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Abstract

The paper discusses a new approach to merging

conflicting propositional knowledge bases which

builds on the idea that consistency can often be

restored by interpreting propositions more flexibly,

thus enlarging their sets of models.

1. Introduction

Pieces of information may be conflicting, es-

pecially when they come from different sources.

Obviously there may be many reasons for this. A

source may e.g. provide statements that are slightly

too precise w.r.t. the actual state of available infor-

mation. Second, sources are often heterogeneous

in their use of categories for describing reality, and

they may make slightly different uses of the same

label. Lastly, information may also evolve with

time or space.

This suggests that information provided by a

source should sometimes be understood with some

flexibility. Although there has been a large num-

ber of works in information fusion (see e.g. [4]),

often based on the general setting of distance-

based merging (see [5, 3] in particular), existing

approaches do not readily allow to recover consis-

tency by explicitly enlarging the set of models cor-

responding to propositions. The aim of this paper

is to explore the latter view of merging.

2 Background

Let A be a finite set of atomic propositions (or

atoms). The set of all models of a set of propo-

sitional formulas K is denoted by JKK. In the
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remainder of this paper, unless stated otherwise,

K = (K1, K2, ...,Kn) will be a list of propo-

sitional knowledge bases, which are individually

consistent, while together being inconsistent, i.e.

∀i . JKiK 6= ∅ and J
⋃n

i=1 KiK =
⋂n

i=1JKiK = ∅.

Given a pre-order (P,≤P ) and A ⊆ P , we let

Min(A,≤P ) denote the set of minimal elements

in A w.r.t. ≤P .

The problem of interest is finding a consistent

knowledge base ∆(K) which reflects the given

knowledge bases Ki as good as possible. In addi-

tion to K, also a set of integrity constraints C may

be available that have to be satisfied in every model

of ∆(K). Merging strategies are then specified in

terms of a semimetric d between interpretations.

For an interpretation I , define d(I,K) as

d(I,K) = ( min
J∈JK1K

d(I, J), ..., min
J∈JKnK

d(I, J))

Let f be a nondecreasing [0,+∞[n−P mapping,

where P = (P,≤P ) is a preorder. The mapping

f is essentially an aggregation strategy which al-

lows to compare the vectors d(I,K) correspond-

ing to different interpretations I . Thus, d and f
induce a pre-order ≤d

f on interpretations, defined

by I1 ≤d
f I2 iff f(d(I1,K)) ≤P f(d(I2,K)). Us-

ing ≤d
f , the result of the merging process can be

defined as J∆(K)K = Min(JCK,≤d
f ). A com-

mon choice is to use the Hamming distance dHam,

given by dHam(I, J) = |(I \ J) ∪ (J \ I)|, and to

define f as the sum operation [5].

3. Motivation

Pure logical views on information fusion usu-

ally favor a strict understanding of the underly-

ing statements, which leads to a merging strategy

based on introducing disjunctions. On the other

hand, decision-oriented attitudes are more inclined



to look for compromises, thus solving conflicts by

looking for “intermediary” interpretations.

Example 1. Consider atoms oc (“tomorrow the

sky will be overcast”), pc (“tomorrow the sky will

be partially cloudy”), and os (“tomorrow the sky

will be open”), and assume that we have access

to two web services with weather forecast infor-

mation, whose prediction for tomorrow is con-

flicting with the integrity constraint that the three

atoms are jointly exhaustive and pairwise disjoint

(JEPD): K1 = {oc} and K2 = {os}. Classical

merging operators typically lead to ∆(K1, K2) =
{oc ∨ os}. However, unless one of the sources is

substantially less reliable, the most intuitive con-

clusion would be ∆(K1, K2) = {pc}.

In this example, pc acts as a borderline case of both

os and oc, which is why the result ∆(K1, K2) =
{pc} seems so appealing. Given the importance of

borderline cases to explain conflicts, it may be use-

ful to introduce atoms that do not occur in any of

the given knowledge bases; e.g. the result of merg-

ing {os} and {pc} may be defined as an os-pc bor-

derline case (i.e. a sky which is open, apart from a

few small clouds).

