
TiMDPpoly: an Improved Method for Solving Time-dependent MDPs

Emmanuel Rachelson
Dept. of ECE

Technical University of Crete
73100 Chania, Greece

rachelson@intelligence.tuc.gr

Patrick Fabiani
ONERA-DCSD

2, avenue Edouard Belin
31055 Toulouse, France
patrick.fabiani@onera.fr

Frédérick Garcia
INRA-BIA

Chemin de Borde Rouge
31326 Castanet, France
fgarcia@toulouse.inra.fr

Abstract

We introduce TiMDPpoly , an algorithm designed to solve
planning problems with durative actions, under probabilis-
tic uncertainty, in a non-stationary, continuous-time con-
text. Mission planning for autonomous agents such as plan-
etary rovers or unmanned aircrafts often correspond to such
time-dependent planning problems. Modeling these prob-
lems can be cast through the framework of Time-dependent
Markov Decision Processes (TiMDPs). We analyze the
TiMDP optimality equations in order to exploit their prop-
erties. Then, we focus on the class of piecewise polynomial
models in order to approximate TiMDPs, and introduce sev-
eral algorithmic contributions which lead to the TiMDPpoly
algorithm for TiMDPs. Finally, our approach is evaluated
on an unmanned aircraft mission planning problem and on
an adapted version of the well-known Mars rover domain.

1 Introduction

Taking into account both uncertainty and continuous
time-dependency is a crucial issue in some planning do-
mains such as operation planning for autonomous aerial ve-
hicles or Mars rovers. While sensor noise or external distur-
bances are often modeled as stochastic outcomes in Markov
Decision Processes(MDPs, [8]), these processes only model
the stepwise evolution of the system.

We focus on an extension of MDPs to continuous ob-
servable time: the set of decision epochs takes real val-
ues instead of successive integers and time is a continu-
ous state variable among other discrete ones in the “hybrid”
state space. Boyan & Littman [1] introduce the framework
of Time-dependent Markov Decision Processes (TiMDPs).
We build on their contribution to improve the resolution of
TiMDPs and provide better insight on algorithms such as
[3] or [5]. While the scope of this paper is on TiMDPs,
many of the results presented here apply in broader frame-
works for continuous variables and hybrid state spaces.

2 Continuous time in MDP planning

A Markov Decision Process is given by the tuple
〈S,A, P, r〉 where S is the set of possible states for the
agent, A is a set of available actions among which the agent
chooses at each decision epoch, P (s′|s, a) is a Markovian
transition model providing the probability of reaching state
s′ after undertaking action a in s, and r(s, a) describes the
reward obtained during transition (s, a). Solving an MDP
boils down to finding a Markovian control policy π, map-
ping states to actions and optimizing a given criterion. A
common criterion is the expected γ-discounted cumulative
reward of applying policy π over an infinite horizon, start-
ing in a given state s. An important issue illustrated by this
criterion’s definition is that a policy is optimized on the ba-
sis of a unit duration for all actions. In the problems we
wish to consider, the uncertainty often affects both the ac-
tion outcomes and the sojourn times in successive states.

Several extensions to discrete-event dynamic systems
exist to take durative actions and time-dependency into ac-
count for decision optimization (e.g.[4, 11, 12]). We focus
on TiMDPs [1], a straightforward way of including time in
the state space of an MDP. A TiMDP is described by a set
of discrete states S and a set of actions A, as in a standard
MDPs. However, whenever one performs action a in s and
at time t, an outcome µ, among the set M of outcomes, is
triggered with probability L(µ|s, t, a). Each outcome is de-
scribed by a destination state sµ and a duration model Pµ
characterizing the sojourn time before the transition to sµ
triggers. This duration model can either be relative — it
provides the probability density function (pdf) on the so-
journ time — or absolute — giving the pdf on the transition
date. Figure 1 illustrates this definition and recalls the opti-
mality equations for TiMDPs.
U is the expected value of outcome µ, while Q is the

expected value of undertaking a in (s, t). Note that with
TiMDPs, policy values have to be manipulated as functions
of t in each state s, instead of simple scalar values as in
the MDP case. V (s, t) is the best action’s value in (s, t),s

s1 a1

µ1, 0.2

µ2, 0.8
s2

Pµ2 Tµ2 = ABS

Pµ1 Tµ1 = REL

U(µ, t) =
{∫∞
−∞ Pµ(t′)[R(µ, t, t′) + V (s′µ, t

′)]dt′∫∞
−∞ Pµ(t′ − t)[R(µ, t, t′) + V (s′µ, t

′)]dt′

(1)

