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Abstract 
A serious threat to user privacy in new mobile and web2.0 

applications stems from ‘social inferences’. These 

unwanted inferences are related to the users’ identity, 

current location and other personal information. We have 

previously introduced ‘inference functions’ to estimate the 

social inference risk based on information entropy. In this 

paper, after analyzing the problem and reviewing our risk 

estimation method, we create a decision tree to 

distinguish between high risk and normal situations. To 

evaluate our methodology, test and training datasets were 
collected during a large mobile-phone field study for a 

location-aware application. The classification tree 

employs our two inference functions, for the current and 

past situations, as internal nodes. Our results show that 

the achieved true classification rates are significantly 

better than approaches that employ other available 

features for the internal nodes of the trees.  The results 

also suggest that common classification tools cannot 

accurately capture the information entropy for social 

applications. This is mostly due to the lack of enough 

training data for high-risk, low-entropy situations and 

outliers. Thus, we conclude that estimating the 
information entropy and the relevant inference risk using 

a pre-processor can yield a simpler and more accurate 

classification tree.  

 

Key Words: Reasoning Under Fuzziness or 

Uncertainty, Knowledge Representation and Reasoning 
 
 

1. Introduction 
 

The continuous input of information in technological 

environments involving multiple users can create 

numerous unaddressed risks related to user privacy. 
Current social computing applications, such as Facebook, 

enable users to exchange messages, reveal aspects of their 

profile, and even find profile-based matches. Location-

based applications leverage location, mobility, or 

proximity information to support navigation, provide 

recommendations, recommend matches, etc. The resulting 

use and sharing of personal information raises serious 

privacy concerns. Previous efforts to protect the users’ 

privacy have made considerable advances in terms of 

computer and network security [1], user control 

mechanisms [2, 3], ethical considerations, and privacy 

policies [4]. However, the collaborative and pervasive 

nature of new ubiquitous social computing (USC) 

applications can give users the ability to leverage 
background knowledge about the social 

environment/context to make social inferences [5]. Social 

inferences can result from an inferrer taking advantage of 

information revealed by the application and, sometimes, 

of information available outside of the specific 

application. Unwanted inferences can impact users 

associated with these applications, in relation to identity, 

location, activities, social relations, and profiles. Our 

work has identified two categories of social inferences 

[5]:  

• Instantaneous Social Inferences (e.g. my cell phone 
shows that I have a romantic match, Bob, who is 

nearby and I can only see two people around me. One 

of them must be Bob, thus increasing my chances of 

identifying him).  

• Historical Social Inferences through persistent user 

observation (e.g. two nicknames are repeatedly 

shown on the first floor of the gym where the gym 

assistant normally sits. One of them must be the gym 

assistant). 

Numerous social computing applications deal with 

privacy concerns through access control [2, 6] (e.g., 
Facebook enables users to set privacy preferences) and a 

few of them have even employed machine learning (e.g., 

Cornwell et al. [6] used case-based reasoning to capture 

the users’ privacy preferences). However, such control 

models are not designed to prevent unwanted social 

inferences.  

Existing inference prevention methods [7, 8]  are 

inadequate in addressing social inferences particularly 

because of two reasons: (a) inferrers typically also utilize 

available information outside of the application (i.e. 

background knowledge) as a premise for inferences and 

(b) the sensitivity of user information may be of dynamic 
nature based on context, such as time and location. Most 

of the researchers view inferences as threats to 

information security or database confidentiality [7, 8]. 

Although many researchers have applied artificial 

intelligence (AI) techniques in  the domain of security 

protection [9, 10], the use of AI to address the inference 
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problem, especially in the context of USC applications, 

remains  under-researched. 