Example 2. Assume that there are five different

JEPD atoms between os and oc, say pc−2, pc−1,

pc0, pc1, pc2 with easy-to-guess meanings. Now

there are different outcomes that may be advo-

cated. Adhering to a symmetry principle, and try-

ing to be as precise as possible, one may desire

∆(K1, K2) = {pc0}. However, also the more

cautious ∆(K1, K2) = {pc−1 ∨ pc0 ∨ pc1} and

∆(K1, K2) = {pc−2 ∨ pc−1 ∨ pc0 ∨ pc1 ∨ pc2}
can intuitively be justified.

When more than two knowledge bases are

available, merging strategies may implement

arbitration-like behaviour, or (soft) majority prin-

ciples, as illustrated in the next example.

Example 3. When a third knowledge base K3 =
{os} becomes available, pc−2 and pc−1 may be

perceived as more plausible than pc0. Thus, the

desired behaviour of the merging operator might

be ∆(K1, K2, K3) = {pc−2 ∨ pc−1}, or even

∆(K1, K2, K3) = {os ∨ pc−2 ∨ pc−1 ∨ pc0}.

4. Qualitative Similarity

Manipulating atoms Since it is usually not pos-

sible to quantify the strength of similarities be-

tween atoms, we focus on a qualitative notion of

Figure 1. Similarity graph for atoms
related to marriage.

similarity. For each atom a, we assume that a se-

quence of weakenings a∗, a∗∗, a∗∗∗, etc. is avail-

able, corresponding to increasingly more tolerant

interpretations of the assertion modeled by atom

a. In general, we write a(k) for the kth element in

this sequence, and a(0) = a. The integrity con-

straints C then specify what is known about an

atom such as a(k). In the same way, we assume

that a sequence of tightenings a∗, a∗∗, etc. is avail-

able, where we write a(k) for the kth element.

In practice, such sequences of weakenings and

tightenings can be defined in terms of a similarity

graph G = (A, S), where the set of nodes A coin-

cides with the set of atoms, and there is an edge

(a, b) in S if atoms a and b are similar. Given

a similarity graph G, we can interpret a(k) (resp.

a(k)) as the disjunction (resp. conjunction) of all

atoms whose distance to a in G is at most k. As

an example, Figure 1 depicts a similarity graph in-

volving predicates related to marriage.

Weakenings and tightenings can also be applied

to propositions and knowledge bases. Positive oc-

currences of an atom a are then replaced by an

atom of the form a(k), and negative occurrences

by an atom of the form a(k). For instance, for

K = {¬p ∨ q, r} we have K∗ = {¬p∗ ∨ q∗, r∗}.

Manipulating interpretations Using the simi-

larity information encoded by the sequences of

weakenings a(k), we can define a sequence of ex-

pansions of an interpretation I as follows. Let

Csim be the fragment of the integrity constraints

in which the semantics of the atoms a(k) and a(k)

is specified. Then we define the k-expansion of an

interpretation I (where a ∈ I means I |= a) as

〈I〉k = {b|∃a ∈ I . Csim ∪ {b} |= a(k)} (1)

Note that by definition of Csim, Csim∪{b} |= a(k)

intuitively means that b is similar to a. We write

〈I〉 for 〈I〉1. Intuitively, 〈I〉 is the set of atoms that



are plausible, given that the atoms in I are asserted.

It can be verified that for every I in JCK, it holds

that I ∈ Ja∗K iff I ∩ 〈{a}〉 6= ∅. Similarly, we de-

fine the k-contraction [I]
k

of I as the set of atoms

from I that are not similar to any atoms outside I ,

viz. [I]
k

= A \ 〈A \ I〉k.

5. Semantic Merging Operators

Approximate covers When the given knowl-

edge bases K1, ...,Kn are not conflicting, the re-

sult of the merging process is such that

J∆(K)K = JCK ∩
n
⋂

i=1

JKiK 6= ∅

In other words, I ∈ J∆(K)K iff I ∈ JCK and there

are Ji ∈ JKiK such that I = J1 = ... = Jn.

