
Mode-Directed Tabling for Dynamic Programming,
Machine Learning, and Constraint Solving

Neng-Fa Zhou
CUNY Brooklyn College & Graduate Center

http://www.sci.brooklyn.cuny.edu/˜ zhou/

Yoshitaka Kameya
Tokyo Institute of Technology

http://sato-www.cs.titech.ac.jp/kameya/

Taisuke Sato
Tokyo Institute of Technology

http://sato-www.cs.titech.ac.jp/sato/

Abstract—The abstract goes here.

I. I NTRODUCTION

Tabling [12], [13], [15] has been found increasingly impor-
tant for not only helping beginners write workable declarative
programs but also developing real-world applications suchas
natural language processing, model checking, and machine
learning applications. The idea of tabling is to memorize
answers to tabled calls and use the answers to resolve sub-
sequent variant or subsumed calls. This idea resembles the
dynamic programming idea of reusing solutions to overlapping
sub-problems and, naturally, tabling is amenable to dynamic
programming problems. In a traditional tabling system, allthe
arguments of a tabled call are used in variant or subsumption
checking and all answers are tabled for a tabled predicate.
This non-selective approach is problematic for many dynamic
programming problems such as those that require computation
of aggregates. The aggregate predicates as provided by XSB
[11] can be used but they require tabling all possible solutions.
Mode-directed tabling [7] has been proposed to remedy this
weakness. The idea of mode-directed tabling is to use table
modes to control what arguments should be used in variant
checking and how answers should be tabled.

In this paper, we extend the table mode declaration proposed
in [7] and show several application examples. Our table mode
declaration takes the form of

:-table p(M1,...,Mn):C.

wherep/n is a predicate symbol,C (called acardinality limit)
is an integer which limits the number of answers to be tabled,
and eachMi (i=1,...,n) is a mode which can bemin, max,
+ (input), - (output), ornt (non-tabled). An argument with
the modemin or max is assumed to be output. The system
uses only input arguments in variant checking, disregarding
all output arguments and arguments with thent mode. After
an answer is produced, the system tables it unconditionallyif
the cardinality limit is not exceeded yet. When the cardinality
limit has been reached, however, the system tables the answer
only if it is better than some existing answer in terms of
the argument with themin or max mode. No arguments of
answers with modent are tabled.

Our table mode declaration has the following two new
features: first, a mode-directed tabled predicate can have
multiple answers produced, and therefore, the relation from

the inputs to the outputs is not required to be a function; and
second, the modent is new, which allows arguments to be
disregarded not only in variant checking but also in answer
tabling.

Our extended table mode declaration was motivated by the
need to scale up the PRISM system [9], [10] for handling large
data sets. For a given set of possibly incomplete observed
data, PRISM constructs the explanation graph using tabling
and estimates the probability distributions by conductingEM
learning on the graph. For many real-world applications, the
explanation graphs are too large to be completely stored.
Mode-directed tabling allows for construction of partial ex-
planation graphs. We’ll give an example to illustrate the use
of the table mode declaration in PRISM.

The new mode nt is suitable for describing non-
discriminating [2] arguments that have no relationship with
input arguments. For example, for theappend predicate
that appends two given lists, the mode can be declared as
append(+,nt,-), which disregards the second argument
in tabling. In this way, table space can be significantly saved.
We’ll show how the modent can be used in performing
constraint checking for an ASP program.

The table mode declaration has been implemented in B-
Prolog [14] and all the examples presented in this paper have
been tested. This paper is structured as follows: Section 2
details the semantics of table modes; Section 3 gives solu-
tions to a dynamic programming problem, calledhydraulic
planning, which was one of the benchmarks used for the
Second ASP solver competition; Section 4 presents a PRISM
example for a data mining application; Section 5 shows how
mode-directed tabling can be used to evaluate an ASP program
for the Hamilton cycle problem; and Section 6 concludes the
paper.