In previous work we have defined the social 

inference problem in the USC context and have also 

shown the relation between the risk of social inferences 

and information entropy [11, 12]. We have presented a 
methodology to estimate the information entropy based 

on novel modeling of a potential inferrer’s background 

knowledge. We have also shown that information entropy 

is a strong predictor of social inference risks after we 

devised inference functions to encapsulate information 

entropy. However, it is not obvious how each individual 

inference function (quantifying instantaneous and 

historical inferences, respectively) or a combination of 

them can be used to detect a high risk situation that 

should alert an affected user or should require the USC 

system to take a preventive action. Furthermore, it has not 

been investigated whether using other observable features 
could improve the risk classification rate.  

In this paper, we briefly review our risk estimation 

theoretical framework. We then show that AI techniques 

can be employed to identify inference risks in order to 

distinguish between high-risk and normal (i.e. low-risk) 

situations. Towards this objective, we first calculate 

values for the entropy-based instantaneous and historical 

inference functions under various scenarios comprising 

real data obtained from a proximity-based field study. We 

then generate classification and regression trees (CARTs) 

that distinguish between high risk and normal situations. 
Our results show that the generated decision trees are 

usually simple while also being comprehensive as they 

utilize both of the individual (i.e. instantaneous and 

historical) inference functions as well as their 

combination. Whereas most of the AI-based security 

protection and intrusion detection systems examine all 

available features to detect intrusion or misuse 

activities/patterns [13], our work here shows that adding 

more features (in the form of independent variables) does 

not improve the classification success rate. We also show 

that feeding the system with all of the available features 

as raw data (i.e. without entropy calculations) increases 
the complexity of the tree without improving the 

classification accuracy.  

 

2. Background 
 

We first present three categories of relevant research 
efforts that attempt to enhance user privacy: ethics of 

information management, access control systems, and 

information and network security. AI has been vastly 

employed in security protection and occasionally by 

access control systems.  

1. Ethics, principles, and rules: Privacy concerns 

can be partially addressed through the application of 

ethical principles and rules. Langheinrich [4] defines the 

principles of fair information practices as openness and 

transparency, individual participation, collection 

limitation, data quality, use limitation, reasonable 

security, accountability and explicit consent.  

2. Access control systems:  They provide a user 

interface to set privacy preferences and directly control 

people’s access to other user’s information based on 
privacy settings. Access control systems providing an 

interface to protect user privacy started with 

internetworking [14, 15], and progressed to context-aware 

and ubiquitous computing systems  [2, 16, 17]. AI has 

rarely been used to improve access control systems for 

ubiquitous computing. For example, Cornwell et al. [6] 

employed case-based reasoning to learn and predict the 

users’ privacy preferences in a scheme achieving a 

maximum accuracy of 80%. 

3. Security protection: It  handles the following 

aspects [18]:  

• Availability (services are available to authorized 
users). 

• Integrity (information is free from unauthorized 

manipulation). 

• Confidentiality (only an intended user can access the 

respective information). 

• Accountability (actions of any entity should be 

uniquely traceable). 

• Assurance (guarantee that all security measures have 

been properly implemented). 

The inference problem is mostly known as a security 

risk targeting system-based confidentiality. Two types of 
techniques have been proposed to identify and remove 

inference channels. One makes use of semantic data 

modeling methods to locate inference channels in the 

database design, in order to redesign the database for the 

removal of these channels. The other one evaluates 

database queries to understand whether they lead to 

unauthorized inferences. These techniques have been 

studied for statistical databases [19], multilevel secure 

databases [20, 21] and general purpose databases [7, 22]. 

A few researchers have also addressed the inference 

problem for data mining [8, 23-25]. Denning and 
Morgenstern employed classical information theory [26] 

to measure the inference chance in the realm of multilevel 

databases [27, 28]. Our approach adapts their work for 

social computing environments. 

