
Genetic Algorithm with Local Search for Community Mining in Complex Networks

Di Jin, Dongxiao He, Dayou Liu
College of Computer Science and Technology

Jilin University
Changchun, China

{jindi.jlu, hedongxiaojlu}@gmail.com;
liudy@jlu.edu.cn

Carlos Baquero
CCTD/DI

University of Minho
Braga, Portugal

cbm@di.uminho.pt

Abstract—Detecting communities from complex networks has
triggered considerable attention in several application domains.
Targeting this problem, a local search based genetic algorithm
(GALS) which employs a graph-based representation (LAR) has
been proposed in this work. The core of the GALS is a local
search based mutation technique. Aiming to overcome the
drawbacks of the existing mutation methods, a concept called
marginal gene has been proposed, and then an effective and
efficient mutation method, combined with a local search strategy
which is based on the concept of marginal gene, has also been
proposed by analyzing the modularity function. Moreover, in this
paper the percolation theory on ER random graphs is employed
to further clarify the effectiveness of LAR presentation; A
Markov random walk based method is adopted to produce an
accurate and diverse initial population; the solution space of
GALS will be significantly reduced by using a graph based
mechanism. The proposed GALS has been tested on both
computer-generated and real-world networks, and compared
with some competitive community mining algorithms.
Experimental result has shown that GALS is highly effective and
efficient for discovering community structure.

Keywords-complex network; community mining; network
clustering; genetic algorithm; local search

I. INTRODUCTION
Many complex systems in the real world exist in the form

of networks, such as social networks, biological networks, Web
induced networks, etc., which are also often classified as
complex networks. Complex network analysis has been one of
the most popular research areas in recent years due to its
applicability to a wide range of disciplines [1, 2, 3]. While a
considerable body of work addressed basic statistical properties
of complex networks such as the existence of “small world”
structuring [1] and the presence of “power laws” in the link
distribution [2], another property that has attracted particular
attention is that of “community structure”: the nodes in
networks are often found to cluster into tightly-knit groups with
a high density of within-group edges and a lower density of
between-group edges [3]. The community mining problem
(CMP), which is also called network clustering problem, is to
detect and interpret community structures from various
complex network data sets. So far there are lots of practical
application problems which can be modeled as CMP, such as
terrorist organization recognition, organization management,

biological network analyzing, Web community mining, search
engine design, link prediction, etc [4].

The research on community mining problems is of
fundamental importance. At present, there are lots of
community mining algorithms which have been developed. In
terms of the basic strategies adopted by them, they mainly fall
into two main categories: heuristic and optimization based
methods.

The heuristic methods solve community mining problem
based on some intuitive assumptions. For example, there are
Girvan-Newman (GN) algorithm [3], Clique Percolation
Method (CPM) [5], Finding and Extracting Communities (FEC)
[6], Label Propagation Algorithm (LPA) [7], Community
Detection with Propinquity Dynamics (CDPD) [8], Opinion
Dynamics with Decaying Confidence (ODDC) [9], etc.

In contrast, the optimization based methods solve
community mining problem by transforming it into a
combinatorial optimization problem and trying to find an
optimal solution for a predefined objective function, such as the
network modularity (Q) [10] employed in several algorithms.
For example: Fast Newman (FN) algorithm [11], Simulated
Annealing (SA) algorithm [12], Iterated Tabu Search (ITS)
[13], Modularity-Specialized Label Propagation Algorithm
(LPAm) [14, 15], etc. As maximizing the modularity Q has
been proven to be a nondeterministic polynomial time (NP)-
complete problem [16], the above methods are also
approximation algorithms. At present, genetic algorithm (GA)
has been becoming a type of competitive method in the
community mining area due to its effectiveness for solving NP-
complete problems. Recently, two genetic representation
strategies which are string-of-group encoding [17, 18, 19] and
locus-based adjacency representation (LAR) [20, 21] are
mainly employed by GA for solving community mining
problems. However, string-of-group encoding is not suitable
for a crossover operator in community mining application;
LAR presentation is well-suited for traditional crossover
operators, but designing an efficient and effective mutation
operator is a new challenging work for this setting.

Addressing the drawbacks of current genetic algorithms for
solving community mining problem, a local search based
genetic algorithm (GALS) which employs modularity Q as
objective function and LAR as genetic presentation is proposed
in this paper. GALS firstly adopts Markov a random walk
based method to generate initial population, and then it detects
network community structure by iteratively executing the

2010 22nd International Conference on Tools with Artificial Intelligence

1082-3409/10 $26.00 © 2010 IEEE

DOI 10.1109/ICTAI.2010.23

105

following three genetic operators: uniform crossover, local
search based mutation and µ+λ selection. The major innovation
in this paper is a local search based mutation method. With
regard to the drawbacks of current mutation methods, a concept
which is called marginal gene is newly proposed in this paper,
and then an effective as well as efficient mutation method
combined with local search strategy which is based on the
concept of marginal gene is proposed by analyzing modularity
Q. Moreover, the genetic operators which are employed by
GALS make each LAR chromosome in the population
correspond to a spanning subgraph of the complex network.
Thus the solution space of GALS can be significantly reduced,
which makes both the search efficiency and convergence rate
of this algorithm expressively improved.

