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Abstract 
 

Frequent patterns in program executions represent 
recurring sequences of events. These patterns can be used 
to reveal the hidden structures of a program, and ease the 
comprehension of legacy systems. Existing grammar-
induction approaches generally use sequential algorithms 
to infer formal models from program executions, in which 
program executions are represented as strings. Software 
developers, however, often use graphs to illustrate the 
process of program executions, such as UML diagrams, 
flowcharts and call graphs. Taking advantage of graphs’ 
expressiveness and intuitiveness for human cognition, we 
present a graph-grammar induction approach to 
discovering program’s behavioral patterns by analyzing 
execution traces represented in graphs. Moreover, to 
improve the efficiency, execution traces are abstracted to 
filter redundant or unrelated traces. A grammar induction 
environment called VEGGIE is adopted to facilitate the 
induction. Evaluation is conducted on an open source 
project JHotDraw. Experimental results show the 
applicability of the proposed approach.  
 

1. Introduction 
 

Mining frequent patterns plays an important role in data 
analysis by identifying recurring and meaningful item sets 
in a large dataset. It has many successful applications in 
various research areas, such as natural language processing, 
DNA sequence interpretation, and social network analysis. 
In particular, research has shown several successful 
applications in software engineering. The literature on 
software engineering, especially in reverse engineering and 
program analysis, reflects a clear trend towards combining 
machine learning techniques with domain knowledge of 
software engineering.  Frequent pattern mining is one of 
the important reverse engineering topics [10][11]. 

So far, conventional techniques for pattern mining in 
software engineering generally focus on recovering similar 
structures scattered in the program. The organization of 
these substructures, i.e., interactions and connections 
among these patterns and other components in the system, 
however, is also important, especially in dynamic analysis 

of program behaviors. The inference learning approaches, 
specifically grammar induction, can address this problem, 
because grammar induction is an iterative process of 
building a parse tree from given sentences in the language 
under study. The sentences can be considered as positive 
samples in the language so that a set of grammars can be 
inferred from the samples. When analyzing software 
behaviors, one can interpret events as tokens, and event 
streams as sentences in the language, then a natural analog 
becomes evident [3]. The intuition behind grammars is that 
a parse tree forms a hierarchical lattice, where a child node 
represents a more detailed substructure while a parent node 
is the abstraction of its children contents. As such, a 
hierarchical lattice formed by a grammar can reveal hidden 
structures of program behaviors. Discovering the hidden 
structures of program behaviors can ease the tasks of 
maintenance and comprehension. The inferred grammars 
can also help to model formal state machines to simulate 
program behaviors. 

Researchers have used grammar inference techniques to 
discover program behaviors. A foundation work by Cook 
et al. [3] proposed using event-data in the form of an event 
stream, collected from software’s execution, to infer a 
formal behavioral model. They cast the behavior discovery 
problem to the discovery of a grammar for a regular 
language from given example sentences in that language 
[3]. A most recent work by Walkinshaw et al. [13] inferred 
the state machine representation of a software execution 
using an interactive grammar inference approach from 
execution traces. Their work is based on the grammar 
inference algorithm (QSM) of Dupon et al. [4], which 
takes an initial manually generated scenario represented in 
strings as an input, and uses it as a basis to interactively 
generate a state machine for the whole system. 

Existing approaches demonstrate the feasibility of using 
grammar induction to infer software behaviors from 
execution traces. They mostly derive grammars from 
sequential textual datasets, and do not take advantage of 
the graphical representation of program behaviors. Graphs 
have been used extensively for program representations, 
such as UML diagrams, flowcharts and call graphs, etc. 
Visual representations in diagrams and graphs sometimes 
convey more information than texts to human’s cognition. 



Hence inferring grammars from graphical program 
behaviors is desirable.  

Graph grammars systems have been well-established for 
decades in graphical reasoning and parsing techniques. 
They are expressive in describing program’s behaviors in 
terms of diagrammatic grammar rules. Inferred grammars 
can expose the hidden structure of a given graph dataset. 
Supplemented by a parsing system, the inferred grammars 
can be validated and used to automatically parse other 
datasets to verify structural properties.  