The challenge of social inferences cannot be addressed 

adequately enough by existing techniques because of the 

following reasons: (a) an inferred user attribute may not 

be stored in the social application database; (b) 

background knowledge available to the inferrer outside of 

this database is often the premise for inferences; (c) 

information revealed in the past through this application 
can enable historical inferences; (d) the sensitivity of user 

information may be of dynamic nature; and (e) social 

inferences do not necessarily result from deductive 

reasoning. 
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AI is widely used in information assurance and 

confidentiality, as well as system integrity and 

availability. Many intrusion detection and prevention 

systems employ neural networks, decision trees, and 

Bayesian networks [9, 10]. However, social inferences 

remain very under-researched and, to the best of our 
knowledge, the social inference problem has not been 

researched before with AI techniques.  

In Section 3, we first modify and extend Denning and 

Morgenstem’s formulation [27] in order to then introduce 

inference functions that can predict the risk of social 

inferences in mobile and social applications. In Section 4, 

we first describe our mobile-phone based actual field 

study. This study then populates our database for the 

creation of a decision/classification tree. This tree aids the 

process of understanding how to combine and compare 

instantaneous and historical inference functions to predict 

the risk of social inferences. Our results with analysis are 
presented in Section 5. 

 

3. Prediction and Classification of High Risk 

Situations 
 
In this section we review the social inference problem, the 

relation between social inferences and information 

entropy, and our entropy-based framework that models 
users’ background knowledge to predict the social 

inference risk. We then define our instantaneous and 

historical inference functions. 

 

3.1. Social Inference Risk Prediction 
 

Our theoretical framework is based on this fact: as we 

collect more information about a user, such as his/her 

contextual situation, our uncertainty about other 
attributes, such as his/her identity may be reduced; 

consequently, this process increases the probability of our 

correctly guessing some user attributes. This uncertainty 

can be measured by information entropy. Information, as 

used in information theory for telecommunications [26], 

is a measure of the decrease of uncertainty in a signal 

value at the receiver site. Here we use the fact that the 

more uncertain or random an event (outcome) is, the 

higher the entropy it possesses. In the realm of the 

inference problem under study, as the inferrer collects 

more information about an entity or attribute (such as 

another user or a location), the number of possible entities 
that match known sets of attributes decreases; this results 

in reduced information entropy.  

To explain this in more detail, we refer to an example 

from our user experiment in [12]. This experiment 

provides an example for the herein presented work. Bob 

engages in an online communication with Alice. At the 

start of communication Bob does not know anything about 

his chat partner. He is not told the name of the chart 

partner or anything else about her, so all users are equally 

likely to be his partner (the user probability is uniformly 

distributed for this chat session). Thus, the information 

entropy has the highest possible value. After Alice starts 

chatting, her language and chat style help Bob determine 

her gender and home country [12]. At this point, users of 
the same gender and nationality are more likely to be his 

chat partner. Thus, the probability for Bob to guess his 

chat partner is no longer uniformly distributed over the 

users and the entropy decreases. After a while, Alice 

reveals that she is Hispanic and also plays for the 

university’s women’s soccer team. Bob, who has prior 

knowledge of this soccer team, knows that it has only one 

Hispanic member. This allows Bob to infer Alice’s 

identity at physical appearance granularity. In summary, 

social inferences happen when newly collected 

information reduces an inferrer’s uncertainty about an 

attribute to a level that she/he could deduce that attribute’s 
value for an entity/user. Collected information includes not 

only the information provided to users by the system, but 

also other information available outside of the application 

database or background knowledge.  

We formally define the social inference problem as 

follows [11, 12]. Information Φ can be inferred from 

information Q if knowing Q reduces the uncertainty about 

Φ by bringing the entropy of Φ down to a risky threshold. 

Q can be safely known by user A if A  is permitted to 

know everything that can be inferred from Q. This 

condition can be expressed as follows: 

, [( ( | ) ( )) ( )]
A A

H Q threshold PK Q PK∀Φ Φ < ∧ ⇒ Φ , where 

H(Φ|Q) is the conditional entropy of  Φ given Q and 

PKA(Q) means A is permitted to know Q .  