II. ALGORITHM

A. Problem Definition
In 2004, Newman and Girvan proposed an important

quality metric for assessment of partitioning a network into
communities, which is called network modularity or function Q
[10]. Though this function Q suffers from resolution limit
problems, as shown by Fortunato and Barthelemy [22], it still
has been widely accepted by the scientific community [11-15,
17-21]. Our genetic algorithm GALS also employs modularity
Q as objective function which is to be maximized.

The idea of network modularity is taken from the intuition
that a network with community structure is different from a
random network. Therefore, this function Q is defined as the
difference between the fraction of edges that fall within
communities and the expected value of the same quantity if
edges fall at random without regard for the community
structure.

Given an unweighted and undirected network N = (V, E)
and supposing that the nodes are divided into communities
such that node i belongs to community cr(i) in which r(i)
denotes the label of node i, then function Q is defined as

 ()1 (), ()
2 2

i j
ij

ij

k k
Q A r i r j

m m
⎛ ⎞⎛ ⎞

= − × δ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ , (1)

where A = (Aij)n×n is the adjacency matrix of network N. Aij = 1
if nodes i and j connect with each other, Aij = 0 otherwise. The
δ function (,)u vδ is equal to 1 if u = v and 0 otherwise. The
degree ki of any node i is defined as i ijjk A=∑ , and

1
2 ijijm A= ∑ is the total number of edges in network N.

B. Genetic Representation
Algorithm GALS in this paper adopts the locus-based

adjacency representation (LAR) which was proposed by [23].
At present, this representation (or encoding) schema was also
employed by [24, 25] for multi-objective clustering problems
and by [20, 21] for community mining problems. In this graph-
based representation, an arbitrary individual (or chromosome) g
in the population consists of n genes, in which each gene
corresponds to a node in complex network N and n denotes the
total number of nodes in this network. Each gene i can take an

arbitrary allele value j in the range of {1, …, n}, which can be
interpreted as a link between nodes i and j existing in the
corresponding graph G of individual g. This also means node i
will be in a same community with node j in the network
clustering solution denoted by this individual. The decoding
process for a LAR individual is to identify all the components
from graph G, and the nodes belonging to the same component
are assigned to the same community. This decoding process
can be done in a linear time as shown by [26]. The LAR
representation is illustrated in Fig. 1.

In order to further clarify the effectiveness of LAR
presentation for community mining problem, in this paper we
try to analyze the characteristic of LAR presentation by
employing percolation theory on ER random graphs. Erdös and
Rényi proposed the classical ER random graphs model and the
related analysis in percolation theory in 1960 [27]. They
assume that, given a probability value p∈(0~1), two arbitrary
nodes in a random graph are connected under this probability p.
Furthermore percolation theory is related to the percolation
transition taking place at p = 1/n, where, as stated, p is the
probability value that two nodes are connected by an edge and
n is the total number of nodes in this graph. This also means
that the threshold link probability of the appearance of a giant
component in ER random graph is p = 1/n. It’s obvious that any
randomly generated LAR chromosome can be regarded as an
ER random graph by the threshold link probability. Known
from percolation theory on ER random graphs, starting from
threshold link probability p = 1/n, the random graph will
rapidly become a completely connected graph with the increase
of p, while with the decrease of p there will rapidly appear
many small connected components in this random graph. It’s
obvious that the link probability values which are greater or
less than the threshold link probability value are all not suitable
for a graph-based presentation, while p = 1/n is fittest for it.
Thus the LAR presentation used in this paper is very effective
for our community mining application.

C. Population Initialization
Here we try to further analyze the idea of safe individuals

proposed by [20, 21], and then give a Markov random walk
based individual generation method which can produce safe as
well as accurate and diverse initial individuals.

If an individual is randomly generated, some components in
its corresponding graph G may be disconnected in the original
complex network N, which also means G may be not a
subgraph of N. For example, an individual could contain an
allele value j in the ith position, which means there is a link
between nodes i and j in its corresponding graph G, but there
may be no connection existing between these two nodes in
network N. However, in complex networks with community

(a) (b) (c)

Figure 1. An illustration for the locus-based adjacency presentation. (a) A
complex network consisting of eleven nodes; (b) one out of many possible
chromosomes; (c) the corresponding graph of this chromosome.

106

structure, there is an obvious intuition that any node should be
in a same community with one of its neighbors. Thus the
solution space of chromosomes can be reduced according to the
above heuristics, which makes any individual in the population
be a spanning subgraph of the original network N. Then the
individual which satisfies the above condition is called a safe
individual, the population which is composed of safe
individuals is called a safe population, and the solution space of
safe individuals is called a safe solution space. The whole
solution space of LAR presentation is nn, while the safe
solution space is

1
n

ii
k

=∏ , where n is the total number of nodes
and ki is the degree of node i in network N. As most complex
networks are sparse graphs, ki can be regarded as a constant.
Thus it’s obvious that the safe solution space is much smaller
than the whole solution space. Therefore if the search region of
our algorithm GALS can be restricted in the range of the safe
solution space, its search efficiency and convergence rate can
be both significantly improved.

In order to improve the performance of algorithm GALS,
we propose a Markov random walk based individual generation
method (MRW) which is based on the natural features of
community structure in complex networks. First of all, the
related theory is given as follows.