We adopt VEGGIE [1][2], a Visual Environment for 
Graph Grammars: Induction and Engineering, to infer 
graph grammars from program execution traces. VEGGIE 
essentially incorporates two subsystems: SubdueGL [6][7] 
and SGG [8][9]. The former is a context-free graph-
grammar induction system, and the latter is a context-
sensitive graph-grammar parsing system. The current 
implementation of the integrated visual environment 
VEGGIE facilitates the (semi)automatic discovery of 
program behaviors represented in context-free graph-
grammars. We are current extending the induction engine 
to handle context-sensitive grammars. We adapt 
SubdueGL’s substructure matching algorithm by 
annotating graphs with temporal attributes since data 
describing program executions naturally have temporal 
attributes. To improve the induction performance, we use 
an abstraction scheme to reduce redundant and unrelated 
traces before the grammar induction. 

The contribution of our work includes: 
♦ A graph-grammar induction approach to 

discovering program’s behavioral patterns. 
♦ An abstraction scheme for enhancing the 

efficiency of grammar induction. 
♦ An adapted graph-grammar implementation for the 

proposed approach, and experiments on an open 
source software JHotDraw. 

The remainder of this paper is organized as follows: 
Section 2 introduces the background of visual languages 
including the Spatial Graph Grammar (SGG) [9] and 
graph-grammar induction. Section 3 describes an overview 
of the approach. Section 4 presents the graph-grammar 
approach to discovering the patterns of program behaviors 
with a running example. Section 5 reports the preliminary 
results of an experiment performed on an open source 
software JHotDraw. Section 6 reviews related work and 
Section 7 concludes the paper.  
 

2. Background 
 
2.1. Visual Languages and Graph Grammars 
 

Visual programming languages allow developers to use 
graphical elements such as diagrams, boxes and arrows to 
represent program design and structures. Visual languages 
are advantageous over traditional text-based languages 
because of their expressiveness in visually representing 
structures and high-level patterns. The core concepts in 
visual languages include the construction and parsing of 
graph grammars. Graph grammars extend Chomsky’s 
generative grammars into the domain of graphs. Different 
from string grammars expressing sentences in a sequence 
of characters, graph grammars specify syntactic structures 
in terms of diagrammatic rules. Each rule is called a 
production that consists of a left graph and a right graph. 

A grammar can be context-free or context-sensitive. 
The difference between context-free and context-sensitive 
grammars is that the latter allows for more than one 
symbol in the left graph while the former allows for only 
one. The left graph of a context-sensitive grammar should 
be lexicographically smaller than the right graph to ensure 
the termination condition in parsing.  

Each graph grammar has it own specifications. We use 
the Spatial Graph Grammar (SGG) [9] to illustrate related 
concepts. The SGG is a context-sensitive graph grammar 
formalism, capable of specifying various types of graphs 
with both logical and spatial types of relationships. The 
SGG formalism is expressed in a node-edge format as 
shown in Figure 1. Nodes are organized into a two-level 
hierarchy, where a large rectangle representing the node 
itself is the first level with embedded small rectangles as 
the second level called vertices. Figure 1(a) depicts a 
typical SGG node including two vertices. In a node, each 
vertex is uniquely labeled. A node can be viewed as a 
module, a procedure or a variable, depending on the design 
requirements and object granularities. A vertex functions 
as a port to connect other nodes by edges. Edges can 
denote any communications or relationships between 
nodes.  

 
Figure 1(b) is a typical production with a left graph and 

a right graph. Applying a production to a given application 
graph can be called an L-application (i.e. replacing a sub-
graph in the application graph that matches the left graph 
of the production by the right graph) or R-application (i.e. 
replacing a sub-graph in the application graph that matches 
the right graph of the production by the left graph). A 
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visual language, defined by a graph grammar, can be 
derived by using L-applications from an initial graph, 
usually represented by a special symbol λ. On the other 
hand, R-applications are used to verify the membership of 
a graph, i.e. grammar parsing. If a given graph is 
eventually transformed into an initial graph, the parsing 
process is successful and the graph is considered to 
represent the type of design with the structural properties 
specified by the graph grammar. 