Q includes the potential inferrer’s (i.e. A) background 

knowledge as well as answers to all of his/her earlier 

queries facilitated by this social application. Before A 

knows Q (which means A has no relevant knowledge), Φ 

can take any of its possible values with equal probability, 

thus yielding maximum entropy from A’s perspective. 

The maximum entropy of Φ, Hmax, is calculated as 

follows: 

max 2 2

1

.log log (1/ )
X

H P P X= − = −∑               (1) 

where P=1/X and X is the maximum number of entities 

(users) related to the application. We assume that A does 

not have any relevant prior knowledge (background- or 

queries-based). 
After estimating all the information available to the 

inferrer (i.e. Q), we can calculate the conditional 

information entropy of attribute Φ as defined in 

information theory: 

1 2

1

( | ) 1( ). log 1( )
=

= Φ = −∑
V

c

i

H H Q P i P i                (2) 

where Hc1 is the instantaneous entropy of Φ. V is the 

number of possible values for  attribute Φ. P1(i) is the 

probability that the ith possible value is thought by the 
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inferrer to be the correct one. P1(i) is the posterior 

probability of each value given Q.   

In the case of historical inferences, Q includes the 

answers to previous queries starting at the current time 

and going back a long amount of time equal to T 

(predetermined value). We distinguish this case using Q’ 
for the available information and Hc2 for the historical 

entropy of Φ:  
'

2 2

1

( | ') 2( ).log 2( )
=

= Φ = −∑
V

c

i

H H Q P i P i              (3) 

Let us now illustrate the effectiveness of our entropy-

based model using our earlier example from the user 

study. Alice is engaged in an initially-anonymous on-line 

chat with Bob. After a while her chat style may enable 

Bob to guess her gender and home country. Then, she 

reveals her Hispanic heritage and gender, as well as her 

affiliation with the soccer team. Let Φ be Alice’s identity 

at name or face granularity. Before the last chat step, Q 

may comprise her gender and home country, thus 
changing the probability distribution of possible values as 

below: 
1( )

. / 3+ .(1- )/( 1)+(1 ). /( 2)   for users of the same gender and country

.(1- )/( 1)+(1 ).(1- )/                            for users of only the same gender

(1 ). /( 2)+(1 ).(1- )/       

P i

X X X

X V

X V

ς σ ς σ ς σ

ς σ ς σ

ς σ ς σ

=

−

−

− −                   for users of only the same country

(1 ).(1- )/V                                                                         for the rest of usersς σ






 −
where V is the total number of potential users for this 

social application, ζ is the probability of Bob correctly 

guessing Alice’s gender, σ is the probability of Bob 

correctly guessing her home country [12], X1 is the 

number of female users,, and X2 is the number of users 

having Alice’s ethnicity.  

After Alice actually reveals her gender and team 

membership, Q is modified to account for the newly 

revealed information (gender, ethnicity, and soccer team 

player) and relevant background knowledge possessed by 
Bob. Since the personal profiles were found to be part of 

the inferrer’s background knowledge in such applications,   

V is now the number of users that satisfy Q, which is the 

number of Hispanic female soccer players. At this point, 

V=1, P1(i)=1, and the entropy is at its minimum level. 

We now define the instantaneous and historical 

inference functions based on the corresponding entropies, 

as follows. 

INF1(Q� Φ)= (Hmax -Hc1)/ Hmax                (4) 

where INF1(Q� Φ) is the instantaneous inference 

function, Hmax is the maximum entropy as defined in (1), 
and Hc1 is the instantaneous entropy as defined in (2). The 

maximum entropy is used for normalization, that is. 

INF1(Q� Φ) always lies between 0 and 1. When it is too 

close to 1, there is a high inference risk. Similarly, the 

historical inference function is defined as: 

   
max 2

2

max2

2

,
( )

,

− 
< 

→ Φ =  
 ≥ 

c
c

c

H H
if H threshold

HINF Q

if H thresholdλ

    (5) 

where Hmax is the maximum entropy as defined in (1), and 

Hc2 is the historical entropy as defined in (2). The 

historical inference function produces values between 0 
and 1 until the entropy reaches the threshold.  The 

threshold is preset based on each user’s anonymity 

preferences [11, 12]. When the entropy reaches this 

threshold, INF2(Q� Φ) starts counting the new queries 

involving Φ and producing values higher than one.  