In a network, let pij be the probability that an agent freely
walks from any node i to its neighbor node j within one step,
which is also called the transition probability of one-step
random walk. In terms of the adjacency matrix of N, A =
(aij)n×n, pij is defined by

 ij
ij

irr

a
p

a
=
∑

. (2)

From the view of a Markov random walk, when a complex
network has community structure, a random walk agent should
be found it difficult to move outside its own community
boundary, whereas it should be easy for it to reach other nodes
within its community, as link density within a community
should be high, by definition. In other words, the probability
for remaining in the same community, that is, a random walk
agent starts from any node and stays in its own community,
should be greater than that for going out to a different
community. Based the above idea, we make arbitrary gene i in
a chromosome select its allele value j in the range of {1, …, n}
by using one-step transition probability pij in algorithm MRW.
It’s obvious that the individuals generated by MRW are not
only safe but also accurate and diverse, which can improve the
performance of our genetic algorithm GALS.

D. Selection and Crossover Operator
Selection operator plays a role of global search in genetic

algorithm (GA). In order to retain the fittest individuals from
each generation and improve the convergence speed of GA,
µ+λ selection strategy [28] which is preferred by GA for
solving combinatorial optimization problems is adopted by this
paper. The process of µ+λ selection can be described as follows.
Let the size of parent population be µ, and λ offspring be
generated from randomly chosen parents, then we single out µ
best individuals among parents and offspring as the population
of next generation.

As another global search operator in GA, uniform crossover
(UC) [29] is adopted in this paper. Given two randomly chosen
parents A and B, and a randomly generated binary vector v,
uniform crossover then selects the genes where v is 1 from
parent A, and selects the genes where v is 0 from parent B, and
then combines the genes to form a new child C.
Mathematically speaking, there is C = A.*v + B.*(1-v), where
(.*) denotes array multiplication. Lets consider that parents A
and B are both safe individuals, which means that if a gene i
contains a value j, the edge <i, j> will exist in the initial
network N. Any gene i containing a value j in child C comes
from one of its two parents, thus this child is forcibly a safe
individual. Therefore we say that uniform crossover will not
violate the safety of the population in GA. Furthermore, we
choose the uniform crossover in favor of one-point or two-
point crossover because it is unbiased with respect to the
ordering of genes and can generate any combination of alleles
from the two parents within a single crossover operation.

E. Mutation Operator
Mutation operator is the most important part in this paper.

For community mining problems, we first introduce a concept
called marginal gene with regard to the drawbacks of existing
mutation methods, and then we propose an efficient and
effective local search based mutation algorithm.

1) Marginal gene: Recently, a random mutation strategy
was adopted as local search operator in most genetic algorithms
which employed LAR presentation [20, 21, 24, 25]. However
this type of mutation operator is not well-suitable for
community mining problems.

In the opinion of Guimera and Amaral, when solving
community mining problems, it’s an effective method to
generate a new candidate solution by continuously executing
the following three types of operations on current candidate
solution, which includes moving single nodes from one
community to another, merging multi-communities and
splitting single communities [12]. In genetic algorithms, the
crossover operator is regarded as a macroscopic operation on
individuals, while the mutation operator is regarded as a
microcosmic operation on individuals. Thus, in a genetic
algorithm for solving community mining problems, if the
crossover operator can achieve its global search function by
merging and splitting communities, and the mutation operator
can achieve its local search function by moving single nodes
between communities, this genetic algorithm can express a
strong ability for searching. Each individual in this paper
corresponds to a graph, and each component in the graph
corresponds to a community. Thus it’s obvious that the uniform
crossover in this paper can effortlessly achieve its function of
merging and splitting communities, and then the mutation
operator in this section should effectively achieve its function
of moving single nodes between communities. However, our
study shows that traditional mutation operators [20, 21, 24, 25]
often result in merging or splitting communities, which make it
not amenable to effectively achieve the local search function,
thus leading to an overall inefficacy of genetic algorithm. For
example, in an individual (or chromosome) g, let nodes i and j
belong to different communities (or components), and gene i
select the allele value j by a single mutation operation, then this
mutation operation will very likely lead to the combination of

107

these two communities, which also means the two components
denoted by nodes i and j may be merged into a bigger one by
building a new link <i, j> between them. It’s obvious this
situation is undesirable. Our research for this problem is
presented as follows.

Definition 1. (Marginal Gene) Given arbitrary LAR
chromosome g, if the allele values of all genes in g are not
equal to j, gene j is called a marginal gene in g, which is also
called a marginal node.

An arbitrary LAR chromosome g corresponds to a directed
graph G. All nodes in G will not point at marginal nodes
known from Definition 1. Thus a single mutation operation on
a marginal node can implement this node’s movement from
one community to another, while it will not result in merging or
splitting communities. It’s obvious that the mutation operator
can successfully achieve its local search function with the aid
of marginal nodes.