Due to the multi-dimensional nature of graphs, 
mechanisms are needed to address the embedding issue in 
subgraph replacements, i.e. establishing relationships 
between the surrounding of the replaced subgraph and its 
replacing subgraph in the given graph. The SGG addresses 
the embedding issue by a marking technique [9]. In a 
production, a vertex is marked by prefixing its label with a 
unique integer as shown in Figure 1(b). The SGG parser 
has a polynomial computational complexity [9]. 
 
2.2. Grammar Induction 
 

Grammar induction, also known as grammatical 
inference, is a particular instance of inductive learning 
which can be formulated as the task of iteratively 
discovering common structures in examples [4]. In this 
case, a set of examples, also called positive samples, is 
usually a set of strings defined on a specific alphabet. A 
negative sample is a set of strings not belonging to the 
target language [4]. Informally, grammar induction is 
defined as [3]:  

Given some sample sentences in a language, and 
perhaps some sentences specifically not in that language, 
infer a grammar that represents the language. 

The development of grammar induction gain lots of 
algorithmic supports from machine learning techniques. 
Induction algorithm iteratively finds common substructures 
from a given set of data, and organizes the hidden 
hierarchical substructures in a grammatical way. When a 
common frequent substructure is found, a grammar 
production will be created. This newly created rewriting 
rule consists of two parts: a left hand side (LHS) and a 
right hand side (RHS). The substructure consisting of 
terminal symbols identified from the given data samples is 
represented as the right hand side of the production, and 
new non-terminal symbols will be created as the left hand 
side. Then the newly-created production will be applied to 
current dataset, i.e. a match of the RHS will be replaced by 
the LHS. The procedure of pattern mining – production 
creation – substructure replacement will be recursively 
performed on the original dataset until there are only non-
terminal symbols, or a threshold, i.e. a stop criterion 
defined by the user, is reached. Different from 
conventional grammar inductions that primarily work on 

textual information like strings, graph grammar induction 
works on graphs, and produce diagrammatic rewriting 
rules (i.e. productions, where aforementioned LHS is the 
left graph and RHS is the right graph). In a graph grammar, 
a graph G can be denoted as a tuple <N, E> where N is the 
set of nodes and E ⊂ N × N is the set of edges in the graph. 
A production rule r is in the format S := P1  P2…. Both S 
and Pi are graphs. Graph grammar induction benefits from 
the graphical properties of some standard representations 
of program behaviors, e.g. call graphs. Figure 2 shows a 
call graph and its two inferred productions. 

 
 

3. Approach Overview 
 

Figure 3 is the overview of our approach. The overall 
process includes four steps: trace collection, trace 
preprocessing, grammar induction, and grammar parsing.  
 

 
An aspect-oriented approach is used to collect program 

traces as it has less perturbation to the program under study 
than those putting extra tracing codes into the original 
program. We first build an aspect repository. Tracing 
aspects are then compiled together with the source code to 
generate execution traces, and saved in text files. After that, 
the traces are reconstructed into a call-graph represented in 
a linked-list. Objects and method invocations are encoded 
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as attributes of the nodes and edges in the call-graph. To 
support scalability, a filter is used to preprocess the raw 
data by removing loops and pruning low-level branches in 
the call-graph, and produce an abstracted call-graph. The 
abstraction is tunable by users with adjusting parameters. 
To be compatible with the data format used in the 
induction system, the abstracted call graph is then 
converted to a GraphML format. GraphML is an extension 
of XML, and is specialized in describing the structural 
properties of graphs. Strictly complying with GraphML 
specifications, the graph dataset is used as an input to the 
graph-grammar induction subsystem of VEGGIE. The 
induction subsystem implements a common substructure 
mining algorithm. In addition to the isomorphism for 
common substructures, we augment nodes in substructures 
with temporal attributes. Therefore, a set of graph-
grammar rules could be inferred. To validate the grammar, 
the SGG in VEGGIE is used to parse the given traces 
represented in graphs based on the inferred grammars. A 
valid parsing result indicates the syntactic correctness of 
the inferred grammar against its corresponding program 
executions. 
 

4. Methodology 
 

This section explains how to apply the graph-grammar 
induction approach to discovering the structures of 
program behaviors using a running example. 
 