 

3.2. Classifying High Risk and Normal Situations 
 

We have previously conducted a laboratory experiment in 
the domain of computer-mediated communications and 

verified that information entropy is the best predictor of 

inference risks [12]. More specifically, if the 

instantaneous entropy is lower than the preset threshold, 

then the situation is of high risk for inferences. We also 

suggested setting the entropy threshold based on each 

user’s anonymity preferences. If a user prefers to be 

indistinguishable from U-1 other users, V in (2) can be 

replaced by U to obtain the entropy value for the 

instantaneous entropy threshold. The threshold value can 

then substitute Hc1 in (4). The higher the value derived for 

the historical inference function, the higher the inference 
risk. Actually, after λ=K queries there may be high 

inference risk. However, it is not obvious at what point 

(value of K) a situation is classified as high risk based on 

the historical inference function. It is also unclear whether 

a combination of relatively high values for the 

instantaneous and historical functions can indicate a high 

risk situation. In addition to addressing these questions, 

we aim to verify that adding more features to the risk-

decision process results in little or no gain. Also, the same 

classification accuracy cannot be achieved without 

entropy calculations. The procedure is explained in the 
next section. 

 

4. Risk Classification Method 
 

A classification tool such as a decision tree can be 

employed to answer the above questions for high risk 

situations. In this section, we first summarize results from 
the actual user study that provided the test data to train 

our classification tree. We then explain the decision tree 

generation process. 

 

4.1. Step 1- Field Study and Data Collection  

 

We collected data through a mobile-phone field study. All 

study subjects were students of our medium-sized urban 

university who were offered 40 dollars for answering a 
pre-study survey. Then, they carried our Windows-based 
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mobile phones for four weeks, and answered several 

questionnaires while using the phone. One hundred sixty 

nine students registered for the study.  One hundred 

twenty nine of them were active participants throughout 

our four-week experiment.  

In phase I of the study, the subjects entered their 
contact information, demographic information (such as 

age and gender), and answered questions related to their 

physical appearance (such as height and body type). 

Phase II involved installation of a location estimation 

system that continuously tracks the users’ location on 

campus. In phase III, we installed our ‘Nearby’ 

application to display on each phone the nicknames of the 

users in the vicinity of a phone’s user. Each user initially 

chose a nickname to display, instead of using his/her real 

name. Phase IV involved the last part of our data 

collection process using pop-up questionnaires 

conforming to the Context-Aware Experience Sampling 
Method (CA-ESM) [29]. With CA-ESM, a questionnaire 

popped up every time a subject changed location and 

stayed in the new location for at least five minutes or 

when she/he had not answered a questionnaire for at least 

two hours. The questionnaires asked subjects how often 

they visited the location they were currently at, how many 

people they then saw in their physical vicinity, and how 

many of them were their friends or acquaintances. In 

subsequent questions, the subjects were asked questions 

about the nicknames they saw with the nearby 

application, what they could guess about the identity of 
each nickname owner, and how they could map them to 

people in their vicinity. They elaborated on their guesses 

by mentioning potential names or physical characteristics 

of nearby nickname owners.  

An identity inference happens when an inferrer is able 

to correctly map a nickname shown on his/her phone to a 

nearby person. For example, the inferrer’s cell phone 

repeatedly shows that “Superman” is nearby and the 

inferrer repeatedly sees the same person among all nearby 

people. That person must then be “Superman”. 

 

4.2. Step 2- Generating a Classification and 

Regression Tree  

 

The data collected from the field study included many 

features (alternatively called independent variables or 

internal nodes) for each instance of a pop-up 

questionnaire for each subject, including: 

• Place-related variables such as type of current place 

and the frequency of visiting this place. 