Now we have to pay attention to the proportion of marginal
genes appearing in a LAR chromosome. Here we first research
the case for a randomly generated chromosome g, and then
generalize it to a more general case. Let there be n genes in g,
then the probability that an arbitrary gene i takes some value j
is p = 1/n; on the contrary, the probability that gene i doesn’t
take value j is 1−p; and then the probability that all genes in g
don’t take value j is β = (1−1/n)n. Therefore, the probability
that the marginal genes appear in chromosome g should be β.
By mathematical analysis we know that, β(n) is a monotone
increasing function, and lim () 1/ 0.3679n n eβ→+∞ = ≈ , where
e is the Napierian base. Because the total number of nodes in
almost all concrete instantiations of complex networks is
greater than 10, and p(10) = 0.3487, thus the proportion of
marginal genes appearing in a chromosome g should be β(n) ∈
(0.3487~0.3679), n > 10. Moreover, our experiments show that
the above conclusion is also fit for more general chromosomes
in a universal situation. In this sense, if we execute mutation
operations on all marginal genes of a chromosome, it’s
equivalent to that of executing mutation operations on this
chromosome by mutational rate β.

2) Local search based mutation algorithm: Based on
Definition 1, this section tries to propose a fast and effective
local search based mutation algorithm (LSMA) aiming to
marginal nodes by a focused study on the community mining
problem, which is totally different from the existing mutation
methods.

In order to effectively implement single nodes’ movements
between communities in algorithm LSMA, here we firstly give
some theoretical analyses on our objective function Q from
each node’s local view. We convert (1) to (3), which takes
function Q as the sum of function f of all nodes. It’s obvious
that from each node’s local point of view, function f can be
regarded as the difference between the number of edges that
fall within communities and the expected number of edges that
fall within communities. Therefore, function f of each node can
measure whether a network division indicates a strong
community structure from its local perspective. Some
Propositions and Theorems on function f are given as follows.

()

1 ,
2 2

r i

i j
i i ij

i j c

k k
Q f f A

m m∈

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
∑ ∑ (3)

Proposition 1. For ∀ i ∈ V, the local function fi of any node
i in a complex network is only related to its own community
cr(i).

Proof. Proposition 1 is obvious, according to (3).
Theorem 1. For ∀ i ∈ V, if the label of node i changes

under the condition that the labels of all other nodes don’t
change, function Q of a complex network is monotonically
increasing with function fi.

Proof. Given a network N = (V, E) and its community
structure C. For ∀ i ∈ V, let the label of node i be varied from
r(i) to r(j), which makes the community structure become C'.
Given r(i) ≠ r(j), in community structure C', the original
community of node i becomes c'r(i) = cr(i) − {i}, and its current
community becomes c'r(j) = cr(j) ∪ {i}.

Known from (3), if the community of any node changes, its
own function f will also change. Therefore the variety of the
label of node i will result in the variety of function f of all
nodes in node set c = cr(i) ∪ cr(j). We divide the nodes in c into
three categories, and give the equation about the variety of
function f for the nodes in each category respectively.

1. For ∀ s ∈ c'r(i), the variety of its function fs which is
defined as sfΔ is given by

() ()'

(') ()

2 2

2

r i r i

s s s

s t s t
st st

t c t c

s i
si

f f C f C
k k k k

A A
m m

k kA
m

∈ ∈

Δ = −

⎛ ⎞ ⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

∑ ∑ (4)

2. For ∀ p ∈ cr(j), the variety of its function fp which is
defined as pfΔ is given by

() ()'

(') ()

2 2

2

r j r j

p p p

p q p q
pq pq

q c q c

p i
pi

f f C f C

k k k k
A A

m m

k k
A

m

∈ ∈

Δ = −

⎛ ⎞ ⎛ ⎞
= − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= −

∑ ∑ (5)

3. For node i, the variety of its function fi which is defined
as ifΔ is given by

() ()'

(') ()

2 2
r j r i

i i i

i e i e
ie ie

e c e c

f f C f C
k k k kA A

m m∈ ∈

Δ = −

⎛ ⎞ ⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ (6)

Thus, the variety of function Q of the whole network,
which is caused by the variety of the label of node i, can be

108

deduced as follows. Here the variety of Q-value is defined as
QΔ .

() ()

() ()

()

()

'

'

'

1
2

1
2 2 2

2 21
2

2 2

r i r j

r i r j

r i

r j

s p i
s c p c

p is i
si pi i

s c p c

s i i i
si ii

s c

p i i i
pi ii

p c

Q f f f
m

k kk kA A f
m m m

k k k kA A
m m

m k k k kA A
m m

∈ ∈

∈ ∈

∈

∈

⎛ ⎞
⎜ ⎟Δ = Δ + Δ + Δ
⎜ ⎟
⎝ ⎠
⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟= − − + − + Δ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟− − − − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠=
⎛ ⎞

− − −⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑

∑

∑

()

() ()'

1
2 2 2

1 1
2

r j r i

i

p i s i
pi si i

p c s c

i i i

f

k k k kA A f
m m m

f f f
m m

∈ ∈

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞⎜ ⎟⎛ ⎞⎜ ⎟ + Δ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= − − − + Δ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

= Δ + Δ = Δ

∑ ∑

 (7)

Then ()1(') () (') ()i imQ C Q C f C f C− = − . As we can see,
given (') ()i i f C f C> , there is (') ()Q C Q C> . Thus
concluding this proof.

