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Abstract—Detecting communities from complex networks has 
triggered considerable attention in several application domains. 
Targeting this problem, a local search based genetic algorithm 
(GALS) which employs a graph-based representation (LAR) has 
been proposed in this work. The core of the GALS is a local 
search based mutation technique. Aiming to overcome the 
drawbacks of the existing mutation methods, a concept called 
marginal gene has been proposed, and then an effective and 
efficient mutation method, combined with a local search strategy 
which is based on the concept of marginal gene, has also been 
proposed by analyzing the modularity function. Moreover, in this 
paper the percolation theory on ER random graphs is employed 
to further clarify the effectiveness of LAR presentation; A 
Markov random walk based method is adopted to produce an 
accurate and diverse initial population; the solution space of 
GALS will be significantly reduced by using a graph based 
mechanism. The proposed GALS has been tested on both 
computer-generated and real-world networks, and compared 
with some competitive community mining algorithms. 
Experimental result has shown that GALS is highly effective and 
efficient for discovering community structure. 

Keywords-complex network; community mining; network 
clustering; genetic algorithm; local search 

I. INTRODUCTION 
Many complex systems in the real world exist in the form 

of networks, such as social networks, biological networks, Web 
induced networks, etc., which are also often classified as 
complex networks. Complex network analysis has been one of 
the most popular research areas in recent years due to its 
applicability to a wide range of disciplines [1, 2, 3]. While a 
considerable body of work addressed basic statistical properties 
of complex networks such as the existence of “small world” 
structuring [1] and the presence of “power laws” in the link 
distribution [2], another property that has attracted particular 
attention is that of “community structure”: the nodes in 
networks are often found to cluster into tightly-knit groups with 
a high density of within-group edges and a lower density of 
between-group edges [3]. The community mining problem 
(CMP), which is also called network clustering problem, is to 
detect and interpret community structures from various 
complex network data sets. So far there are lots of practical 
application problems which can be modeled as CMP, such as 
terrorist organization recognition, organization management, 

biological network analyzing, Web community mining, search 
engine design, link prediction, etc [4]. 

The research on community mining problems is of 
fundamental importance. At present, there are lots of 
community mining algorithms which have been developed. In 
terms of the basic strategies adopted by them, they mainly fall 
into two main categories: heuristic and optimization based 
methods.  

The heuristic methods solve community mining problem 
based on some intuitive assumptions. For example, there are 
Girvan-Newman (GN) algorithm [3], Clique Percolation 
Method (CPM) [5], Finding and Extracting Communities (FEC) 
[6], Label Propagation Algorithm (LPA) [7], Community 
Detection with Propinquity Dynamics (CDPD) [8], Opinion 
Dynamics with Decaying Confidence (ODDC) [9], etc. 

In contrast, the optimization based methods solve 
community mining problem by transforming it into a 
combinatorial optimization problem and trying to find an 
optimal solution for a predefined objective function, such as the 
network modularity (Q) [10] employed in several algorithms. 
For example: Fast Newman (FN) algorithm [11], Simulated 
Annealing (SA) algorithm [12], Iterated Tabu Search (ITS) 
[13], Modularity-Specialized Label Propagation Algorithm 
(LPAm) [14, 15], etc. As maximizing the modularity Q has 
been proven to be a nondeterministic polynomial time (NP)-
complete problem [16], the above methods are also 
approximation algorithms. At present, genetic algorithm (GA) 
has been becoming a type of competitive method in the 
community mining area due to its effectiveness for solving NP-
complete problems. Recently, two genetic representation 
strategies which are string-of-group encoding [17, 18, 19] and 
locus-based adjacency representation (LAR) [20, 21] are 
mainly employed by GA for solving community mining 
problems. However, string-of-group encoding is not suitable 
for a crossover operator in community mining application; 
LAR presentation is well-suited for traditional crossover 
operators, but designing an efficient and effective mutation 
operator is a new challenging work for this setting. 