4.1 Program Preprocessing 
 

Data Acquisition: To define an instrumentation aspect 
using AspectJ, we declare (1) join points (i.e. the specific 
points in the execution of the program), (2) pointcuts (i.e. 
the collection of join points), and (3) advice (i.e. the piece 
of code that is executed when a pointcut is reached). The 
following information is recorded for each method 
invocation:  
� Class, object, method, and thread names, and 

arguments. 
� Method invocation: enter-exit of static and non-static 

method. 
Call graphs can be derived from the nested relationships 

of the enter-exits of method invocations. 
Data Representation: Intuitively, data traced from a 

running program records the actual behaviors of objects in 
the program. Hence the caller-callee relationship among 
objects in terms of call graph can be used to illustrate 
program scenarios. Initially the call graph is saved in a 
linked list. Each caller maintains a pointer to each of its 
callees. For instance, Figure 4 is a call graph of a toy 
program. 

To be compatible with the input data format in the 
VEGGIE system, the call graph is converted into the 
GraphML format. The information of objects and method 
invocation corresponds to the GraphML syntax, such as 
elements, attributes, nodes, and edges, etc. Essentially, a 
node representing an object in method invocation in 
GraphML has attributes on threads, objects and classes. 
Similar to the edges in call graphs, edges in GraphML 
connect two method invocations. Each edge is directed and 
explicitly connecting a starting node and an ending node. 

Data Abstraction: In traditional analysis of software 
execution, developers would notice that there exists 
redundancy in execution traces, but they may be unaware 
of the impact of redundancy manifested themselves as 
noise in the mining process. To facilitate the induction 
process, we need to create a concise representation of the 
program by pruning unrelated information that does not 
contribute to the structural features. We used an 
abstraction mechanism for method invocations captured in 
program execution. It includes two abstraction criteria:  

♦ continuous repetitions;  
♦ low-level methods. 

 
The first type is to reduce the possible redundant traces. 

The second one prunes unrelated sub-branches by hiding 
low-level details. For instance, addOne and getNum can be 
considered as details with respect to multiply. It allows 
developers to decide whether to reduce them or not.  

 
Eliminating the redundant or fine-grained structures can 

help the later induction to focus on the high-level 
behaviors.  It can also avoid mining the behaviors of local 
components. Figure 5(a) shows an abstracted graph after 
removing the repetition on method addOne. Similarly, 
using the second abstraction criterion, methods with depths 
in a call chain greater than a user-specified threshold could 

Figure 5 Loop abstractions on the call graph 
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be pruned. Figure 5(b) shows an abstracted call-graph after 
being pruned off the third-level branches. Users can 
choose not to prune sub-branches, so that the substructure 
multiply-getNum-add in this example could be a recurring 
structure. 
 
4.2 The Grammar Induction System 
 

Inferring meaningful grammars from graphs imposes 
great challenges. Several issues need to be addressed when 
inferring a graph-grammar, such as the selection and 
replacement of subgraphs. To address these problems, 
graph-grammar induction uses graph-based substructure 
mining algorithms instead of sequential based mining 
techniques. A substructure is defined as a representation of 
the recurring subgraphs. An instance is defined as one 
instance of such substructure in the graph dataset [2].  

The substructures produced from grammar induction 
procedure reveal hidden recurrent patterns within the graph 
dataset. The hierarchical relations within the grammar can 
aid developers in understanding and analyzing the 
construction of large and complex legacy systems. Those 
grammars can also be used to create size-constrained 
graphs to simulate the growth of a system. Furthermore, 
researchers can compare the inferred grammar against 
predefined grammar rules, if exist, for the system to verify 
the designs.  

The variety of substructure mining algorithms [10] 
results in several graph grammar induction systems 
[6][14][5]. For instance, Li et al. [10] use frequent 
subgraph mining to find substructures. Instead of using 
frequency, the VEGGIE’s subsystem SubdueGL uses a 
compression-based frequent pattern discovery algorithm to 
identify substructures, and compresses the substructures 
having the highest compression ratio [6]. 