There is an obvious intuition in that any node in a complex
network which has community structure should have a same
label with one of its neighbors, thus any marginal node i can
take an allele value j in the range of NSi instead of V in our
mutation algorithm, where NSi is the neighbor set of node i and
V is the whole node set of the network. Furthermore, as
function Q of a complex network is monotonically increasing
with any node’s function f known from Theorem 1, we select
node j from NSi, which can maximize function fi, as the allele
value of marginal node i. Because we only consider marginal
nodes here, after each mutation operation, node i will take the
label of node j as its label, meanwhile, the labels of all other
nodes will not change. Thus this also satisfies the condition
requested by Theorem 1. Moreover, it’s obvious that any safe
individual is still be a safe one after executing the above
mutation method. Here we design a fast and effective local
search based mutation algorithm LSMA which is described in
Fig. 2.

As we can see, according to the request of algorithm
LSMA, the variety of any node’s allele value denotes a node’s
movement from its original community (or component) to
another one in the corresponding graph of chromosome g,
while it can’t result in merging or splitting communities. It’s
obvious that only marginal nodes can satisfy this request. On
the contrary, the mutation operation on non-marginal nodes
will necessarily lead to merging or splitting communities for g,
thus they can’t satisfy the request of algorithm LSMA.
Therefore we can say that LSMA is totally designed for
marginal nodes.

In order to further explain the effectiveness as well as
efficiency of algorithm LSMA, some Propositions are given as
follows.

Figure 2. The algorithm flow of LSMA.

Proposition 2. For arbitrary chromosome g which adopts
LAR presentation, the value of fitness function Q will not
decrease after executing LSMA algorithm.

Proof. Known from the algorithm flow of LSMA, any
marginal gene i in chromosome g will necessarily take one of
its neighbors j which can maximize its function fi as its allele
value after LSMA mutation. This means node i will move to
the community of node j, while it will not result in merging or
splitting communities, which also means the label of node i
changes under the condition that the labels of all other nodes
don’t change. Known from Theorem 1, if the variety of a
node’s label makes its function f increase under the condition
that the labels of all other nodes don’t change, this variety will
also cause the increase of Q-value of the complex network.
Thus this mutation operation on any marginal gene in
chromosome g will not make the Q-value of the complex
network decrease. Thus concluding the proof..

In complex network N, let the total number of nodes be n,
the average degree of all the nodes be k, and the average
community size in the network clustering solution denoted by
chromosome g in algorithm LSMA be c. It’s obvious that c is
much smaller than n. As most complex networks are sparse
graphs, in order to raise efficiency, all the algorithms in this
paper are implemented by using a sparse matrix, stored by a
linked list. The time complexity analysis of algorithm LSMA is
given as follows.

Proposition 3. The time complexity of algorithm LSMA is
O(cn).

Proof. The decoding step for a LAR chromosome can be
done in a linear time, thus the time complexity of the 8th step is
the highest in LSMA. Step 8 computes function fi of each

109

marginal node i for all the labels of its neighbors. Because the
labels of any node’s neighbors are likely to overlap, the
average number of evaluations of function f for each node i in
step 8 can’t be greater than k. Known from Proposition 1, the
average time that function f is computed once can’t be greater
than c. The total number of marginal nodes is about βn in a
LAR chromosome. Thus the time complexity of LSMA can’t
be greater than O(βnkc). Furthermore, complex networks are
always sparse graphs, which means k is a constant, and β is
also a constant, thus the time complexity of LSMA can be also
given by O(cn).

F. Algorithm GALS
Based on the discussion in above sections, the description

for algorithm GALS is given as Fig. 3.
Algorithm GALS firstly adopts a Markov random walk

based individual generation method (MRW) to produce initial
population, and then it detects network community structure by
iteratively executing the following three genetic operators:
uniform crossover, local search based mutation and µ+λ
selection. It’s obvious that: the individuals in initial population
produced by MRW are not only safe but also accurate and
diverse; our crossover operator can achieve its global search
function by merging and splitting communities for LAR
chromosome; our mutation operator can effectively achieve its
local search function by cleverly moving single marginal nodes
between communities for LAR chromosome; our selection
operator can achieve its global search function by making the
best individuals enter the next generation, mimicking on the
Darwin’s idea of “survival of the fittest”. Moreover, as the
population produced by MRW is a safe one, meanwhile, the
two genetic operators (uniform crossover and local search
based mutation) which can change the structure of LAR
chromosome will not violate the safety of the safe population,
thus algorithm GALS can detect network community structures
in the range of the safe solution space which is much smaller
than the whole solution space. Therefore the search efficiency
and convergence speed of algorithm GALS can be also
significantly improved from this approach.

The time complexity of GALS is given as follows. In
complex network N, let the total number of nodes be n, and the
average community size in all of the LAR chromosomes during
the execution process of algorithm GALS be c. Note that this
community size c doesn’t denote the average community size
of the final network clustering solution got by GALS.

Proposition 4. The time complexity of algorithm GALS is
O(cn).

Proof. It’s obvious that the time complexity of the 4th step
is the highest in GALS, and the time of other steps are all equal
to or less than O(n). The number of running algorithm LSMA
in step 4 can’t be greater than Lλ, and the time of running
LSMA once is O(cn) from Proposition 3. Thus the time of
running step 4 in GALS can’t be greater than O(Lλcn).
Because all the parameters in GALS can be regarded as a
constant, the time of running step 4 in GALS can be also given
by O(cn). Therefore the overall time complexity of GALS is
O(cn).

