgraph matching. For instance, the
two graphs in Figure 6 where integer figures represent
logical timestamps are not common structures since their
node vectors (Multiply, getNum, addOne) and (Multiple,
addOne, getNum) are not equivalent.

4.4 Grammar Validation

4

6 5 3 2

1

Multiply

GetNum addOne

Figure 6 Two graphs with temporal attributes

Multiply

GetNum addOne

Grammar validation is a process of checking the
syntactic correctness of the grammar by parsing examples
in the language. We employ the SGG to parse the given
traces represented in graphs based on the inferred
grammars. A valid parsing result ensures the syntactic
correctness of the inferred grammar against its
corresponding program execution.

The SGG initially developed independently for visual
languages and spatial parsing reasoning [9], has been
integrated in VEGGIE. The parsing system shares the same
visual interface with the induction system, but works
independently. Therefore, SGG can be used to check the
correctness of the inferred grammars. Moreover, the
context-sensitivity makes the SGG powerful enough to
parse any context-free grammars inferred by the induction
process.

The SGG can also be used to check the structure of
other programs. For instance, if developers want to check
if a new program satisfies the constraints specified by the
inferred grammar, they can use the inferred productions to
parse the new program. A valid parsing result means that
the program satisfies these properties.

4.5 A Supporting Environment

A data preprocessor called Abstracer is built for data
collection and preprocessing, including tracing the system
under study, producing logs, reducing redundant and noise
traces with tunable parameters, and generating GraphML
files. Following the terminology of GraphML specification,
we represent the caller-callee relationships in the form of
schemas where objects and method invocations are
denoted as nodes and edges, respectively. There are only
starting and ending points for each edge without any other
attributes. Therefore the method names are included in the
corresponding nodes’ attributes. Each node has a unique
integer id, a type for its name, and a position in the graph
editor.

For instance, a GraphML example for the structure
“main→ multiply” is shown as follows:
<?xml version="1.0" encoding="UTF-8"?>
<!-- SGG Graph Data -->
<graphml xmlns = http://graphml.graphdrawing.org/xmlns >

<graph edgedefault = "directed" xmlns =
http://viscomp.utdallas.edu/VEGGIE >
 <node id="1" type="main" pos="995 945">

<port id="{main}"/>
<data key="attrib">

<attrib id="Terminal" type="2" bool="true"/>
</data>

</node>
<node id="2" type="multiply" pos="878 252">

<port id="{multiply}"/>
<data key="attrib">

<attrib id="Terminal" type="2" bool="true"/>
</data>

</node>

<edgetype="E" directed="false" source="1" target="2"
sourceport="{main}" targetport="{multiply}"/>

</graph>
</graphml>

The VEGGIE grammar system has a user-friendly
interface which includes three parts as shown in Figures 7,
8 and 9: the type editor, the graph editor, and the grammar
editor. These editors are closely related and seamlessly
working together.

Figure 7 Type editor

Figure 8 Graph editor

Figure 9 Grammar editor

The type editor as show in Figure 7 lists properties such
as the types, attributes and ports for all the nodes and
edges in the given input graph. The left panel includes
information about nodes and edges. The head node is used
as a root without any special meaning. The graph editor
can import and display graphs generated by Abstracer in
the GraphML format. Figure 8 shows the graphical
representation of the program in the display panel. In this
directed graph, each edges directs from a node with a
smaller integer to a node with a larger integer. The integers
associated with nodes specify the temporal order. The Calc
button on the interface provides two actions for end-users

to perform either grammar induction or grammar parsing
on the given graph.

If the user issues the induction command, the graph
grammar can be displayed in the grammar editor. As
shown in Figure 9, the leftmost panel lists the production
rules inferred from the toy program. By clicking on one of
the productions, the corresponding details will be
displayed in the middle and right panels, representing the
left graph and right graph of the inferred production.
Figure 9 shows the first graph production inferred by
VEGGIE, and the right graph of which is the first
compressed substructure. By analyzing these productions,
developers can get a hierarchical structure of the program
behavior. Besides displaying the productions, the inferred
grammar rules can be exported, and saved in the GraphML
format.

VEGGIE not only assists grammar induction from
graphs, but also supports parsing existing grammars using
the SGG parser as described earlier. One can verify the
syntactic correctness of any given graph by parsing the
graph using the inferred grammar. To realize it, developers
can use the parse command of Calc button in the graph
editor in Figure 8. Then VEGGIE will popup a window
and report the parsing result: valid or invalid.