Q(s, t, a) =
∑
µ∈M

L(µ|s, t, a) · U(µ, t) (2)

V (s, t) = max
a∈A

Q(s, t, a) (3)

V (s, t) = sup
t′≥t

(∫ t′

t

K(s, θ)dθ + V (s, t′)

)
(4)

Figure 1. Time-dependent MDP

given all Q functions, and, finally, V (s, t) is the expected
value function in s if one allows for a specific wait ac-
tion which leaves the discrete state unchanged and deter-
ministically moves forward in time with a time-dependent
reward rate K(s, t). [1] illustrate that with piecewise con-
stant (PWC) L functions, piecewise linear (PWL) reward
models and discrete Pµ distributions, one could analytically
perform the Bellman backups inspired by equations 1 to
4. [3] extends this idea to compute solutions to continuous
state MDPs and [5] explore the practical resolution of value
iteration using PWC functions with the Lazy Approxima-
tion algorithm. The approach we present in this paper for
TiMDPs relates to the Lazy Approximation scheme. Our
results complement and extend [5] in several ways.

3 Planning horizon vs. temporal horizon

In [3] and [5], whenever time is included as a state vari-
able, the optimization process is presented as a finite hori-
zon MDP where the value function is optimized for a lim-
ited number of consecutive decision epochs. However, this
restriction can be avoided by distinguishing between plan-
ning horizon and temporal horizon. The planning hori-
zon, as usually defined, is the number of sequential deci-
sion epochs of the agent. Deciding with a finite planning
horizon restricts the number of steps an agent can perform.
MDPs are usually optimized for an unbounded horizon. On
the other hand, the temporal horizon T corresponds to the
initial value of a non-replenishable time resource. When-
ever this resource becomes depleted, the process enters an
absorbing state providing zero reward and representing the
end of the episode. Hence, every episode is defined be-

tween times 0 and T and we are mostly interested in the
policy and value function between these two times. For
real-life, observable time processes such as TiMDPs, the
time-dependency of the problem is only known until a given
bounded temporal horizon T . Thus, we consider the prob-
lem an infinite-horizon MDP on [0, T]. The optimal value
function is then a fixed point of the Bellman operator for
observable-time MDPs [10]. This brings us to performing
value iteration-like Bellman backups, with a discount factor
γ = 1, on the continuous V (s, t) value functions1.

4 Closed-form Bellman backups

Value iteration on TiMDPs updates Vs(t) = V (s, t) ev-
ery time the discrete state s is updated. Each of these Bell-
man backups can be performed analytically and in closed-
form [1], if Pµ(t′) and Pµ(τ) are discrete distributions,
L(µ|s, t, a) is a PWC function of t, R(µ, t, t′) = rt(t) +
rt′(t′) + rτ (t′ − t), and rt, rt′ and rτ are PWL functions.
In order to generalize on these hypotheses, we consider the
case of piecewise polynomial (PWP) functions. We write
Pm the set of PWP functions of maximum degree m and
suppose that Pµ ∈ PA, rt, rt′ , rτ ∈ PB and L ∈ PC .

Result 1 (Value function degree). The sequence of value
functions issued by the application of the Bellman backups
corresponding to equations 1 to 4 has the degree:

d◦(Vn) = B + n(A+ C + 1) (5)

Proof. This follows from establishing that the convolution
of two PWP functions of degree m and n yields a PWP of
degree m+ n+ 1. Taking equations 1 to 4 step by step and
observing the functions’ degrees provides the result.

Consequently, in order to have a closed-form solution of
the Bellman equation throughout the value iterations, one
needs to insure A + C = −1. While this is not possible
for purely PWP functions, one needs to remember that A
is indeed the degree of a PWP distribution (and not a PWP
function). Analyzing equations 1 to 4 shows that if Pµ is
a discrete distribution, then it behaves as a “P−1” distribu-
tion . Then, one can reach the A+ C = −1 condition with
A = −1 andC = 0. Hence, exact closed-form resolution of
TiMDPs cannot be directly extended to PWP distributions,
but one can still perform the Bellman backups, they just do
not result in a closed-form solution anymore. Thus, any
projection scheme on a lower PWP degree function space
which provides error bounds on the approximation error
could fit an approximate value iteration method for TiMDPs
(and more generally for continuous state MDPs).