It’s worth mentioning that, the time complexity of most
community mining algorithms at present is not less than O(n2),
even though the time of Newman’s fast algorithm (FN) is

O(n2), whereas the time of our algorithm GALS is O(cn), in
which c is much smaller than n.

Figure 3. The algorithm flow of GALS.

III. EXPERIMENTS
In order to quantitatively analyze the performance of

algorithm GALS, we tested it by using both computer-
generated and real-world networks. All experiments are done
on a single Dell Server (Intel(R) Xeon(R) CPU 5130 @
2.00GHz 2.00GHz processor with 4Gbytes of main memory on
Microsoft Windows Server 2003 OS). Our programming
environment is Matlab 7.3.

In algorithm GALS, there are three parameters: iteration
number L, parent population size µ and offspring population
size λ, which are all standard parameters in genetic algorithms.
They can be set as: L = 200, µ = 80 and λ = 60 based on [20,
21, 24, 25, 28] as well as our own experience.

A. Computer-Generated Networks
To test the performance of algorithm GALS, we adopt

random networks with known community structure, which has
been used as benchmark datasets for testing community mining
algorithms [3]. This kind of random network is defined as RN
(a, s, k, zout), where a is the number of communities, s is the
number of nodes in each community, k is the degree of each
nodes in the network, and each node has zin edges connecting it
to members of its community and zout edges to members of
other communities. As zout increases from zero, community
structures of networks become more diffused and the resulting
networks pose greater and greater challenges to the community
mining algorithms. Especially, a network doesn’t have
community structure when zout is greater than 8 [3]. The
clustering solution for a random network is perfect only if each
node is assigned to the correct community, and no communities
are further divided. This measure is used to calculate network
clustering accuracy in this paper.

110

In order to investigate the performance of GALS in terms
of clustering accuracy, this algorithm is compared with GN
algorithm [3], Fast Newman (FN) algorithm [11], CPM
algorithm [5] and FEC algorithm [6]. Algorithm GN and FN
are both classic community mining algorithms which take
function Q as objective function. Algorithm CPM and FEC are
also very competitive algorithms at present, which belong to
the class of heuristic methods. Fig. 4(a) shows the experimental
results. Benchmark random network RN (4, 32, 16, zout) is used
in this experiment. In Fig. 4(a), y-axis denotes clustering
accuracy, x-axis denotes zout. For each zout, for each algorithm,
we compute the average accuracy through clustering 50
random networks. As we can see from this figure, our
algorithm GALS significantly outperforms the other four
algorithms in terms of clustering accuracy. Furthermore, as zout
becomes greater and greater, the superiority of our algorithm
becomes more and more significant. Especially, when zout
equals 8, which means the number of within-community and
between-community edges per nodes is the same, our algorithm
can still correctly classify 99.22% of nodes into their correct
communities, while the clustering accuracy of the other
algorithms is low at this moment.

Computing speed is another very important criterion to
evaluate the performance of community mining algorithms.
Time complexity analysis for GALS has been given by
Proposition 4 in Sec. II F, here we show the actual running time
of GALS from experimental angle in order to further evaluate
its efficiency. Random network RN (a, 100, 16, 5) containing
100a nodes and 1600a edges is adopted in this experiment.
Though community structure of this type of network is known,
the number of communities can still be changed by a. Fig. 4(b)
shows the trend that the actual running time of GALS varies
with the change of network scales. In this figure, y-axis denotes
the actual running time (second), x-axis denotes the scales of
networks (number of nodes + number of edges). As we can see,
the running time of algorithm GALS is proportional to the
scale of network under the condition that the average
community size of actual network community structure is
about constant. Therefore, This experiment can not only
validate the correctness of Proposition 4 (the time complexity
of GALS is O(cn)), but also shows that the average community
size c of all the LAR chromosomes during the running process
of GALS is proportional to the average community size in the
actual network community structure. Actually, the sizes of
communities in larger scale real-world networks are always
much smaller than the scales of networks [30].

0 1 2 3 4 5 6 7 8
0.4

0.5

0.6

0.7

0.8

0.9

1

number of inter-community edges per vertex zout

cl
u

st
er

in
g

 a
cc

u
ra

cy

GN
FN
CPM
FEC
GALS

1 1.5 2 2.5 3 3.5 4

x 10
4

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

network scale (n+m)

ac
tu

al
 r

u
n

n
in

g
 ti

m
e

(s
)

GALS

(a) (b)

Figure 4. Testing the performance of GALS on random networks. (a)
Comparing GALS with GN, FN, CPM and FEC in terms of clustering
accuracy; (b) The actual running time of GALS on networks with different
scales.

B. Real-World Networks
As a further test on algorithm GALS, we applied it to seven

widely used real-world networks which not only include small
networks containing dozens of nodes, but also include large-
scale networks containing tens of thousands of nodes. These
actual networks may have different topological properties than
those in the computer-generated networks. A simple
description for them is given by Table I.

Because our algorithm GALS takes function Q as objective
function, two algorithms (GN and FN) which also employ Q as
objective function are selected from Sec. III A to be compared.
Comparing GALS with these two algorithms on the networks
described above, Table II shows the average experimental
results over 50 runs. Note that empty cells correspond to
computation time over 24 hours. As we can see, the clustering
solution of algorithm GALS on real-world networks is also
obviously better than that of algorithms GN and FN.