SubdueGL emphasizes on the compressing of graph 
datasets instead of purely searching for the frequent 
subgraphs. The compression value for each substructure is 
calculated based on a minimum description length (MDL) 
and the substructure with the highest compression value 
among the competing substructures are selected. The 
substructure found in each iteration may not be the most 
frequent substructure but it can produce the best 
compression ratio for the given graph, i.e. the ratio 
between the original and resulting graphs after the inferred 
subgraphs are compressed. By iteratively discovering 
substructures with the largest compression ratio, 
SubdueDL replaces subgraphs in the given graph. The 
iterations ultimately turn the given graph into one or more 
non-terminal nodes, or no qualified substructures exist. 
Users can also set the threshold for the number of 
interactions. The steps of compression constitute a 
structural hierarchical lattice that corresponds to a set of 

graph grammar productions. Details of SubdueGL 
algorithm can be found in Jonyer [6]. The most frequent 
substructure does not necessarily compress the graph best. 
For instance, the ratio of compressing substructures of size 
one with a frequency of five is less than compressing 
substructures of size ten with a frequency of two. Hence 
frequency is not always the best factor in graph 
compression. The beauty of this grammar induction system 
lies in that it has the most powerful compression capability, 
and needs the least amount of iterations to reduce a graph 
to the minimum.  
 
4.3 Patterns with Temporal Properties 
 

Behavioral patterns describe activities that happen in an 
order. To reflect this, we adapted the SubdueGL algorithm 
by augmenting patterns with temporal attributes. Without 
temporal ordering, the inferred common patterns may not 
be correct even if they are isomorphic.  

We attach logical timestamps to a sequence of events to 
keep track of the events order. For instance, a sequence 
that action A happened 5 seconds before action B is 
considered the same as that a sequence action A happened 
2 seconds before B.  

Each substructure G is represented as a tuple <N, E> 
where N is a set of nodes, and E is a set of edges 
connecting nodes in the substructure (i.e. subgraph). Each 
node in the subgraph has one additional attribute: 
timestamp represented by tni for node ni. The timestamp is 
generated when the node is produced. In the GraphML 
representation, each node in the graph will have an integer 
timestamp. A node vector vG represents an ordered 
sequence of nodes within the substructure G, i.e. vt = {n1, 
n2, n3,…, nn} where tni  < tnj. That means ni happens before 
nj. Two substructures G1 = {N1, E1} and G2 = {N2, E2} are 
common structures if and only if they are isomorphic and 
have the same node vector. 

The time attribute is considered when grammar 
induction performs subgraph matching. For instance, the 
two graphs in Figure 6 where integer figures represent 
logical timestamps are not common structures since their 
node vectors (Multiply, getNum, addOne) and (Multiple, 
addOne, getNum) are not equivalent. 

 
 
4.4 Grammar Validation 
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Grammar validation is a process of checking the 
syntactic correctness of the grammar by parsing examples 
in the language. We employ the SGG to parse the given 
traces represented in graphs based on the inferred 
grammars. A valid parsing result ensures the syntactic 
correctness of the inferred grammar against its 
corresponding program execution.  

The SGG initially developed independently for visual 
languages and spatial parsing reasoning [9], has been 
integrated in VEGGIE. The parsing system shares the same 
visual interface with the induction system, but works 
independently. Therefore, SGG can be used to check the 
correctness of the inferred grammars. Moreover, the 
context-sensitivity makes the SGG powerful enough to 
parse any context-free grammars inferred by the induction 
process. 

The SGG can also be used to check the structure of 
other programs. For instance, if developers want to check 
if a new program satisfies the constraints specified by the 
inferred grammar, they can use the inferred productions to 
parse the new program. A valid parsing result means that 
the program satisfies these properties. 
 
4.5 A Supporting Environment 
 

A data preprocessor called Abstracer is built for data 
collection and preprocessing, including tracing the system 
under study, producing logs, reducing redundant and noise 
traces with tunable parameters, and generating GraphML 
files. Following the terminology of GraphML specification, 
we represent the caller-callee relationships in the form of 
schemas where objects and method invocations are 
denoted as nodes and edges, respectively.  There are only 
starting and ending points for each edge without any other 
attributes. Therefore the method names are included in the 
corresponding nodes’ attributes. Each node has a unique 
integer id, a type for its name, and a position in the graph 
editor.  