Addressing the drawbacks of current genetic algorithms for 
solving community mining problem, a local search based 
genetic algorithm (GALS) which employs modularity Q as 
objective function and LAR as genetic presentation is proposed 
in this paper. GALS firstly adopts Markov a random walk 
based method to generate initial population, and then it detects 
network community structure by iteratively executing the 
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following three genetic operators: uniform crossover, local 
search based mutation and µ+λ selection. The major innovation 
in this paper is a local search based mutation method. With 
regard to the drawbacks of current mutation methods, a concept 
which is called marginal gene is newly proposed in this paper, 
and then an effective as well as efficient mutation method 
combined with local search strategy which is based on the 
concept of marginal gene is proposed by analyzing modularity 
Q. Moreover, the genetic operators which are employed by 
GALS make each LAR chromosome in the population 
correspond to a spanning subgraph of the complex network. 
Thus the solution space of GALS can be significantly reduced, 
which makes both the search efficiency and convergence rate 
of this algorithm expressively improved. 

II. ALGORITHM 

A. Problem Definition 
In 2004, Newman and Girvan proposed an important 

quality metric for assessment of partitioning a network into 
communities, which is called network modularity or function Q 
[10]. Though this function Q suffers from resolution limit 
problems, as shown by Fortunato and Barthelemy [22], it still 
has been widely accepted by the scientific community [11-15, 
17-21]. Our genetic algorithm GALS also employs modularity 
Q as objective function which is to be maximized. 

The idea of network modularity is taken from the intuition 
that a network with community structure is different from a 
random network. Therefore, this function Q is defined as the 
difference between the fraction of edges that fall within 
communities and the expected value of the same quantity if 
edges fall at random without regard for the community 
structure. 

Given an unweighted and undirected network N = (V, E) 
and supposing that the nodes are divided into communities 
such that node i belongs to community cr(i) in which r(i) 
denotes the label of node i, then function Q is defined as 

 ( )1 ( ), ( )
2 2

i j
ij

ij

k k
Q A r i r j

m m
⎛ ⎞⎛ ⎞

= − × δ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ , (1) 

where A = (Aij)n×n is the adjacency matrix of network N. Aij = 1 
if nodes i and j connect with each other, Aij = 0 otherwise. The 
δ  function ( , )u vδ  is equal to 1 if u = v and 0 otherwise. The 
degree ki of any node i is defined as i ijjk A=∑ , and 

1
2 ijijm A= ∑  is the total number of edges in network N. 

B. Genetic Representation 
Algorithm GALS in this paper adopts the locus-based 

adjacency representation (LAR) which was proposed by [23]. 
At present, this representation (or encoding) schema was also 
employed by [24, 25] for multi-objective clustering problems 
and by [20, 21] for community mining problems. In this graph-
based representation, an arbitrary individual (or chromosome) g 
in the population consists of n genes, in which each gene 
corresponds to a node in complex network N and n denotes the 
total number of nodes in this network. Each gene i can take an 

arbitrary allele value j in the range of {1, …, n}, which can be 
interpreted as a link between nodes i and j existing in the 
corresponding graph G of individual g. This also means node i 
will be in a same community with node j in the network 
clustering solution denoted by this individual. The decoding 
process for a LAR individual is to identify all the components 
from graph G, and the nodes belonging to the same component 
are assigned to the same community. This decoding process 
can be done in a linear time as shown by [26]. The LAR 
representation is illustrated in Fig. 1. 