• Proximity-related variables such as the number of 

nearby people, number of nearby same application 

users, and number of nearby friends.  

• Time-related variables such as the number of pop-up 

questionnaires completed by the subject up to the 

time of this questionnaire and the number of days 

passed since the beginning of the study. 

• Demographic variables for this subject and the 

nearby users such as their education level, gender, 

and ethnicity. This information is derived by the 

system using data obtained in phase I. 

• Finally, the instantaneous and historical inference 

functions were evaluated for each nearby user.  
Note that not all the above features are necessarily 

relevant, but like any other regression analysis (including 

many intrusion detection systems) we monitor and try to 

use all of the available system features.  Some of the 

features may be redundant or may contribute little (if 

anything) to the detection process [13]. Hopefully the 

decision tree will help us clear up any confusion. Over 

3000 questionnaires were answered in our study. The 

subjects’ answers and their elaborations on their guesses 

were then compared to the demographic and physical 

information collected in the pre-study survey in order to 

verify if the subject was able to correctly identify a nearby 
nickname or narrow it down to just two users (where one 

of them is the correct identity). Correct guesses were 

classified as high risk situations while the others were 

classified as normal situations. This binary decision 

process is driven by the tree contents. 

The classification trees for the subjects were 

generated automatically using MatLab. Gini’s diversity 

index [30] was used to choose an outgoing tree branch. 

For reliability purposes, nodes had to have 100 or more 

observations to be split.  

Three sets of classification trees were generated. The 
first set involved trees trained and tested using the 

inference functions as independent variables. Trees in the 

second set were trained and tested with all other 

categories of independent variables discussed above (i.e. 

excluding our inference functions). Finally, trees in the 

third set were trained and tested with all five categories of 

independent variables explained above (i.e. by 

incorporating all the variables used in the first two tree 

sets). The procedure is shown in Fig. 1. The variable 

denoting a correct_guess was always used as the 

dependent variable. Classification results are explained in 
the next section. 

 

5. Classification Results 
 
We produced two instantaneous inference functions: 

inst_inf_1 is the value of the instantaneous inference 

function (INF1(Q� Φ) in equation (4) where the number 
of possible values for a nearby user’s identity, V, is set to 

the number of nearby users using the application. 

inst_inf_2 is the value of the instantaneous inference 

function where the number of possible values for a nearby 
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Fig 1. Block-diagram for classification process (with all 

possible inputs) 

 
user’s identity, V, is set to the number of all nearby 

people. The value of the historical inference function, 

hist_inf, was calculated considering the history of co-

proximity of the subject and the nearby user, for up to two 

weeks before the current questionnaire popped up. 

First, only inference functions were used as 

independent variables. The tree structure and the rate of 

correct classification changes based on the ratio of costs1 

between false positives2, CP, and false negatives3, Cn. We 

changed the cost of false negatives, Cn as compared to the 

cost of false positives, CP, and obtained the upper curve 

depicted in Fig. 3. As shown in the figure, for Cn=8*CP 
the true positive rate is 85% and the true negative rate is 

74%. Since correct guesses were made rarely with the 

questionnaires (about 12%), the false negative must be 

given a higher cost to produce a large true positive rate. 

An instance of the tree for Cn=6.*CP is shown in Fig. 2. 

This tree uses the inference functions both individually 

and in combination. The tree basically implies that a 

situation is of high risk when either the instantaneous or 

the historical inference is too high (hist_inf>threshold T1 

or inst_inf>threshold T2), or they are both relatively high 

(hist_inf> T4 or inst_inf>T2 where T4<T1).    
In the second phase, only the time-, place-, and 

proximity-related information and demographic features 

explained in Section 4 were used as independent 

variables. Note that the proximity-related features include 

the number of nearby application users and the number of 

nearby people; the latter implies the number of possible 

values for a user’s identity, V, in calculating the 

instantaneous inference functions. However, no feature 

directly measures the historical inference function. The 

correct classification rate of the decision tree as a function 

                                                
1 The cost of correctly classifying a situation into a specific class 
should be minimum. By default in MatLab, this cost is 1 if the 
classification is wrong and zero otherwise. 
2 For a false positive, no inference occurs but the tree classifies 
the situation as high risk. 
3 For a false negative, an identity inference occurs but the tree 
classifier identifies the situation as normal. 

