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Abstract—The Quantified Constraint Satisfaction Problem
(QCSP) is a generalization of the classical constraint satisfaction
problem in which some variables can be universally quantified.
This additional expressiveness can help model problems in
which a subset of the variables take value assignments that
are outside the control of the decision maker. Typical examples
of such domains are game-playing, conformant planning and
reasoning under uncertainty. In these domains decision makers
need explanations when a QCSP does not admit a winning
strategy. We present an approach to defining preferences amongst
the requirements of a QCSP, and an approach to finding most
preferred explanations of inconsistency based on preferences over
relaxations of quantifiers and constraints. This paper unifies work
from the fields of constraint satisfaction, explanation generation,
and reasoning under preferences and uncertainty.

I. INTRODUCTION

Uncertainty is ubiquitous in real-world decision-making.
However, quantifying the nature of the uncertainty can be very
difficult, if not impossible, in many settings. Domain experts
can usually provide qualitative statements of which risks are
more important to consider than others, and which outcomes
are more likely than others. In this paper we report on the
formal underpinnings of an approach to risk-aware decision-
making that is based on an extension of the classic Constraint
Satisfaction Problem (CSP) known as the Quantified Constraint
Satisfaction Problem (QCSP) [1]. Parameters under the control
of the decision maker are modelled as existentially quantified
variables since a value (a decision) must be assigned (made) to
these variables. All uncertain variables are universally quan-
tified so that decision makers must consider how to preempt
every possible assignment to those variables. Of course, such
a formulation means that it will be seldom possible for a
decision maker to satisfy the constraints of the QCSP since it
is likely that some values of the universal (uncertain) variables
cannot be preempted. Therefore, we assist the decision maker
by abstracting their decision problem so the specific reasons
for infeasibility can be focused upon.

Example 1 (Weekend planning): Assume that John wants
to prepare a plan for Saturday and Sunday on Friday evening.
He is interested in two activities: rowing (row) and watch-
ing movie (mov). Also, assume that there are two weather
possibilities: sun (s) and rain (r). Each activity should be
carried out on a different day. If the activity is rowing then
the weather should be sunny. Let Asat and Asun denote the
activities performed on Saturday and Sunday, respectively.
Let Wsat and Wsun denote the weather on Saturday and

Sunday, respectively. The basic formulation of this problem
is as follows:

∃Asat,Asun ∈ {row,mov} : ∀Wsat,Wsun ∈ {s, r} :
{(Asat 6= Asun), (Asat = row ⇒ Wsat = s), (Asun = row ⇒ Wsun = s)}

There is no decision that can be made in this case that prop-
erly responds to the risk. This is because for any assignment
to Asat and Asun there is at least one assignment to Wsat and
Wsun that is inconsistent with it. Many relaxations, giving rise
to risk responses, of this problem are possible. For example,
one relaxation could be to restrict the domain of Wsat to {s}
and another could be to restrict Wsun to {s}. However, if
John knows that on Saturday it is less likely to rain, then the
former would be preferred over the latter. The QCSP obtained
by removing a less likely value r from Wsat is as follows:

∃Asat,Asun ∈ {row,mov} : ∀Wsat ∈ {s} : Wsun ∈ {s, r} :
{(Asat 6= Asun), (Asat = row ⇒ Wsat = s), (Asun = row ⇒ Wsun = s)}

This QCSP is satisfiable, i.e. there is an appropriate risk
response in this setting. This is because there exist assignments
to the existential variables, Asat = row and Asun = mov, such
that for any assignment to the uncertain/universal variables,
Wsat and Wsun, the constraints are satisfied. N

In this paper we present a framework for generating pre-
ferred explanations in a QCSP setting. An advantage of the
framework is that recent developments in QCSP modelling
and solving can be applied directly to qualitative risk man-
agement [2]. We present an explanation generation algorithm
that takes a preference (or likelihood) ordering into account in
order to generate the most preferred (most likely) explanation
in a given context.

II. PRELIMINARIES

Definition 1 (Constraint Satisfaction Problem): A
constraint satisfaction problem (CSP) is a 3-tuple
P =̂ 〈X ,D, C〉 where X is a finite set of variables
X =̂ {x1, . . . , xn}, D is a set of finite domains
D =̂ {D(x1), . . . , D(xn)} where the domain D(xi) is
the finite set of values that variable xi can take, and a set of
constraints C =̂ {c1, . . . , cm}. Each constraint ci is defined by
the ordered set var(ci) of the variables it involves, and a set
sol(ci) of allowed combinations of values. An assignment of
values to the variables in var(ci) satisfies ci if it belongs to



sol(ci). A solution to a CSP is an assignment to each variable
by a value from its domain such that every constraint in C is
satisfied.