In order to further clarify the effectiveness of LAR 
presentation for community mining problem, in this paper we 
try to analyze the characteristic of LAR presentation by 
employing percolation theory on ER random graphs. Erdös and 
Rényi proposed the classical ER random graphs model and the 
related analysis in percolation theory in 1960 [27]. They 
assume that, given a probability value p∈(0~1), two arbitrary 
nodes in a random graph are connected under this probability p. 
Furthermore percolation theory is related to the percolation 
transition taking place at p = 1/n, where, as stated, p is the 
probability value that two nodes are connected by an edge and 
n is the total number of nodes in this graph. This also means 
that the threshold link probability of the appearance of a giant 
component in ER random graph is p = 1/n. It’s obvious that any 
randomly generated LAR chromosome can be regarded as an 
ER random graph by the threshold link probability. Known 
from percolation theory on ER random graphs, starting from 
threshold link probability p = 1/n, the random graph will 
rapidly become a completely connected graph with the increase 
of p, while with the decrease of p there will rapidly appear 
many small connected components in this random graph. It’s 
obvious that the link probability values which are greater or 
less than the threshold link probability value are all not suitable 
for a graph-based presentation, while p = 1/n is fittest for it. 
Thus the LAR presentation used in this paper is very effective 
for our community mining application. 

C. Population Initialization 
Here we try to further analyze the idea of safe individuals 

proposed by [20, 21], and then give a Markov random walk 
based individual generation method which can produce safe as 
well as accurate and diverse initial individuals. 

If an individual is randomly generated, some components in 
its corresponding graph G may be disconnected in the original 
complex network N, which also means G may be not a 
subgraph of N. For example, an individual could contain an 
allele value j in the ith position, which means there is a link 
between nodes i and j in its corresponding graph G, but there 
may be no connection existing between these two nodes in 
network N. However, in complex networks with community 

   
(a)                                     (b)                                      (c) 

Figure 1.  An illustration for the locus-based adjacency presentation. (a) A 
complex network consisting of eleven nodes; (b) one out of many possible 
chromosomes; (c) the corresponding graph of this chromosome. 
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structure, there is an obvious intuition that any node should be 
in a same community with one of its neighbors. Thus the 
solution space of chromosomes can be reduced according to the 
above heuristics, which makes any individual in the population 
be a spanning subgraph of the original network N. Then the 
individual which satisfies the above condition is called a safe 
individual, the population which is composed of safe 
individuals is called a safe population, and the solution space of 
safe individuals is called a safe solution space. The whole 
solution space of LAR presentation is nn, while the safe 
solution space is 

1
n

ii
k

=∏ , where n is the total number of nodes 
and ki is the degree of node i in network N. As most complex 
networks are sparse graphs, ki can be regarded as a constant. 
Thus it’s obvious that the safe solution space is much smaller 
than the whole solution space. Therefore if the search region of 
our algorithm GALS can be restricted in the range of the safe 
solution space, its search efficiency and convergence rate can 
be both significantly improved. 

In order to improve the performance of algorithm GALS, 
we propose a Markov random walk based individual generation 
method (MRW) which is based on the natural features of 
community structure in complex networks. First of all, the 
related theory is given as follows. 

In a network, let pij be the probability that an agent freely 
walks from any node i to its neighbor node j within one step, 
which is also called the transition probability of one-step 
random walk. In terms of the adjacency matrix of N, A = 
(aij)n×n, pij is defined by 

 ij
ij

irr

a
p

a
=
∑

. (2) 

From the view of a Markov random walk, when a complex 
network has community structure, a random walk agent should 
be found it difficult to move outside its own community 
boundary, whereas it should be easy for it to reach other nodes 
within its community, as link density within a community 
should be high, by definition. In other words, the probability 
for remaining in the same community, that is, a random walk 
agent starts from any node and stays in its own community, 
should be greater than that for going out to a different 
community. Based the above idea, we make arbitrary gene i in 
a chromosome select its allele value j in the range of {1, …, n} 
by using one-step transition probability pij in algorithm MRW. 
It’s obvious that the individuals generated by MRW are not 
only safe but also accurate and diverse, which can improve the 
performance of our genetic algorithm GALS. 

D. Selection and Crossover Operator 
Selection operator plays a role of global search in genetic 

algorithm (GA). In order to retain the fittest individuals from 
each generation and improve the convergence speed of GA, 
µ+λ selection strategy [28] which is preferred by GA for 
solving combinatorial optimization problems is adopted by this 
paper. The process of µ+λ selection can be described as follows. 
Let the size of parent population be µ, and λ offspring be 
generated from randomly chosen parents, then we single out µ 
best individuals among parents and offspring as the population 
of next generation. 