II. M ODE-DIRECTED TABLING

Mode-directed tabling amounts to using table modes to
instruct the system on how to table subgoals and their an-
swers. This section describes how to declare table modes
in B-Prolog. Mode-directed tabling is orthogonal to tabling
approaches (e.g., suspension-based SLG [8] or iteration-based
linear tabling [15]), subgoal testing methods (e.g., variant
testing or subsumption testing), and answer returning strategies
(local or batched [3], also called lazy or eager [15]). Therefore,
table modes can be introduced into other tabling systems.



A table mode declaration takes the following form:

:-table p(M1,...,Mn):C.

wherep/n is a predicate symbol,C, called acardinality limit,
is an integer which limits the number of answers to be tabled
for p/n, and eachMi (i=1,...,n) is a mode which can bemin,
max, +, -, or nt. WhenC is 1, it can be ommitted together
with the preceeding ’:’. For each predicate, only one table
mode declaration can be given. In the current implementation
in B-Prolog, only one argument in a tabled predicate can have
the modemin or max. Because an optimized argument can be
a compound term and the built-in@</2 is used to select better
answers for compound terms, this restriction is not essential.

The mode+ is called input, - output, nt non-tabled,
min minimized, andmax maximized. An argument with the
mode min or max is also calledoptimized. An optimized
argument is assumed to be output. The system uses only input
arguments in variant checking of tabled subgoals and ignores
all other arguments. Notice that a table mode does not tell the
instantiation state of an argument. An input argument can be
variable and an output argument can be ground.

A mode declaration not only instructs on what arguments
are used in variant checking, it also guides the system in
tabling answers. After an answer of a tabled predicate is
produced, the system tables it unconditionally if the cardinality
limit is not exceeded yet. When the cardinality limit has been
reached, however, the system tables the answer only if it is
better than some existing answer in terms of the optimized
argument. If no argument is optimized, all new answers are
discarded once the cardinality limit has been reached. Whenan
answer is tabled, no arguments with the modent are tabled.

Non-tabled arguments normally are used to pass global data
to a tabled predicate that are never to be updated. They are
global to a predicate in the sense that all subgoals of the
predicate can have access to them and they should not be
instantiated if they are variables. Non-tabled arguments can
contain attributed variables and hence in general cannot be
simulated using global variables. Even in cases where non-
tabled arguments can be represented as global variables, they
are much faster to access than global variables. Note that an
argument should not be declared non-tabled if it is dependent
on the input arguments or some output argument is dependent
on it.

For a tabled program, the same query may return differ-
ent answers under control of different modes. Consider the
following predicate:

p(1,1).
p(1,2).
p(1,3).
p(2,3).

and the queryp(1,X). The following gives different answers
under control of different modes.

% :-table p(+,-).
?-p(1,X).

X=1;
no

% :-table p(+,-):2.
?-p(1,X).
X=1;
X=2;
no

% :-table p(+,min):2.
?-p(1,X).
X=1;
X=2;
no

% :-table p(+,max):2.
?-p(1,X).
X=3;
X=2;
no

% :-table p(nt,-):3.
?-p(1,X).
X=1;
X=2;
X=3;
no

III. M ODE-DIRECTED TABLING FOR DYNAMIC

PROGRAMMING

The traditional non-selective approach to tabling is problem-
atic for many dynamic programming optimization problems
such as those that require computation of aggregates. For
example, for the shortest path problem, there may be a huge
number of paths between two nodes, and it does not make
sense to table all the paths first and then find a shortest one.
Mode-directed tabling allows tabling only intermediate results
that are useful for finding the final result. In this section,
we present solutions to hydraulic system planning, a dynamic
programming problem used as one of the benchmarks in the
second ASP solver competition.1

A. Hydraulic system planning

A simplified version of the hydraulic system on a space
shuttle consists of a directed graph,G, such that:

• Nodes of this graph are labeled as tanks,jets, or junctions.
• Every link between two nodes is labeled by a valve.
• There are no paths inG between any two tanks.
• For every jet there always is a path inG from a tank to

this jet.

Tanks can be full or empty. Valves can be open or closed.
Some of the valves can be stuck in the close position. A state
of G is specified by the set of full tanks, the set of open valves,
and the set of valves stuck in the closed position.