1See [10, 9] for a complete discussion on the mathematical assumptions
necessary for a sound inclusion of time as a state variable in MDPs.

In practice, the convolution, multiplication, summation
and intersection operations of equations 1 to 4 subdivide the
definition intervals of the PWP functions to obtain the next
Vn+1 value function. We observed that Bellman backups on
PWP representations result in a linear increase in the num-
ber of pieces necessary to describe the value function, even
in the exact resolution case (A + C = −1, B ≤ 4). So, to
avoid numerical inconsistencies such as intervals of length
tending to zero, one needs to make use of approximation
at some point. Moreover, experience shows that these very
small intervals often have very close values and, hence, can
be easily merged into larger intervals if one allows for an
L∞-bounded approximation scheme.

5 Approximation method for value functions

Finding an optimal interpolation of a continuous func-
tion by a PWP in terms of number of intervals and degree is
a difficult problem to solve. Thus, our method implements
the sub-optimal (but efficient) following ε-approximation
scheme. This methods proceeds in two steps: first it con-
siders a single “piece” of the input function pin, ie. an
interval over which pin has a continuous polynomial defi-
nition. Over this interval, which we write I, it calls an in-
terpolation method interpolate(pin, I, l, ε) where l is
the maximum degree allowed and ε the L∞ approximation
tolerance. This method computes an interpolation polyno-
mial of degree at most l over I and outputs it along with
the largest approximation error emax and the abscissa tmax
where emax is reached. If emax is smaller than ε, then the
output PWP pout is set to the interpolation polynomial over
I and the algorithm moves on to the second phase. Else,
I’s upper bound is shifted to tmax and the process restarts.
Once a suitable interpolation has been found on the reduced
I, then a new I is defined by taking the uncovered part
or the initial I and the same method is applied until the
algorithm reaches the upper bound of the initial I. Then
the second phase of the approximation allows to keep the
number of intervals low by trying to merge any consecutive
intervals after the end of I into a larger interval using an in-
terpolating PWP of degree l and an approximation error of
ε at most. If it fails, it returns to the first phase. This proce-
dure is repeated until T is reached and an interpolation PWP
pout is output. Since the interpolate method is free, it
is easy to preserve the continuity of the function for l ≥ 1
(and eventually its smoothness if l is large enough). This
method always outputs a PWP function pout ∈ Pl which
has a suboptimal (but good) number of intervals. The ap-
proximation error ε is controllable and one has the guar-
antee that ‖pin − pout‖∞ ≤ ε. Experience showed that
the output function was close to an optimal approximation
in terms of intervals number with a significant reduction in
computational effort.

6 Ordering Bellman backups

With the analytical computation of Bellman backups and
the previous approximation method, one has a straightfor-
ward way of performing value iteration on TiMDPs. Since
the value function we are looking for corresponds to the
fixed point of an infinite horizon dynamic programming
operator (section 3), we can avoid updating each state se-
quentially as in simple value iteration. Instead, ordering the
states in which we perform the Bellman backups will accel-
erate convergence to an ε-optimal value function and thus
reduce the computational effort due to by PWP operations.
An efficient method for ordering Bellman backups in stan-
dard MDPs is Prioritized Sweeping [6]. Algorithm 1 adapts
this method to TiMDPs.

Algorithm 1: Prioritized Sweeping for TiMDPs
Init: V ← 0
Init: priority queue← UnprioritizedVI()
Init: continue = true
while continue = true do

while priority queue 6= ∅ do
Remove the top state s′ from priority queue.
Vs′(t).BellmanBackup()
foreach (s, a) ∈ predecessors(s′) do

Qs,a(t).BellmanUpdate()
Prio(s, a) = ‖Qs,a(t)−Qold

s,a(t)‖∞
if Prio(s, a) > ε and Prio(s, a) > Prio(s)
then

Insert s in priority queue with
Prio(s) = Prio(s, a)

priority queue← UnprioritizedVI()
if max priority(priority queue) < ε then

Either take a smaller ε or set continue = false.