As another global search operator in GA, uniform crossover 
(UC) [29] is adopted in this paper. Given two randomly chosen 
parents A and B, and a randomly generated binary vector v, 
uniform crossover then selects the genes where v is 1 from 
parent A, and selects the genes where v is 0 from parent B, and 
then combines the genes to form a new child C. 
Mathematically speaking, there is C = A.*v + B.*(1-v), where 
(.*) denotes array multiplication. Lets consider that parents A 
and B are both safe individuals, which means that if a gene i 
contains a value j, the edge <i, j> will exist in the initial 
network N. Any gene i containing a value j in child C comes 
from one of its two parents, thus this child is forcibly a safe 
individual. Therefore we say that uniform crossover will not 
violate the safety of the population in GA. Furthermore, we 
choose the uniform crossover in favor of one-point or two-
point crossover because it is unbiased with respect to the 
ordering of genes and can generate any combination of alleles 
from the two parents within a single crossover operation. 

E. Mutation Operator 
Mutation operator is the most important part in this paper. 

For community mining problems, we first introduce a concept 
called marginal gene with regard to the drawbacks of existing 
mutation methods, and then we propose an efficient and 
effective local search based mutation algorithm. 

1) Marginal gene: Recently, a random mutation strategy 
was adopted as local search operator in most genetic algorithms 
which employed LAR presentation [20, 21, 24, 25]. However 
this type of mutation operator is not well-suitable for 
community mining problems. 

In the opinion of Guimera and Amaral, when solving 
community mining problems, it’s an effective method to 
generate a new candidate solution by continuously executing 
the following three types of operations on current candidate 
solution, which includes moving single nodes from one 
community to another, merging multi-communities and 
splitting single communities [12]. In genetic algorithms, the 
crossover operator is regarded as a macroscopic operation on 
individuals, while the mutation operator is regarded as a 
microcosmic operation on individuals. Thus, in a genetic 
algorithm for solving community mining problems, if the 
crossover operator can achieve its global search function by 
merging and splitting communities, and the mutation operator 
can achieve its local search function by moving single nodes 
between communities, this genetic algorithm can express a 
strong ability for searching. Each individual in this paper 
corresponds to a graph, and each component in the graph 
corresponds to a community. Thus it’s obvious that the uniform 
crossover in this paper can effortlessly achieve its function of 
merging and splitting communities, and then the mutation 
operator in this section should effectively achieve its function 
of moving single nodes between communities. However, our 
study shows that traditional mutation operators [20, 21, 24, 25] 
often result in merging or splitting communities, which make it 
not amenable to effectively achieve the local search function, 
thus leading to an overall inefficacy of genetic algorithm. For 
example, in an individual (or chromosome) g, let nodes i and j 
belong to different communities (or components), and gene i 
select the allele value j by a single mutation operation, then this 
mutation operation will very likely lead to the combination of 
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these two communities, which also means the two components 
denoted by nodes i and j may be merged into a bigger one by 
building a new link <i, j> between them. It’s obvious this 
situation is undesirable. Our research for this problem is 
presented as follows. 

Definition 1. (Marginal Gene) Given arbitrary LAR 
chromosome g, if the allele values of all genes in g are not 
equal to j, gene j is called a marginal gene in g, which is also 
called a marginal node. 

An arbitrary LAR chromosome g corresponds to a directed 
graph G. All nodes in G will not point at marginal nodes 
known from Definition 1. Thus a single mutation operation on 
a marginal node can implement this node’s movement from 
one community to another, while it will not result in merging or 
splitting communities. It’s obvious that the mutation operator 
can successfully achieve its local search function with the aid 
of marginal nodes. 