The visual environment increases the expressiveness of
visual languages with a friendly and easy-to-use interface.
The technical details on trace processing, graph grammar
induction and parsing are hidden from users.

5. Case Study

5.1 Experiments Design

To evaluate our approach in a real-world application,
we experimented on an open-source project JHotDraw. We
use Version 6.0 Beta that contains 136 classes, 1,380
methods, and 19 interfaces. The source codes have been
used in many previous evaluations.

JHotDraw supports many drawing activities. Commonly
used activities include: Run JHotDraw and Initiate the
drawing environment; Create new display view; Draw
graphs such as rectangle and triangle; Start and end
animation; Close JhotDraw, etc. Using AspectJ, we
defined the instrumentation aspect by specify the pointjoint
as follows: execution (* *. * (..)) && ! within (org. lib.
instrumentation) && within (org. jhotdraw. samples. * .
*). We designed four scenarios in the experiment.

Scenario 1: draw a rectangle. No abstraction was made
on the raw trace. This intends to evaluate the grammar
induction ability for identifying structures without
abstractions.

Scenario 2: draw one triangle four times. We apply the
first criterion in abstraction process, i.e. continuous

redundant traces were abstracted away. We intend to
evaluate if the induction can identify the repeating
behaviors “drawing” as productions.

Scenario 3: draw one triangle four times. We apply two
criteria of abstraction process, i.e. both loops and method
invocations with call depths larger than three in the call
chain were removed automatically. We intend to compare
with Scenario 2, and evaluate the influence of the
abstraction on induction. We used the same raw trace as in
Scenario 2.

Scenario 4: draw a triangle and an eclipse, and start
and end animation twice. Continuous redundant traces
were abstracted away. This intends to evaluate the patterns
inferred from various activities.

5.2 Discussions

Preliminary results are shown in Table 1. We evaluate
the related metrics of the approach, such as the size of
trace, the number of reductions, and execution time.

Table 1 Preliminary results of four scenarios

Scenar
io

Lines
of

trace

Lines of
abstract
ed trace

of
events

of
produc
tions

Exec.
time
(sec)

1 200 n/a 99 25 86.996

2 348 100 50 12 0.911

3 348 90 50 10 0.521

4 1774 208 90 7 64.092

Based on the information in Table 1, we notice that

reduction on loops and pruned traces can substantially
increase the efficiency of induction. Compared with
Scenario 1, Scenario 4 has much larger traces; its
execution time, however, is less than Scenario 1 due to the
abstraction. Similarly, Scenario 3 spent less time than
Scenario 2 because its lower-level branches were pruned.
We also notice that the number of inferred productions has
no direct correspondence to the number of events in the
system. Scenarios 1 and 4 provide the evidence. Moreover,
the abstraction ratio is the same for all the scenarios. It
may depend on the topology of the trace structure.

Since the induction algorithm is based on a
compression-based subgraph mining, a substructure found
during each round of iterations may not have a concrete
meaning. Thus the grammar may not be necessarily the
best in representing semantically relevant program events,
since a grammar describes the syntax, rather than the
semantics, of the given graph.

6. Related Work

Related work includes software pattern mining,
dynamic program behavior discovery, and application of
grammar induction in software engineering.

Cook et al. [3] discovered formal models of software
process from event-based data using grammar inference.
They evaluated the strengths and weakness of Ktail,
Markov, and neural-network-based discovery methods.
They used textual information in these methods instead of
graphs. A most recent and related work by Walkinshaw et
al.[13] applied the QSM algorithms of Dupont et al. [4] to
reverse engineer finite state machine of program behaviors
from execution traces by interactive grammar inference.
They mapped methods in traces to six predefined functions
to reduce the traces. This means that there are only six
symbols in that language. The QSM algorithm was used to
select and merge the symbols, and generate a state machine.
Our approach abstracts original methods, and mines
behavioral patterns represented in graphs. There may be
graphical symbols denoting method invocations specified
by the inferred grammars.