IV. CONCLUSION
A local search based genetic algorithm (GALS) which

employs modularity Q as objective function and LAR as
genetic presentation is proposed in this paper. GALS firstly
adopts Markov random walk based method to produce initial
population, and then it detects network community structure by
iteratively executing the following three genetic operators:
uniform crossover, local search based mutation and µ+λ
selection. The proposed GALS is tested on both computer-
generated and real-world networks, and compared with some
competitive community mining algorithms. Experimental
results demonstrate that GALS is highly effective as well as
efficient at discovering community structure.

Our future work can be laid out as follows. We intend to
further apply GALS in some interesting research areas, such as
biological networks analysis, Web community mining, etc., and
try to uncover and interpret significative community structure
that is expected to be found on them.

ACKNOWLEDGMENT
This work was supported by National Natural Science

Foundation of China under Grant Nos. 60873149, 60973088,
National High-Tech Research and Development Plan of China

TABLE I. REAL-WORLD NETWORKS USED IN OUR EXPERIMENTS

Networks V(G) E(G) Description
karate 34 78 Zachary's karate club [31]
dolphin 62 160 Dolphin social network [32]
polbooks 105 441 Books about US politics [33]
football 115 613 American College football[3]
jazz 198 5484 Jazz musicians network [34]
world 7,207 31,784 Semantic network [5]
arxiv 56,276 315,921 scientific collaboration networks [35]

TABLE II. COMPARING GALS (OVER 50 RUNS) WITH GN AND FN

Q-value GN FN GALS
karate 0.4013 0.2528 0.4198
dolphin 0.4706 0.3715 0.5294
polbooks 0.5168 0.5020 0.5272
football 0.5996 0.4549 0.6045
jazz 0.4051 0.4030 0.4449
world - 0.3821 0.4059
arxiv - 0.5953 0.6126

111

under Grant No. 2006AA10Z245, Open Project Program of the
National Laboratory of Pattern Recognition, and BRIDGING
THE GAP Erasmus Mundus project of EU. We would like to
thank Mark Newman for providing us with the source code of
algorithms FN and GN, and some real-world network data.

REFERENCES
[1] D. J. Watts, and S. H. Strogatz, “Collective Dynamics of Small-World

Networks,” Nature, vol. 393, Jun. 1998, pp. 440-442,
doi:10.1038/30918.

[2] A. L. Barabási, R. Albert, H. Jeong, and G. Bianconi, “Power-Law
Distribution of the World Wide Web,” Science, vol. 287, Mar. 2000, pp.
2115a, doi:10.1126/science.287.5461.2115a.

[3] M. Girvan, and M. E. J. Newman. “Community Structure in Social and
Biological Networks,” Proceedings of National Academy of Science,
vol. 99, Jun. 2002, pp. 7821-7826, doi:10.1073/pnas.122653799.

[4] S. Fortunato, “Community Detection in Graphs,” Physics Reports, vol.
486, Jun. 2010, pp. 75-174, doi:10.1016/j.physrep.2009.11.002.

[5] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, “Uncovering the
Overlapping Community Structures of Complex Networks in Nature and
Society,” Nature, vol. 435, Jun. 2005, pp. 814-818,
doi:10.1038/nature03607.

[6] B. Yang, W. K. Cheung, and J. Liu, “Community Mining from Signed
Social Networks,” IEEE Transactions on Knowledge and Data
Engineering, vol. 19, Sep. 2007, pp. 1333-1348,
doi:10.1109/TKDE.2007.1061.

[7] U. N. Raghavan, R. Albert, and S. Kumara, “Near Linear-Time
Algorithm to Detect Community Structures in Large-Scale Networks,”
Physical Review E, vol. 76, Sep. 2007, pp. 036106,
doi:10.1103/PhysRevE.76.036106.

[8] Y. Zhang, J. Wang, Y. Wang, and L. Zhou, “Parallel Community
Detection on Large Networks with Propinquity Dynamics,” In Proc. the
15th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining (KDD 09), ACM Press, Jun. 2009, pp. 997-1005,
doi:10.1145/1557019.1557127.

[9] C. I. Morãrescu, and A. Girard, “Opinion Dynamics with Decaying
Confidence: Application to Community Detection in Graphs,”
arXiv:0911.5239v1, 2009.

[10] M. E. J. Newman, and M. Girvan, “Finding and Evaluating Community
Structure in Networks,” Physical Review E, vol. 69, Feb. 2004, pp.
026113, doi:10.1103/PhysRevE.69.026113.

[11] M. E. J. Newman, “Fast Algorithm for Detecting Community Structure
in Networks,” Physical Review E, vol. 69, Jun. 2004, pp. 066133,
doi:10.1103/PhysRevE.69.066133.

[12] R. Guimera, and L. A. N. Amaral, “Functional Cartography of Complex
Metabolic Networks,” Nature, vol. 433, Feb. 2005, pp. 895-900,
doi:10.1038/nature03288.

[13] Z. Lü, and W. Huang, “Iterated Tabu Search for Identifying Community
Structure in Complex Networks,” Physical Review E, vol. 80, Aug.
2009, pp. 026130, doi:10.1103/PhysRevE.80.026130.