Now we have to pay attention to the proportion of marginal 
genes appearing in a LAR chromosome. Here we first research 
the case for a randomly generated chromosome g, and then 
generalize it to a more general case. Let there be n genes in g, 
then the probability that an arbitrary gene i takes some value j 
is p = 1/n; on the contrary, the probability that gene i doesn’t 
take value j is 1−p; and then the probability that all genes in g 
don’t take value j is β = (1−1/n)n. Therefore, the probability 
that the marginal genes appear in chromosome g should be β. 
By mathematical analysis we know that, β(n) is a monotone 
increasing function, and lim ( ) 1/ 0.3679n n eβ→+∞ = ≈ , where 
e is the Napierian base. Because the total number of nodes in 
almost all concrete instantiations of complex networks is 
greater than 10, and p(10) = 0.3487, thus the proportion of 
marginal genes appearing in a chromosome g should be β(n) ∈ 
(0.3487~0.3679), n > 10. Moreover, our experiments show that 
the above conclusion is also fit for more general chromosomes 
in a universal situation. In this sense, if we execute mutation 
operations on all marginal genes of a chromosome, it’s 
equivalent to that of executing mutation operations on this 
chromosome by mutational rate β. 

2) Local search based mutation algorithm: Based on 
Definition 1, this section tries to propose a fast and effective 
local search based mutation algorithm (LSMA) aiming to 
marginal nodes by a focused study on the community mining 
problem, which is totally different from the existing mutation 
methods. 

In order to effectively implement single nodes’ movements 
between communities in algorithm LSMA, here we firstly give 
some theoretical analyses on our objective function Q from 
each node’s local view. We convert (1) to (3), which takes 
function Q as the sum of function f of all nodes. It’s obvious 
that from each node’s local point of view, function f can be 
regarded as the difference between the number of edges that 
fall within communities and the expected number of edges that 
fall within communities. Therefore, function f of each node can 
measure whether a network division indicates a strong 
community structure from its local perspective. Some 
Propositions and Theorems on function f are given as follows. 

 
( )

1 ,
2 2

r i

i j
i i ij

i j c

k k
Q f f A

m m∈

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
∑ ∑  (3) 

Proposition 1. For ∀ i ∈ V, the local function fi of any node 
i in a complex network is only related to its own community 
cr(i). 

Proof. Proposition 1 is obvious, according to (3). 
Theorem 1. For ∀ i ∈ V, if the label of node i changes 

under the condition that the labels of all other nodes don’t 
change, function Q of a complex network is monotonically 
increasing with function fi. 

Proof. Given a network N = (V, E) and its community 
structure C. For ∀ i ∈ V, let the label of node i be varied from 
r(i) to r(j), which makes the community structure become C'. 
Given r(i) ≠ r(j), in community structure C', the original 
community of node i becomes c'r(i) = cr(i) − {i}, and its current 
community becomes c'r(j) = cr(j) ∪ {i}. 

Known from (3), if the community of any node changes, its 
own function f will also change. Therefore the variety of the 
label of node i will result in the variety of function f of all 
nodes in node set c = cr(i) ∪ cr(j). We divide the nodes in c into 
three categories, and give the equation about the variety of 
function f for the nodes in each category respectively. 

1. For ∀ s ∈ c'r(i), the variety of its function fs which is 
defined as sfΔ  is given by 
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2. For ∀ p ∈ cr(j), the variety of its function fp which is 
defined as pfΔ  is given by 
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3. For node i, the variety of its function fi which is defined 
as ifΔ  is given by 

 

( ) ( )'

( ') ( )

2 2
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Thus, the variety of function Q of the whole network, 
which is caused by the variety of the label of node i, can be 
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deduced as follows. Here the variety of Q-value is defined as 
QΔ . 
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Then ( )1( ') ( ) ( ') ( )i imQ C Q C f C f C− = − . As we can see, 
given ( ') ( )i i f C f C> , there is ( ') ( )Q C Q C> . Thus 
concluding this proof.  