1http://www.cs.kuleuven.be/ dtai/events/ASP-competition/index.shtml



A node ofG is called pressurized in a state if it is a full
tank or if there exists a path from some full tank ofG to this
node such that all the valves on the edges of this path are
open.

We assume that in a state a shuttle controller can open a
valve corresponding to a directed link<N1, N2> only if N1

is pressurized and not stuck.
Given a graph G together with an initial state and a jet

J , the problem is to help a shuttle controller find a shortest
sequential plan to pressurizeJ .

B. A solution

The following shows a tabled program for finding a shortest
plan to pressurize a node.

:-table pressurize(+,-,min).
pressurize(Node,Plan,Len):-

full(Node),!, Plan=[],Len=0.
pressurize(Node,[Valve|Plan],Len):-

link(AnotherNode,Node,Valve),
\+ stuck(Valve),
pressurize(AnotherNode,Plan,Len1),
Len is Len1+1.

A node is pressurized if it is a full tank or it is linked to a
pressurized node with a link that is not stuck. The following
predicates are given to represent the graph and its attributes:

• link(N1, N2, V ): V is the valve on the pipe con-
necting nodeN1 andN2.

• full(T): tank T is full. A tank is empty if it is not
mentioned to be full explicitly.

• stuck(V ): valveV is stuck. A valve is not stuck if it
is not mentioned to be stuck explicitly.

A call pressurize(Node,Plan,Len) pressurizes
Node with a plan Plan of length Len. The table mode
pressurize(+,-,min) indicates that for each node only
one plan with the shortest length is compputed.

C. Hydraulic system planning with leaking valves

Mow let’s consider a variant of the problem where some
of the valves are leaking. Given a graphG together with an
initial state ofG and a jetJ , a shuttle controller needs to find
a shortest plan among those using the least number of leaking
valves.

D. A solution to the variant problem

The following give a tabled program for solving the prob-
lem.

:-table pressurize(+,-,min).
pressurize(Node,Plan,(Leaks,Len)):-

full(Node),!,
Plan=[],Leaks=0,Len=0.

pressurize(Node,[Valve|Plan],(Leaks,Len)):-
link(AnotherNode,Node,Valve),
\+ stuck(Valve),
pressurize(AnotherNode,Plan,Pair),
Pair=(Leaks1,Len1),

Len is Len1+1,
(leaking(Valve)->

Leaks is Leaks1+1;
Leaks is Leaks1).

The subgoalleaking(Valve) is true if Valve is leak-
ing. A valve is assume to be not leaking if it is not mentioned
to be leaking explicitly. For each plan, two attribute values are
computed:Leaks is the number of leaking valves involved
in the plan andLen is length of the plan. Because only one
argument can be optimized in a tabled predicate in the current
implementation in B-Prolog, these two values are combined
into a pair (Leaks,Len). Note that the ordering of the
constituents is important. If the pair were(Len,Leaks),
then the plan returned would have the least number of leaking
valves among the shortest plans.

IV. M ODE-DIRECTED TABLING FOR CONSTRAINT

SOLVING

It is well known that tabling is useful in top-down evaluation
of logic programs with stratified negation, and it is also
known that tabling can be used in top-down computation of
well-founded semantics of logic programs with non-stratified
negation [1]. Answer set programming (ASP) gives a lgoic
program with non-stratified negation a different semantics
called stable model or answer-set semantics [5]. ASP has
become another constraint language for modeling and solving
combinatorial search problems.

For a logic program with non-stratified negation, the com-
putation of an answer set requires iterations of guessing,
propagation, and testing, wheather the program is gounded
into a propsitional one solved by a SAT solver (e.g., Clasp [4])
or compiled into a constraint program solved by propagation
(e.g., NPDatalog [6]). Guessing or labeling amounts to giving
a truth value to an atom, propagation entails to derive the truth
values of atoms, and testing means to guarantee that certain
atoms can be derived to be true.

Consider the following program for finding a Hamilton
cycle in a given directed graph:2

{c(X,Y)} :- e(X,Y).