[14] M. J. Barber, and J. W. Clark, “Detecting Network Communities by
Propagating Labels under Constraints,” Physical Review E, vol. 80,
Aug. 2009, pp. 026129, doi:10.1103/PhysRevE.80.026129.

[15] X. Liu, and T. Murata, “Advanced Modularity-Specialized Label
Propagation Algorithm for Detecting Communities in Networks,”
Physica A, vol. 389, Apr. 2010, pp. 1493-1500,
doi:10.1016/j.physa.2009.12.019.

[16] U. Brandes, D. Delling, M. Gaertler, R. Goerke, M. Hoefer, Z.
Nikoloski, and D. Wagner, “Maximizing Modularity is Hard,”
arXiv:physics/0608255, 2006.

[17] M. Tasgin, A. Herdagdelen, and H. Bingol, “Community Detection in
Complex Networks using Genetic Algorithms,” arXiv:0711.0491, 2007.

[18] D. He, Z. Wang, B. Yang, and C. Zhou, “Genetic Algorithm with
Ensemble Learning for Detecting Community Structure in Complex
Networks,” In 4th International Conference on Computer Sciences and
Convergence Information Technology (ICCIT 09), IEEE Press, Nov.
2009, pp. 702-707, doi:10.1109/ICCIT.2009.189.

[19] S. Li, Y. Chen, H. Du, and M. W. Feldman,“A Genetic Algorithm with
Local Search Strategy for Improved Detection of Community Structure,”
Complexity, vol. 15, Mar. 2010, pp. 53-60, doi:10.1002/cplx.v15:4.

[20] C. Pizzuti, “Community Detection in Social Networks with Genetic
Algorithms,” In Genetic and Evolutionary Computation Conference
(GECCO 08), ACM Press, Jul. 2008, pp. 1137-1138,
doi:10.1145/1389095.1389316.

[21] C. Pizzuti, “A Multi-Objective Genetic Algorithm for Community
Detection in Networks,” In 21st IEEE Int'l Conference on Tools with
Artificial Intelligence (ICTAI 09), IEEE Press, Nov. 2009, pp. 379-386,
doi:10.1109/ICTAI.2009.58.

[22] S. Fortunato, and M. Barthélemy, “Resolution Limit in Community
Detection,” Proceedings of the National Academy of Sciences, vol. 104,
Jan. 2007, pp. 36-41, doi:10.1073/pnas.0605965104.

[23] Y. J. Park, and M. S. Song, “A Genetic Algorithm for Clustering
Problems,” In Proceedings of the 3rd Annual Conference on Genetic
Programming, Morgan Kaufmann, Jul. 1998, pp. 568-575.

[24] J. Handle and J. Knowles, “An Evolutionary Approach to Multiobjective
Clustering,” IEEE Transactions on Evolutionary Computation, vol. 11,
Feb. 2007, pp. 56-76, doi:10.1109/TEVC.2006.877146.

[25] N. Makate, M. Miki, T. Hiroyasu, and T. Senda, “Multiobjective
Clustering with Automatic K-Determination for Large-Scale Data,” In
Proc. of the Int. Genetic and Evolutionary Computation Conference
(GECCO 07), ACM Press, Jul. 2007, pp. 861-868,
doi:10.1145/1276958.1277126.

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. Cambridge, MA: MIT Press, 2001.

[27] P. Erdos, and A. Renyi, “On the Evolution of Random Graphs,” Publ.
Math. Inst. Hung. Acad. Sci., vol. 5, 1960, pp. 17-61.

[28] E. M. Montes, and C. A. C. Coello, “A Simple Multi-Membered
Evolution Strategy to Solve Constrained Optimization Problems,” IEEE
Transactions on Evolutionary Computation, vol. 9, Feb. 2005, pp. 1-17,
doi:10.1109/TEVC.2004.836819.

[29] G. Syswerda, “Uniform Crossover in Genetic Algorithms,” In Proc. 3rd
Int. Conf. Genetic Algorithms, Morgan Kaufmann, Jun. 1989, pp. 2-9.

[30] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Statistical
Properties of Community Structure in Large Social and Information
Networks,” In Proceedings of the 17th International Conference on
World Wide Web (WWW 08), ACM Press, Apr. 2008, pp. 695-704,
doi:10.1145/1367497.1367591.

[31] W. W. Zachary, “An Information Flow Model for Conict and Fission in
Small Groups,” J. Anthropological Research, vol. 33, 1977, pp. 452-473.

[32] D. Lusseau, “The Emergent Properties of a Dolphin Social Network,”
Proc Biol Sci, vol. 270 Suppl 2, Jul. 2003, pp. S186-8,
doi:10.1098/rsbl.2003.0057.

[33] M. E. J. Newman, “Modularity and Community Structure in Networks,”
Proceedings of the National Academy of Sciences, vol. 103, Jun. 2006,
pp. 8577-8582, doi:10.1073/pnas.0601602103.

[34] P. M. Gleiser, and L. Danon, “Community Structure in Jazz,” Advances
in Complex Systems, vol. 6, Jul. 2003, pp. 565-573
doi:10.1142/S0219525903001067.

[35] M. E. J. Newman, “The Structure of Scientific Collaboration Networks,”
Proceedings of National Academy of Science, vol. 98, Jan. 2001, pp.
404-409, doi:10.1073/pnas.021544898.

112