For instance, a GraphML example for the structure 
“main→ multiply” is shown as follows: 
<?xml version="1.0" encoding="UTF-8"?> 
<!-- SGG Graph Data --> 
<graphml xmlns = http://graphml.graphdrawing.org/xmlns > 

<graph edgedefault = "directed" xmlns = 
http://viscomp.utdallas.edu/VEGGIE > 
  <node id="1" type="main" pos="995 945"> 

<port id="{main}"/> 
<data key="attrib"> 

<attrib id="Terminal" type="2" bool="true"/> 
</data> 

</node> 
<node id="2" type="multiply" pos="878 252"> 

<port id="{multiply}"/> 
<data key="attrib"> 

<attrib id="Terminal" type="2" bool="true"/> 
</data> 

</node> 

<edgetype="E" directed="false" source="1" target="2" 
sourceport="{main}" targetport="{multiply}"/> 

</graph> 
</graphml> 
 

The VEGGIE grammar system has a user-friendly 
interface which includes three parts as shown in Figures 7, 
8 and 9: the type editor, the graph editor, and the grammar 
editor. These editors are closely related and seamlessly 
working together.  

 

 
Figure 7 Type editor 

 
Figure 8 Graph editor 

 
Figure 9 Grammar editor 

 

The type editor as show in Figure 7 lists properties such 
as the types, attributes and ports for all the nodes and 
edges in the given input graph. The left panel includes 
information about nodes and edges. The head node is used 
as a root without any special meaning. The graph editor 
can import and display graphs generated by Abstracer in 
the GraphML format. Figure 8 shows the graphical 
representation of the program in the display panel. In this 
directed graph, each edges directs from a node with a 
smaller integer to a node with a larger integer. The integers 
associated with nodes specify the temporal order. The Calc 
button on the interface provides two actions for end-users 



to perform either grammar induction or grammar parsing 
on the given graph. 

If the user issues the induction command, the graph 
grammar can be displayed in the grammar editor. As 
shown in Figure 9, the leftmost panel lists the production 
rules inferred from the toy program. By clicking on one of 
the productions, the corresponding details will be 
displayed in the middle and right panels, representing the 
left graph and right graph of the inferred production. 
Figure 9 shows the first graph production inferred by 
VEGGIE, and the right graph of which is the first 
compressed substructure. By analyzing these productions, 
developers can get a hierarchical structure of the program 
behavior. Besides displaying the productions, the inferred 
grammar rules can be exported, and saved in the GraphML 
format.  

VEGGIE not only assists grammar induction from 
graphs, but also supports parsing existing grammars using 
the SGG parser as described earlier. One can verify the 
syntactic correctness of any given graph by parsing the 
graph using the inferred grammar. To realize it, developers 
can use the parse command of Calc button in the graph 
editor in Figure 8. Then VEGGIE will popup a window 
and report the parsing result: valid or invalid. 

The visual environment increases the expressiveness of 
visual languages with a friendly and easy-to-use interface. 
The technical details on trace processing, graph grammar 
induction and parsing are hidden from users. 

 

5. Case Study 
 
5.1 Experiments Design 
 

To evaluate our approach in a real-world application, 
we experimented on an open-source project JHotDraw. We 
use Version 6.0 Beta that contains 136 classes, 1,380 
methods, and 19 interfaces. The source codes have been 
used in many previous evaluations. 

JHotDraw supports many drawing activities. Commonly 
used activities include: Run JHotDraw and Initiate the 
drawing environment; Create new display view; Draw 
graphs such as rectangle and triangle; Start and end 
animation; Close JhotDraw, etc. Using AspectJ, we 
defined the instrumentation aspect by specify the pointjoint 
as follows: execution (* *. * ( .. )) && ! within ( org. lib. 
instrumentation ) && within ( org. jhotdraw. samples. * . 
* ). We designed four scenarios in the experiment. 

Scenario 1: draw a rectangle. No abstraction was made 
on the raw trace. This intends to evaluate the grammar 
induction ability for identifying structures without 
abstractions. 

Scenario 2: draw one triangle four times. We apply the 
first criterion in abstraction process, i.e. continuous 

redundant traces were abstracted away. We intend to 
evaluate if the induction can identify the repeating 
behaviors “drawing” as productions. 