There is an obvious intuition in that any node in a complex 
network which has community structure should have a same 
label with one of its neighbors, thus any marginal node i can 
take an allele value j in the range of NSi instead of V in our 
mutation algorithm, where NSi is the neighbor set of node i and 
V is the whole node set of the network. Furthermore, as 
function Q of a complex network is monotonically increasing 
with any node’s function f known from Theorem 1, we select 
node j from NSi, which can maximize function fi, as the allele 
value of marginal node i. Because we only consider marginal 
nodes here, after each mutation operation, node i will take the 
label of node j as its label, meanwhile, the labels of all other 
nodes will not change. Thus this also satisfies the condition 
requested by Theorem 1. Moreover, it’s obvious that any safe 
individual is still be a safe one after executing the above 
mutation method. Here we design a fast and effective local 
search based mutation algorithm LSMA which is described in 
Fig. 2. 

As we can see, according to the request of algorithm 
LSMA, the variety of any node’s allele value denotes a node’s 
movement from its original community (or component) to 
another one in the corresponding graph of chromosome g, 
while it can’t result in merging or splitting communities. It’s 
obvious that only marginal nodes can satisfy this request. On 
the contrary, the mutation operation on non-marginal nodes 
will necessarily lead to merging or splitting communities for g, 
thus they can’t satisfy the request of algorithm LSMA. 
Therefore we can say that LSMA is totally designed for 
marginal nodes. 

In order to further explain the effectiveness as well as 
efficiency of algorithm LSMA, some Propositions are given as 
follows. 

 
Figure 2.  The algorithm flow of LSMA. 

Proposition 2. For arbitrary chromosome g which adopts 
LAR presentation, the value of fitness function Q will not 
decrease after executing LSMA algorithm. 

Proof. Known from the algorithm flow of LSMA, any 
marginal gene i in chromosome g will necessarily take one of 
its neighbors j which can maximize its function fi as its allele 
value after LSMA mutation. This means node i will move to 
the community of node j, while it will not result in merging or 
splitting communities, which also means the label of node i 
changes under the condition that the labels of all other nodes 
don’t change. Known from Theorem 1, if the variety of a 
node’s label makes its function f increase under the condition 
that the labels of all other nodes don’t change, this variety will 
also cause the increase of Q-value of the complex network. 
Thus this mutation operation on any marginal gene in 
chromosome g will not make the Q-value of the complex 
network decrease. Thus concluding the proof.. 

In complex network N, let the total number of nodes be n, 
the average degree of all the nodes be k, and the average 
community size in the network clustering solution denoted by 
chromosome g in algorithm LSMA be c. It’s obvious that c is 
much smaller than n. As most complex networks are sparse 
graphs, in order to raise efficiency, all the algorithms in this 
paper are implemented by using a sparse matrix, stored by a 
linked list. The time complexity analysis of algorithm LSMA is 
given as follows.  

Proposition 3. The time complexity of algorithm LSMA is 
O(cn). 

Proof. The decoding step for a LAR chromosome can be 
done in a linear time, thus the time complexity of the 8th step is 
the highest in LSMA. Step 8 computes function fi of each 
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marginal node i for all the labels of its neighbors. Because the 
labels of any node’s neighbors are likely to overlap, the 
average number of evaluations of function f for each node i in 
step 8 can’t be greater than k. Known from Proposition 1, the 
average time that function f is computed once can’t be greater 
than c. The total number of marginal nodes is about βn in a 
LAR chromosome. Thus the time complexity of LSMA can’t 
be greater than O(βnkc). Furthermore, complex networks are 
always sparse graphs, which means k is a constant, and β is 
also a constant, thus the time complexity of LSMA can be also 
given by O(cn). 