 
Fig. 2. A classification tree for Cn=6*CP (phase 1). 

 

of Cn is shown in the lower curve of Fig. 3. For a given 

true negative rate, the true positive rate is on average 30% 
lower than the true positive rate in the previous phase. An 

instance of the tree for Cn=6*CP is shown in Fig. 4. It has 

a higher depth than the tree obtained in phase one. In the 

final phase, all five categories of variables involved in the 

first two phases were used as independent variables. The 

difference in the correct classification rate was less than 

0.5%.  

 

6. Analysis of the Results and Conclusions 
 

We provided an overview of the social inference problem 

and presented our method of estimating the inference risk 

for mobile and social applications. Our method introduces 
the instantaneous and historical information entropy 

functions. Social inferences result from low information 

entropy. In the case of an identity inference, the user at  

 
Fig. 3. Correct/true classification rates for various ratios 

of false-positive and false-negative costs. 
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Fig. 4. A classification tree for Cn=6*CP (phase two). 

 

 

risk is uniquely identified by the inferrer. Therefore, when 

a classification tool is used for high risk situations, the 

tool either needs an input variable that measures 

uniqueness or an appropriate set of input variables from 

which low information entropy can be detected. The 

second case can be very difficult or even impossible to 

obtain for the following reasons. 

• Lack of adequate training data involving unique 
situations and outliers. After a user, A, reveals a 

subset of attributes, say {e1, e2..., en}, the information 

entropy is a function of the number of people for 

whom e´1=e1 and e´2=e2... and e´n=en, and the 

respective probabilities considering all these users. 

To capture whether the entropy falls below the preset 

threshold, the classification tool must have enough 

training data to include unique combinations of user 

attributes which are unlikely to happen. For example, 

it is highly unlikely that the {Hispanic, female, soccer 

player} set (in the example of Section 3) appears 

exactly as is in the training data.  

• Difficulty of modeling the history of information that 

a potential inferrer collects about another user B in 

relation to all the other users. E.g., in the proximity-

based application of this paper, the proximity of the 

inferrer to B in three different situations should not 

lead to an identity inference if many common users 

are involved in these situations. However, it can lead 

to an identity inference if user commonality is small 

among these situations. The only strong estimator of 

this risk is the historical inference function which is 

not necessarily correlated with any observable 

feature. 

To choose the best features for classifying the 

situations and investigating the effectiveness of the 

decision algorithm, we then used a classification tree to 

identify high risk and normal situations. We observed the 
following results. 

• Using the inference functions as internal nodes 

produces a rather simple and comprehensive tree 

structure. 

• Feeding the tree with all the features that can be 

directly measured (place, proximity, time and 

demographic variables) in addition to the inference 

functions does not make a significant improvement in 

the classification rate. 

• Providing all these features without the inference 

functions does not yield the same performance as in 
the former two cases. 

Most intrusion detection systems monitor and use all 

of the available system features.  Some of the features 

may be redundant or may contribute little (if anything) to 

the detection process [13]. This results in excessive 

computational complexity with little gain. We have 

shown that including more features in addition to our 

inference functions does not actually improve the true 

classification rate. Also, using all the available features 

without entropy calculations increases the complexity of 

the tree without achieving comparable success. Therefore, 

we obtained the simplest and most accurate design with a 
preprocessor that calculates the inference functions and a 

classification tree having as inputs the instantaneous and 

historical inference functions. The tree uses these 

functions separately and collectively to appropriately 

classify the situations. 
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