This latter criterium can be split into the following

criteria, viewing interpretations as sets of atoms:

I ⊆ Ji Ji ⊆ I (2)

When the knowledge bases are conflicting, no in-

terpretation I can be found satisfying (2) for all

i ∈ {1, ..., n}. In such a case, the criteria can be

weakened using expansions or contractions:

I ⊆ 〈Ji〉
αi (3)

Ji ⊆ 〈I〉βi (4)

[I]
α′

i ⊆ Ji (5)

[Ji]
β′

i ⊆ I (6)

First, (3) and (4) ensure that every atom in I is

similar to an atom in Ji, and vice versa. Next, (5)

and (6) ensure that I should include all atoms from

Ji that are not borderline cases, and vice versa. It

is easy to show that (3)–(6) also writes as

[coJi]
αi ⊆ coI (7)

[coI]
βi ⊆ coJi (8)

coJi ⊆ 〈coI〉α
′

i (9)

coI ⊆ 〈coJi〉
β′

i (10)

where the complement coI = A\I . Thus we have

the important property that positive (e.g. a ∈ I)

and negative (e.g. a /∈ I) information is treated in

the same way.

An interpretation I ∈ JCK is called an ap-

proximate cover of K w.r.t. the weight vector

(α1, ..., αn, β1, ..., βn, α′
1, ..., α

′
n, β′

1, ..., β
′
n), if

there are models Ji of each Ki such that (3)–(6)

are satisfied for all i in {1, ..., n}. The smaller the

coefficients αi, βi, α
′
i, β

′
i, the more “compatible”

I will be to each of the knowledge bases. An

approximate cover w.r.t. weight vector x will also

be called an x-cover. Throughout this paper, we

tacitly assume that there is a k ∈ N, such that K

has at least one k-cover with k = (k, ..., k). If

no such k exists (or if k is too high), K contains

conflicts that cannot (realistically) be resolved

by means of similarity (e.g. accidental errors),

and the proposed merging strategy needs to be

combined with a classical merging strategy.

Now, let Wx be the set of x-covers of K, and as-

sume that a certain aggregation strategy f is avail-

able to compare the weight vectors, i.e. let f be

an N
4n − P mapping for some pre-order (P,≤P ).

Then f naturally induces a pre-order ≤f on inter-

pretations from Wk such that I1 ≤f I2 iff

∀w2 ∈ N
4n . I2 ∈ Ww2

⇒ ∃w1 ∈ N
4n . f(w1) ≤P f(w2) ∧ I1 ∈ Ww1

Typical examples for f are the sum, the sum of

squares, the maximum, as well as the leximax and

Pareto strategies. In each case, it seems desirable

to impose that models of ∆(K) are as compatible

to the given knowledge bases as possible:

J∆(K)K ⊆ Min(Wk,≤f ) (11)

Parsimonious covers There is a clear analogy

between the preceding discussion and the prob-

lem of causal diagnosis, in the sense that a diag-

nosis should cover the observed symptoms. To

stress this analogy, throughout this paper, we bor-

row some terminology from the parsimonious cov-

ering theory [7].

A merging operator could be obtained by re-

placing the subset relation in (11) by an equal-

ity. Intuitively, however, such a merging operator

would be too liberal, as it could lead to atoms be-

ing replaced by similar atoms, even when this is

not required to obtain consistency.

Example 4. Consider the similarity graph G from

Figure 1, and let

K1 = {Ma(john), Ma(bob)}

K2 = {Co(john), Ma(bob)}

where the predicates from Figure 1 are abbrevi-

ated by their first two letters. Assume further-

more that the integrity constraints C specify that

the six predicates from Figure 1 are JEPD. Now,

consider the merging operator that results from re-

placing the subset relation in (11) by an equality,

and choosing f = max. It can be verified that this

leads to

∆(K) = {Ci(john),Ma(bob) ∨ Ci(bob)

∨ Di(bob) ∨ Wi(bob)}



which is clearly too cautious: there is no reason to

doubt that bob is Married.

Let J = (J1, ..., Jn) be models of K1, ...,Kn.

Our approach is based on the observation that I
and J =

⋃n

i=1 Ji can be partitioned in k + 1 dis-

joint subsets, resp. IJ ,l and JI,l (l ∈ {0, ..., k}) as

follows.