Scenario 3: draw one triangle four times. We apply two 
criteria of abstraction process, i.e. both loops and method 
invocations with call depths larger than three in the call 
chain were removed automatically. We intend to compare 
with Scenario 2, and evaluate the influence of the 
abstraction on induction. We used the same raw trace as in 
Scenario 2. 

Scenario 4:  draw a triangle and an eclipse, and start 
and end animation twice. Continuous redundant traces 
were abstracted away. This intends to evaluate the patterns 
inferred from various activities. 
 
5.2 Discussions 
 

Preliminary results are shown in Table 1. We evaluate 
the related metrics of the approach, such as the size of 
trace, the number of reductions, and execution time. 

 
Table 1 Preliminary results of four scenarios 

Scenar
io 

Lines 
of   

trace  

Lines of 
abstract
ed trace 

# of 
events 

# of 
produc
tions 

Exec.  
time      
(sec) 

1 200 n/a 99 25 86.996 

2 348 100 50 12 0.911 

3 348 90 50 10 0.521 

4 1774 208 90 7 64.092 

 
Based on the information in Table 1, we notice that 

reduction on loops and pruned traces can substantially 
increase the efficiency of induction. Compared with 
Scenario 1, Scenario 4 has much larger traces; its 
execution time, however, is less than Scenario 1 due to the 
abstraction. Similarly, Scenario 3 spent less time than 
Scenario 2 because its lower-level branches were pruned. 
We also notice that the number of inferred productions has 
no direct correspondence to the number of events in the 
system. Scenarios 1 and 4 provide the evidence. Moreover, 
the abstraction ratio is the same for all the scenarios. It 
may depend on the topology of the trace structure. 

Since the induction algorithm is based on a 
compression-based subgraph mining, a substructure found 
during each round of iterations may not have a concrete 
meaning. Thus the grammar may not be necessarily the 
best in representing semantically relevant program events, 
since a grammar describes the syntax, rather than the 
semantics, of the given graph.  
 



6. Related Work 
 

Related work includes software pattern mining, 
dynamic program behavior discovery, and application of 
grammar induction in software engineering. 

Cook et al. [3] discovered formal models of software 
process from event-based data using grammar inference. 
They evaluated the strengths and weakness of Ktail, 
Markov, and neural-network-based discovery methods. 
They used textual information in these methods instead of 
graphs. A most recent and related work by Walkinshaw et 
al.[13] applied the QSM algorithms of Dupont et al. [4] to 
reverse engineer finite state machine of program behaviors 
from execution traces by interactive grammar inference. 
They mapped methods in traces to six predefined functions 
to reduce the traces. This means that there are only six 
symbols in that language. The QSM algorithm was used to 
select and merge the symbols, and generate a state machine. 
Our approach abstracts original methods, and mines 
behavioral patterns represented in graphs. There may be 
graphical symbols denoting method invocations specified 
by the inferred grammars.  

Sartipi et al. [12] combined sequential pattern mining 
and concept analysis to recovery software structures from 
loop-free execution traces. Patterns were mined and then 
used to build a concept lattice. In our work, common 
patterns are subgraphs representing the method invocations 
between objects, while the sequential patterns cannot 
represent and display objects’ interactions directly. 
Furthermore, we built hierarchical lattice naturally during 
the construction of grammars which is more efficient. Our 
lattice can express the construction of program behaviors 
for one scenario while their work can help to identify the 
distribution of functions in the lattice for the same scenario. 
 
7. Conclusion and Future Work 
 

This paper has presented a graph-grammar induction 
approach to the discovery of program’s actual behaviors 
using a semi-automatic visual environment. We 
investigated the graph representation of program behaviors, 
and applied well-established graph-grammar formalisms. 
Inferred graph-grammars can be used to understand the 
hidden structures of the program behavior. They also 
provide clues to the construction of complex or legacy 
systems. The common substructures found through 
induction are possible reusable software components. 
Based on our preliminary study, we believe that this 
approach could be extended to model formal state 
machines using the inferred graph grammars. 

As the future work, we will conduct more experiments 
on real-world systems and investigate issues like scalability 
and efficiency. Software semantic constraints can be 

included in the subgraph mining algorithm, while currently 
we only include the temporal constraint. Systematic 
evaluations are planed as well. Empirical evaluation will 
be performed to experts and novices to test the usefulness 
of the inferred grammars.  
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