Definition 2 (Quantified CSP): A QCSP, φ, has the form

Q.C = Q1x1 ∈ D(x1) · · ·Qnxn ∈ D(xn).C(x1, . . . , xn)

where C is a set of constraints (see Definition 1) defined over
the variables x1, . . . , xn, and Q is a sequence of quantifiers
over the variables x1, . . . , xn where each Qi (1 ≤ i ≤ n) is
either an existential, ∃, or a universal, ∀, quantifier.

The expression ∃xi.c means that “there exists a value a ∈
D(xi) such that the assignment (xi, a) satisfies c”. Similarly,
the expression ∀xi.c means that “for every value a ∈ D(xi),
(xi, a) satisfies c”. When the variable and the domain of the
variable is clear from context we often write Qi rather than
Qixi ∈ D(xi) in the quantifier sequence. When the position
of a universal quantifier, Qi, in the sequence Q is j such that
j 6= i we write Qj

i , where 1 ≤ j ≤ n, otherwise we simply
write Qi.

III. RELAXATIONS OF REQUIREMENTS

Requirements correspond to either a constraint in the QCSP,
or the scope of a universal quantifier, or the position of
a universal quantifier. The requirements of an input QCSP
are called original requirements. When the input QCSP is
inconsistent, we seek the closest QCSP by relaxing one or more
original requirements. For example, an extensional constraint
could be relaxed by adding more allowed tuples, the scope
of a universal quantifier could be relaxed by restricting its
scope to a subset of the domain of the universally quantified
variable, and the position of a universal quantifier could be
relaxed by moving it to the left in the sequence of quantifiers.
Notice that a universal quantifier could be relaxed by either
relaxing its scope or relaxing its position. However, we treat
them separately for the purpose of clarity. We frame relaxation
of each as instances of requirement relaxation, over a partial
order defined for that purpose.

Definition 3 (Substitution of a Requirement): Given a
QCSP φ, the substitution of a requirement r in φ results in a
new QCSP φ[r].
• If the requirement r ≡ Qixi ∈ D(xi) of type scope of

universal quantifier is to be substituted by Qixi ∈ D′(xi)
then Q1x1 . . . Qixi ∈ D(xi) . . . Qnxn.C[Qixi ∈ D′(xi)]
results in Q1x1 . . . Qixi ∈ D′(xi) . . . Qnxn.C.

• If the requirement r ≡ Qi of type position of universal
quantifier is to be substituted by Qk

i , where k < i then
Q1 . . . Qk . . . Qi−1Qi . . . Qn.C[Qk

i ] results in positioning
Qi in k and moving the other quantifiers accordingly, i.e.,
Q1 . . . Q

k
iQ

k+1
k . . . Qi

i−1 . . . Qn.C.
• If the requirement r ≡ cj of type constraint

is to be substituted by another constraint c′j then
Q.(c1 . . . cj . . . cm)[c′j ] results in Q.(c1 . . . c′j . . . cm).

The notion of requirement substitution can be lifted to work
on a set of requirements R: φ[∅] = φ, φ[{r}∪R] = (φ[r])[R].

Definition 4 (Ordering over Requirement Relaxations):
Let R be the set of possible relaxations of a requirement r0

and let r1 ∈ R and r2 ∈ R be two relaxations of r0. We say
that r2 is a relaxation1 of r1, denoted by r1 v r2, if and only
if for any QCSP φ if φ[r1] is satisfiable then φ[r2] is also
satisfiable. We say that r2 is a strict relaxation of r1, denoted
by r1 @ r2, if and only if r1 v r2 is true and the converse is
not true.

We require that the partial order v also be a meet-
semilattice, i.e., greatest lower bounds are guaranteed to exist:
if r1, r2 ∈ R, then r1 u r2 is well-defined in which case
r1 u r2 v r1 and r1 u r2 v r2 hold.

Definition 5 (Relaxation of a QCSP): Given a requirement
r of a QCSP φ, and a requirement relaxation r′ such that r v r′,
φ[r′] is a relaxation of φ.

Example 2 (Relaxation of a QCSP): Consider a QCSP de-
fined on the variables x1 and x2 such that D(x1) = {3, 5}
and D(x2) = {6, 9, 10} as follows: ∃x1 ∈ {3, 5}∀x2 ∈
{6, 9, 10}.{x2 mod x1 = 0}. This QCSP is false. This is
because for any value for variable x1 there is at least one
value in the domain of x2 that is inconsistent with it.