IJ ,l = I ∩
n
⋂

i=1

〈Ji〉
l \

n
⋂

i=1

〈Ji〉
l−1

)

JI,l = J ∩
(

〈I〉l \ 〈I〉l−1
)

if l > 0, while IJ ,0 = I ∩ (
⋂n

i=1 Ji) and JI,0 =
J∩I . For l > 0, IJ ,l contains those atoms that are

not compatible with all knowledge bases. More-

over, the larger the value of l, the larger the degree

of incompatibility. In the same way, for l > 0,

JI,l contains the atoms in the considered interpre-

tations of the knowledge bases that are not equal,

albeit still somewhat similar, to atoms in I . To

maintain the symmetry between positive and nega-

tive information, in entirely the same way we also

partition Ico = coI and Jco =
⋃n

i=1 coJi into sub-

sets IJ ,l
co and JI,l

co . Now each of the four partitions

IJ ,l, JI,l, IJ ,l
co and JI,l

co induces a pre-order, resp.

≤1, ≤2, ≤3 and ≤4, which is a lexicographic ex-

tension of the subset relation. Namely, we have

I1 ≤1 I2 iff I1 = I2 or there is a choice of mod-

els J = (J1, ..., Jn) such that for each choice of

models J ′ = (J ′
1, ..., J

′
n) it holds that

∃l > 0 . IJ ,l
1 ⊂ IJ

′,l
2 ∧ ∀m > l . IJ ,m

1 = IJ
′,m

2

The definitions of ≤2, ≤3 and ≤4 are analogous.

An interpretation I is called an x-irredundant

cover of K if I is an x-cover, and I is Pareto opti-

mal among all x-covers, w.r.t. ≤1, ≤2, ≤3 and ≤4.

If we write Xx for the set of all x-irredundant cov-

ers, the preceding discussion leads to the following

requirement:

J∆(K)K ⊆ Min(Xk,≤f ) (12)

Note that when changing the subset relation in (12)

into an equality, the resulting merging operator in-

deed leads to ∆(K) = {Ci(john), Ma(bob)} in

the case of Example 4.

Possibilistic approach Consider again the situa-

tion from Example 3, and assume that the merging

operator is defined by replacing the subset relation

in (12) by an equality. Depending on the choice

of the aggregation function f , we obtain ∆(K) =

{pc0}, for f = max, ∆(K) = {os}, for f =
∑

,

∆(K) = {os∨pc−2∨pc−1∨pc0∨pc1∨pc2∨oc}
for f the Pareto ordering, and ∆(K) = {pc−1}
for f the sum of squares, the latter offering a

more subtle balance between the different sources.

Clearly, the Pareto ordering is too cautious as its

result is entailed even by the integrity constraints

C, whereas the result of each of the other operators

is too specific, as witnessed by the fact that each

choice leads to a different result. An appealing so-

lution is to define the result of the merging process

as a possibilistic logic base, which encodes differ-

ent conclusions with different levels of certainty;

for instance, when implementing a soft majority

behavior, a desirable result of the merging opera-

tor would be

∆(K) = {(pc−1, λ1), (pc−2 ∨ pc−1 ∨ pc0, λ2),

(os ∨ pc−2 ∨ pc−1 ∨ pc0 ∨ pc1, λ3), (13)

(os ∨ pc−2 ∨ pc−1 ∨ pc0 ∨ pc1 ∨ pc2, λ4),

(os ∨ pc−2 ∨ pc−1 ∨ pc0 ∨ pc1 ∨ pc2 ∨ oc, 1)}

for some 0 < λ1 < λ2 < λ3 < λ4 < 1; note

that only the relative ordering of the certainty lev-

els is important. At the semantic level, this ap-

proach amounts to specifying a degree of possi-

bility (or compatibility) for each interpretation I ,

rather than selecting a single set of optimal inter-

pretations. Assume, for simplicity, that the pre-

order (P,≤P ) which is used to compare weight

vectors is a total order. Then there exists a map-

ping φ from Wk to [0, 1] such that φ(I) = 1 iff

I ∈ Min(Wk,≤f ), and φ(I1) ≤ φ(I2) iff for

each x1 such that I1 is an x1-cover, there is an x2

such that I2 is an x2-cover and f(x2) ≤P f(x1).
Using φ(I) as the possibility degree of interpreta-

tion I , if I ∈ Wk, and 0 otherwise, we obtain a

solution equivalent to (13) when using the sum of

squares for f .