F. Algorithm GALS 
Based on the discussion in above sections, the description 

for algorithm GALS is given as Fig. 3. 
Algorithm GALS firstly adopts a Markov random walk 

based individual generation method (MRW) to produce initial 
population, and then it detects network community structure by 
iteratively executing the following three genetic operators: 
uniform crossover, local search based mutation and µ+λ 
selection. It’s obvious that: the individuals in initial population 
produced by MRW are not only safe but also accurate and 
diverse; our crossover operator can achieve its global search 
function by merging and splitting communities for LAR 
chromosome; our mutation operator can effectively achieve its 
local search function by cleverly moving single marginal nodes 
between communities for LAR chromosome; our selection 
operator can achieve its global search function by making the 
best individuals enter the next generation, mimicking on the 
Darwin’s idea of “survival of the fittest”. Moreover, as the 
population produced by MRW is a safe one, meanwhile, the 
two genetic operators (uniform crossover and local search 
based mutation) which can change the structure of LAR 
chromosome will not violate the safety of the safe population, 
thus algorithm GALS can detect network community structures 
in the range of the safe solution space which is much smaller 
than the whole solution space. Therefore the search efficiency 
and convergence speed of algorithm GALS can be also 
significantly improved from this approach. 

The time complexity of GALS is given as follows. In 
complex network N, let the total number of nodes be n, and the 
average community size in all of the LAR chromosomes during 
the execution process of algorithm GALS be c. Note that this 
community size c doesn’t denote the average community size 
of the final network clustering solution got by GALS. 

Proposition 4. The time complexity of algorithm GALS is 
O(cn). 

Proof. It’s obvious that the time complexity of the 4th step 
is the highest in GALS, and the time of other steps are all equal 
to or less than O(n). The number of running algorithm LSMA 
in step 4 can’t be greater than Lλ, and the time of running 
LSMA once is O(cn) from Proposition 3. Thus the time of 
running step 4 in GALS can’t be greater than O(Lλcn). 
Because all the parameters in GALS can be regarded as a 
constant, the time of running step 4 in GALS can be also given 
by O(cn). Therefore the overall time complexity of GALS is 
O(cn). 

It’s worth mentioning that, the time complexity of most 
community mining algorithms at present is not less than O(n2), 
even though the time of Newman’s fast algorithm (FN) is 

O(n2), whereas the time of our algorithm GALS is O(cn), in 
which c is much smaller than n. 

 
Figure 3.  The algorithm flow of GALS. 

III. EXPERIMENTS 
In order to quantitatively analyze the performance of 

algorithm GALS, we tested it by using both computer-
generated and real-world networks. All experiments are done 
on a single Dell Server (Intel(R) Xeon(R) CPU 5130 @ 
2.00GHz 2.00GHz processor with 4Gbytes of main memory on 
Microsoft Windows Server 2003 OS). Our programming 
environment is Matlab 7.3. 

In algorithm GALS, there are three parameters: iteration 
number L, parent population size µ and offspring population 
size λ, which are all standard parameters in genetic algorithms. 
They can be set as: L = 200, µ = 80 and λ = 60 based on [20, 
21, 24, 25, 28] as well as our own experience. 