A subtle but essential difference with [6] deals with pri-
ority computation: through difference of Q(s, a, t) func-
tions instead of V (s) values. The BellmanBackup pro-
cedure applies equations 3 and 4 in order to update V s′(t)
and BellmanUpdate computes the result of equations 1
and 2 for parent transitions. Note that if memory is not an
issue, one can also keep track of the U -functions to increase
the calculation’s efficiency. This priority queue can be ini-
tialized by hand if one has some prior knowledge about the
problem’s structure, or it can be built from a single pass of
unprioritized value iteration through the state space. In or-
der to insure that no states are left out during the optimiza-
tion process, whenever the priority queue becomes empty,
a new pass of unprioritized value iteration is performed. If
this pass only generates priorities lower than ε, the algo-
rithm terminates. Upon termination of the algorithm, the
global value function V (s, t) is guaranteed to be at least ε-
optimal for the TiMDP problem.

7 Experimental results

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600

m
ax

 p
ri

or
ity

iteration number

Figure 2. Maximum priority / iteration number

The TiMDPpoly algorithm was implemented as a general
purpose solver and tested on two benchmarks. The first is
an original UAV mission planning problem where a drone
needs to plan its movements in a windy area in order to
monitor specific locations. This problem has 100 discrete
states plus the continuous time variable. The second is an
adapted version of the Mars rover domain presented in [2].
Both problems feature the hybrid state and action2 spaces
of TiMDPs. Our main conclusions were:

Prioritizing is useful. It reduced the Bellman backups
number by a factor 62 for the UAV problem, taking it from
33000 to 531 and greatly decreasing computation time.

Impact of the PWP functions’ maximum degree. While
larger degrees imply less definition intervals in PWP, the
calculation overhead can be a bad trade-off. Still, this eval-
uation is very implementation-dependent and further inves-
tigation is required for a final conclusion on this topic. So
far, the best results were obtained with linear models.

Approximation is necessary. Even for very simple
benchmarks, in the exact resolution case of [1], the number
of intervals in value function definition increased steadily
and eventually caused numerical problems before the value
function converged to the optimal value function. This leads
us to conclude – from experience – that even within the ex-
act resolution conditions, for non-trivial problems, approx-
imation through interval simplification is necessary.

Policy quality evolution. Figure 2 shows the evolution
of the maximum priority with the Bellman backup number.
One can use this maximum priority as an asymptotic, ap-
proximate measure of the current policy’s quality since the
priorities are related to the Bellman error.

2Actions are hybrid too because of the continuous “wait” action.

Figure 3. Rover’s value function and policy

From one to several continuous variables. Figure 3
presents a value function in a specific state of the Mars rover
domain. It is worth noting that the best option for represent-
ing partitions in the continuous part of the state space might
not be plain hypercubes or kd-trees, but more flexible struc-
tures as the Kuhn triangulations used in [7].

References

[1] J. A. Boyan and M. L. Littman. Exact Solutions to Time
Dependent MDPs. NIPS, 13:1026–1032, 2001.

[2] J. Bresina, R. Dearden, N. Meuleau, S. Ramakrishnan, and
R. Washington. Planning under Continuous Time and Re-
source Uncertainty: a Challenge for AI. In Proc. UAI, 2002.

[3] Z. Feng, R. Dearden, N. Meuleau, and R. Washington. Dy-
namic Programming for Structured Continuous Markov De-
cision Problems. In Proceedings UAI, 2004.

[4] R. A. Howard. Semi-Markovian Decision Processes. In 34th
Session of the International Statistical Institute, 1963.

[5] L. Li and M. L. Littman. Lazy Approximation for Solving
Continuous Finite-Horizon MDPs. In Proc. AAAI, 2005.

[6] A. W. Moore and C. G. Atkeson. Prioritized Sweeping: Re-
inforcement Learning with Less Data and Less Real Time.
Machine Learning Journal, 13(1):103–105, 1993.

[7] R. Munos and A. W. Moore. Variable Resolution Discretiza-
tion in Optimal Control. MLJ, 49(2-3):291–323, 2002.

[8] M. L. Puterman. Markov Decision Processes. John Wiley &
Sons, Inc, 1994.

[9] E. Rachelson. Temporal Markov Decision Problems —
Formalization and Resolution. PhD thesis, University of
Toulouse, France, 2009.

[10] E. Rachelson, F. Garcia, and P. Fabiani. Extending the Bell-
man Equation for MDP to Continuous Actions and Continu-
ous Time in the Discounted Case. In ISAIM, 2008.

[11] M. Wellman, M. Ford, and K. Larson. Path Planning under
Time-Dependent Uncertainty. In Proc UAI, 1995.

[12] H. L. S. Younes and R. G. Simmons. Solving Generalized
Semi-Markov Decision Processes using Continuous Phase-
Type Distributions. In AAAI, 2004.