6. Syntactic Merging Operators

In this section, we propose a syntactically de-

fined merging operator, which uses the technique

for weakening propositions from Section 4. First,

each of the propositional knowledge bases Ki

is converted into a possibilistic knowledge base

Kpos
i as follows

Kpos
i ={(γ, λ0)|γ ∈ Ki} ∪ {(γ∗, λ1)|γ ∈ Ki}

∪ ... ∪ {(γ(k), λk)|γ ∈ Ki}

where 0 ≤ λ0 < ... < λk−1 < λk = 1. Note

how more liberal interpretations receive a higher



certainty level. For example, the knowledge base

K1 = {¬p ∨ q, r} is changed into (k = 2):

Kpos
1 = {(¬p ∨ q, λ0), (r, λ0), (¬p∗ ∨ q∗, λ1),

(r∗, λ1), (¬p∗∗ ∨ q∗∗, 1), (r∗∗, 1)}

Furthermore, as the integrity constraints C are cer-

tain, we define its possibilistic counterpart Cpos as

Cpos = {(γ, 1)|γ ∈ C}

Now let Kpos = Kpos
1 ∪...∪Kpos

n ∪Cpos. To define

the merged knowledge base, we calculate the in-

consistency level1 of Kpos. If inc(Kpos) = 0, the

knowledge bases in K are consistent, and the result

of the fusion2 is ∆(K) = (Kpos)0, which is equiv-

alent to K1∪ ...∪Kn ∪C. In general, the result of

the fusion is defined as ∆(K) = (Kpos)inc(Kpos).

Adapting this method to produce graded results

such as (13) is straightforward: simply remove

all propositions from Kpos with a certainty level

which is less than or equal to inc(Kpos). The fol-

lowing proposition clarifies the link with the se-

mantic approach from Section 5.

Proposition 1. For each atom a, let a(l) and a(l)

be defined in terms of a similarity graph G. It

holds that

J(Kpos)λl
K = {I ∈ JCK|∀i ∈ {1, ..., n} .

∃Ji ∈ JKiK . Ji ⊆ 〈I〉l ∧ coJi ⊆ 〈coI〉l}

Note that models of (Kpos)λl
do not necessarily

satisfy (3) and (6). This will be the case when

one knowledge base states that some literal is true,

whereas another one states that it, and everything

similar to it, is false.

7. Related Work

It seems that there are very little works that look

at restoring consistency in logical settings by ex-

plicitly enlarging the set of models of propositions.

In this spirit, let us however mention the note [8]

where the result of the revision of knowledge base

K by a formula φ is defined as the set of models

of φ maximally similar to models of K. Next, the

notion of expansion and contraction of interpreta-

tions is related to the use of morphological opera-

tors for fusion, which has been proposed in [2]. In

the setting of description logic, the authors of [6]

1inc(K) = max{α|Kα inconsistent}
2Recall that (Kpos)α = {(p, λ) ∈ Kpos|λ > α}

look for overgeneralized concepts that create in-

consistency problems, and tighten or enlarge such

concepts in order to restore subconcept relations

in a consistent way. Besides, it has been shown [1]

that possibilistic logic can be used to syntactically

encode distance-based merging operators. As in-

dicated above, it is also useful for similarity-based

merging.

8. Conclusions

We have explored a novel approach to informa-

tion fusion, stemming from the observation that in-

consistencies often arise because propositions are

interpreted too strict. Using a number of mo-

tivating examples, we have advocated that natu-

ral repairs can be obtained by using a notion of

similarity between different atoms. Subsequently,

we have discussed the criteria that should ideally

be satisfied by models of the merged knowledge

base. We have emphasized the trade-off that arises

between having cautious and precise conclusions,

and we proposed an encoding in possibilistic logic

to cope with this. Finally, we have illustrated how

a syntactic counterpart to the semantically defined

merging operators can be obtained.
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