:- 2 {c(X,Y) : e(X,Y)}, v(X).
:- 2 {c(X,Y) : e(X,Y)}, v(Y).

r(X) :- c(0,X), v(X).
r(Y) :- c(X,Y), r(X), e(X,Y).

:- not r(X), v(X).

The given graph is represented by two relations:v(X) means
X is a node, ande(X,Y) means thatY is connected toX.
The first rule is a choice rule which constrains the relation
c/2 to be a sub-relation ofe/2. The second and third rules
ensure that no node has two or more incoming or outgoing
arcs in the relationc/2. The relationr/1 together with the

2http://en.wikipedia.org/wiki/Answerset programming



constraint (last the rule) below its definition ensure that every
node is reachable. Obviously, a relationc/2 that satisifies all
the constraints forms a Hamilton cycle.

We use two sets, calledIN andOUT, to denote the set of
atoms ofc/2 that are currently known to be true and false,
respectively. In the beginning, both sets are empty. Atoms are
added into these sets either through labeling or propagation.
The relationr/1 can be encoded as the following tabled
predicate:

:-table reach(+,nt).
reach(X,OUT):-

not_member(c(0,X),OUT).
reach(X,OUT):-

e(X,Y),
not_member(c(X,Y),OUT),
reach(Y,OUT).

The suhgoalnot_member(Elm,Set) succeeds ifElm is
not an element inSet. Tuples in a set are indexed so that the
test fast is fast.

REFERENCES

[1] Weidong Chen and David S. Warren. Tabled evaluation withdelaying
for general logic programs.Journal of the ACM, 43(1):20–74, 1996.

[2] Henning Christiansen and John P. Gallagher. Non-discriminating argu-
ments and their uses. InICLP, pages 55–69, 2009.

[3] J. Freire, T. Swift, and D. S. Warren. Beyond depth-first:Improving
tabled logic programs through alternative scheduling strategies.Journal
of Functional and Logic Programming, 1998.

[4] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, MaxOstrowski,
Torsten Schaub, and Sven Thiele. A User’s Guid to gringo, clasp, clingo
and iclingo. Technical report, University of Potsdam, 2008.

[5] Michael Gelfond and Vladimir Lifschitz. The stable model semantics
for logic programming. InICLP/SLP, pages 1070–1080, 1988.

[6] Sergio Greco, Cristian Molinaro, Irina Trubitsyna, andEster Zumpano.
NP Datalog: a Logic Language for Expressing NP Search and Optimiza-
tion Problems. Theory and Practice of Logic Programming: Special
Issue on Constraint Handling Rules, 10(2):125–166, 2010.

[7] Hai-Feng Guo and Gopal Gupta. Simplifying dynamic programming via
mode-directed tabling.Softw., Pract. Exper., 38(1):75–94, 2008.

[8] Konstantinos Sagonas and Terrance Swift. An abstract machine for
tabled execution of fixed-order stratified logic programs.ACM Transac-
tions on Programming Languages and Systems, 20(3):586–634, 1998.

[9] Taisuke Sato and Y. Kameya. Parameter learning of logic programs
for symbolic-statistical modeling. Journal of Artificial Intelligence
Research, pages 391–454, 2001.

[10] Taisuke Sato, Yoshitaka Kameya, and et. al. The prism user’s manual,
March 2010.http://www.mi.cs.titech.ac.jp/prism/.

[11] Terrance Swift, David S. Warren, et al. The XSB Programmer’s Manual:
version 3.2, vols. 1 and 2, 2009. http://xsb.sf.net.

[12] Hisao Tamaki and Taisuke Sato. OLD resolution with tabulation. In
Ehud Shapiro, editor,Proceedings of the Third International Conference
on Logic Programming, pages 84–98, 1986.

[13] D. S. Warren. Memoing for logic programs.Comm. of the ACM, Special
Section on Logic Programming, 35:93–111, 1992.

[14] Neng-Fa Zhou. B-Prolog users manual, version 7.4, 2010.
http://www.probp.com/.

[15] Neng-Fa Zhou, Taisuke Sato, and Yi-Dong Shen. Linear tabling
strategies and optimizations.Theory and Practice of Logic Programming
(TPLP), 8(1):81–109, 2008.