Sartipi et al. [12] combined sequential pattern mining
and concept analysis to recovery software structures from
loop-free execution traces. Patterns were mined and then
used to build a concept lattice. In our work, common
patterns are subgraphs representing the method invocations
between objects, while the sequential patterns cannot
represent and display objects’ interactions directly.
Furthermore, we built hierarchical lattice naturally during
the construction of grammars which is more efficient. Our
lattice can express the construction of program behaviors
for one scenario while their work can help to identify the
distribution of functions in the lattice for the same scenario.

7. Conclusion and Future Work

This paper has presented a graph-grammar induction
approach to the discovery of program’s actual behaviors
using a semi-automatic visual environment. We
investigated the graph representation of program behaviors,
and applied well-established graph-grammar formalisms.
Inferred graph-grammars can be used to understand the
hidden structures of the program behavior. They also
provide clues to the construction of complex or legacy
systems. The common substructures found through
induction are possible reusable software components.
Based on our preliminary study, we believe that this
approach could be extended to model formal state
machines using the inferred graph grammars.

As the future work, we will conduct more experiments
on real-world systems and investigate issues like scalability
and efficiency. Software semantic constraints can be

included in the subgraph mining algorithm, while currently
we only include the temporal constraint. Systematic
evaluations are planed as well. Empirical evaluation will
be performed to experts and novices to test the usefulness
of the inferred grammars.

8. References

[1] K. Ates, J.P. Kukluk, L.B. Holder, D.J. Cook, K. Zhang,
“Graph Grammar Induction on Structural Data for Visual
Programming”, In Proc. IEEE International Conference on Tools
with Artificial Intelligence, 2006, pp. 232-242.
[2] K. Ates and K. Zhang, “Constructing VEGGIE: Machine
Learning for Context-Sensitive Graph Grammars”, In Proc. IEEE
International Conference on Tools with Artificial Intelligence,
2007, pp. 456-463.
[3] J.E. Cook and A.L. Wolf, “Discovering Models of Software
Process from Event-Based Data”, ACM Transactions on
Software Engineering and Methodology, Vol. 7, issue 3, 1996,
pp. 215-249.
[4] P. Dupont, B. Lambeau, C. Damas, and A. V.Lamsweerde,
“The QSM Algorithm and its Application to Software Behavior
Model Induction”, Applied Artificial Intelligence, Vol. 22, Issue
1 & 2, 2008, pp. 77-115.
[5] R. Jin, C. Wang, D. Polshakov, S. Parthasarathy, and G.
Agrawal, “Discovering Frequent Topological Structures from
Graph Datasets”, In Proc. 11th ACM SIGKDD International
Conference on Knowledge Discovery in Data Mining, 2005,
pp.606-611.
[6] I. Jonyer, “Context-Free Graph Grammar Induction Based on
the Minimum Description Length Principle”, Ph.D. Dissertation,
The University of Texas at Arlington, 2003.
[7] J. Kukluk, L. Holder, and D. Cook, “Inference of Node
Replacement Recursive Graph Grammar”, In Proc. Sixth SIAM
International Conference on Data Mining, 2006, pp.544-548.
[8] J. Kong, “Visual Programming Languages and Applications”,
Ph.D. Dissertation, The University of Texas at Dallas, 2006.
[9] J. Kong, K. Zhang, and X. Q. Zeng, “Spatial Graph
Grammars for Graphical User Interfaces”, ACM Transactions on
Computer-Human Interaction, Vol.13, No.2, 2006, pp. 268-307.
[10] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: A Tool
for Finding Copy-paste and Related Bugs in Operating System”,
In Proc. 6th Symposium on Operating System Design and
Implementation, 2004, pp. 289-302.
[11] H. Safyallah and K. Sartipi, “Dynamic Analysis of Software
Systems using Execution Pattern Mining”, In Proc. 14th IEEE
International Conference on Program Comprehension, 2006, pp.
84-88.
[12] K. Sartipi and H. Safyallah, “Application of Execution
Pattern Mining and Concept Lattice Analysis on Software
Structure Evaluation”, In Proc. International Conference on
Software Engineering and Knowledge Engineering, 2006, pp.
302-308.
[13] N. Walkinshaw, K. Bogdanov, M. Holcombe, and S.
SalaHuddin, “Reverse Engineering State Machines by Interactive
Grammar Inference”, In Proc. 14th Working Conference on
Reverse Engineering, 2007, pp. 209-218.

[14] X. Yan and J. Han, “gSpan: Graph-Based Substructure
Pattern Mining”, In Proc. International Conference on Data

Mining, 2002, pp. 721.