A. Computer-Generated Networks 
To test the performance of algorithm GALS, we adopt 

random networks with known community structure, which has 
been used as benchmark datasets for testing community mining 
algorithms [3]. This kind of random network is defined as RN 
(a, s, k, zout), where a is the number of communities, s is the 
number of nodes in each community, k is the degree of each 
nodes in the network, and each node has zin edges connecting it 
to members of its community and zout edges to members of 
other communities. As zout increases from zero, community 
structures of networks become more diffused and the resulting 
networks pose greater and greater challenges to the community 
mining algorithms. Especially, a network doesn’t have 
community structure when zout is greater than 8 [3]. The 
clustering solution for a random network is perfect only if each 
node is assigned to the correct community, and no communities 
are further divided. This measure is used to calculate network 
clustering accuracy in this paper. 
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In order to investigate the performance of GALS in terms 
of clustering accuracy, this algorithm is compared with GN 
algorithm [3], Fast Newman (FN) algorithm [11], CPM 
algorithm [5] and FEC algorithm [6]. Algorithm GN and FN 
are both classic community mining algorithms which take 
function Q as objective function. Algorithm CPM and FEC are 
also very competitive algorithms at present, which belong to 
the class of heuristic methods. Fig. 4(a) shows the experimental 
results. Benchmark random network RN (4, 32, 16, zout) is used 
in this experiment. In Fig. 4(a), y-axis denotes clustering 
accuracy, x-axis denotes zout. For each zout, for each algorithm, 
we compute the average accuracy through clustering 50 
random networks. As we can see from this figure, our 
algorithm GALS significantly outperforms the other four 
algorithms in terms of clustering accuracy. Furthermore, as zout 
becomes greater and greater, the superiority of our algorithm 
becomes more and more significant. Especially, when zout 
equals 8, which means the number of within-community and 
between-community edges per nodes is the same, our algorithm 
can still correctly classify 99.22% of nodes into their correct 
communities, while the clustering accuracy of the other 
algorithms is low at this moment. 

Computing speed is another very important criterion to 
evaluate the performance of community mining algorithms. 
Time complexity analysis for GALS has been given by 
Proposition 4 in Sec. II F, here we show the actual running time 
of GALS from experimental angle in order to further evaluate 
its efficiency. Random network RN (a, 100, 16, 5) containing 
100a nodes and 1600a edges is adopted in this experiment. 
Though community structure of this type of network is known, 
the number of communities can still be changed by a. Fig. 4(b) 
shows the trend that the actual running time of GALS varies 
with the change of network scales. In this figure, y-axis denotes 
the actual running time (second), x-axis denotes the scales of 
networks (number of nodes + number of edges). As we can see, 
the running time of algorithm GALS is proportional to the 
scale of network under the condition that the average 
community size of actual network community structure is 
about constant. Therefore, This experiment can not only 
validate the correctness of Proposition 4 (the time complexity 
of GALS is O(cn)), but also shows that the average community 
size c of all the LAR chromosomes during the running process 
of GALS is proportional to the average community size in the 
actual network community structure. Actually, the sizes of 
communities in larger scale real-world networks are always 
much smaller than the scales of networks [30]. 
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Figure 4.  Testing the performance of GALS on random networks. (a) 
Comparing GALS with GN, FN, CPM and FEC in terms of clustering 
accuracy; (b) The actual running time of GALS on networks with different 
scales. 

B. Real-World Networks 
As a further test on algorithm GALS, we applied it to seven 

widely used real-world networks which not only include small 
networks containing dozens of nodes, but also include large-
scale networks containing tens of thousands of nodes. These 
actual networks may have different topological properties than 
those in the computer-generated networks. A simple 
description for them is given by Table I. 

Because our algorithm GALS takes function Q as objective 
function, two algorithms (GN and FN) which also employ Q as 
objective function are selected from Sec. III A to be compared. 
Comparing GALS with these two algorithms on the networks 
described above, Table II shows the average experimental 
results over 50 runs. Note that empty cells correspond to 
computation time over 24 hours. As we can see, the clustering 
solution of algorithm GALS on real-world networks is also 
obviously better than that of algorithms GN and FN. 

IV. CONCLUSION 
A local search based genetic algorithm (GALS) which 

employs modularity Q as objective function and LAR as 
genetic presentation is proposed in this paper. GALS firstly 
adopts Markov random walk based method to produce initial 
population, and then it detects network community structure by 
iteratively executing the following three genetic operators: 
uniform crossover, local search based mutation and µ+λ 
selection. The proposed GALS is tested on both computer-
generated and real-world networks, and compared with some 
competitive community mining algorithms. Experimental 
results demonstrate that GALS is highly effective as well as 
efficient at discovering community structure. 

Our future work can be laid out as follows. We intend to 
further apply GALS in some interesting research areas, such as 
biological networks analysis, Web community mining, etc., and 
try to uncover and interpret significative community structure 
that is expected to be found on them. 
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