If we relax the constraint requirement (x2 mod x1 = 0)
to (x2 mod x1 < 2) the resulting QCSP ∃x1 ∈ {3, 5}∀x2 ∈
{6, 9, 10}.{x2 mod x1 < 2} becomes true. If we relax the
scope of the domain of the universally quantified variable
x2 to {6, 9} then the resulting QCSP ∃x1 ∈ {3, 5}∀x2 ∈
{6, 9}.{x2 mod x1 = 0} is true. If we relax the position
of the universal quantifier from 2 to 1 the resulting QCSP
∀x2 ∈ {6, 9, 10}∃x1 ∈ {3, 5}.{x2 mod x1 = 0} is true. N

IV. PREFERRED CONFLICTS AS EXPLANATIONS

Given an unsatisfiable QCSP (a conflict) we compute ex-
planations of this unsatisfiability by relaxing a subset of its
requirements to the point where any further relaxation would
yield a satisfiable QCSP (a minimal conflict). Let φ be a
QCSP defined over the set of original requirements including
those that can be relaxed and those that cannot. An original
requirement that cannot be relaxed is also called a mandatory
requirement. We use Υ to denote a set of original requirements
of φ that can be relaxed. R is a relaxation function on Υ
that maps each original requirement in Υ to its set of possible
requirement relaxations, i.e., ∀ri ∈ Υ, Ri is the set of possible
requirement relaxations of ri.

For each ri ∈ Υ, we use †i to denote its full relaxation
(or bottom relaxation). If a requirement r is a constraint c
then its bottom relaxation is the Cartesian product of the
domains of the variables involved in the constraint c, i.e.,
†r = Πx∈var(c)D(x). If a requirement r is either a scope
of a universal quantifier or a position of a universal quantifier
Qi then †r = ∀xi ∈ ∅. Throughout the paper we assume that
each ri ∈ Υ can be fully relaxed, i.e., ∀ri ∈ Υ, †i ∈ Ri.

We say that I ∈
∏
Ri is an instance of R if and only

if ∀ri ∈ Υ, Ii is an element of Ri. Let I and I ′ be two
instances of R. We say that I ′ is a strict relaxation of I,
denoted I @ I ′, if and only if there exists a requirement
ri ∈ Υ such that Ii @ I ′i and for all the other requirements

1A relaxation of a requirement is also a requirement.



rj ∈ Υ, Ij v I ′j . We use
d

(R) to denote the top instance
of R, i.e., if I =

d
(R) then there does not exist any other

instance I ′ of R such that I ′ @ I. We use
⊔

(R) to denote the
bottom (or a most relaxed) instance of R, i.e., if I =

⊔
(R)

then there does not exist any other instance I ′ of R such that
I @ I ′. The former is well-defined when there is a unique
minimal relaxation, and the latter one is well-defined when
there is a unique maximal relaxation, for each requirement.

We say that a conflict is an instance of R that makes
φ inconsistent. When confronted with an inconsistent QCSP
a user is generally interested in resolving the conflicts. To
allow a user to resolve a conflict by relaxing at most one
requirement it is important to ensure the minimality of the
conflict. We define the notion of minimal conflict with respect
to a (typically incomplete) consistency propagation method
Π, such as QAC [3], in a similar way to Junker [4]. In what
follows, the consistency of a QCSP is defined in terms of
Π so consistency means Π-consistency. Using an incomplete
operator is perfectly reasonable since it only means that the
conflict computed is minimal with respect to the consistency
operator. Furthermore, some interesting classes of QCSP may
be easy to solve in practice despite the worst-case theoretical
complexity, e.g., the QCSPs solved in [5].

Definition 6 (Minimal Conflict): Given a set of original re-
quirements Υ that can be relaxed, and a consistency propagator
Π, a minimal conflict I of a QCSP φ is an instance of R such
that φ[I] is inconsistent and there does not exist any I @ I ′
such that φ[I ′] is inconsistent.

If I is a minimal conflict of φ under R then φ[I] corre-
sponds to a maximally relaxed explanation of φ [6].

Now we define the notion of preference over conflicts of a
quantified CSP building upon the notion of preference over
conflicts of a CSP [4]. Given two conflicts I and I ′ of a
quantified CSP, we say that I is more important than I ′ if
resolving I involves relaxing a more important requirement.
As the user is supposed to resolve all the conflicts, it is better
to present him/her first with those conflicts that involve more
critical decisions, i.e., with those conflicts that involve relaxing
more important requirements.

Definition 7 (Anti-lex Ordering): Let ≺ be a total order in
terms of importance on the set of original requirements Υ.
Here, ri ≺ rj means that ri is more important than rj . Let
I and I ′ be two instances of a relaxation function R. We
say that I ≺antilex I ′ if and only if ri is the least important
original requirement such that Ii 6= †i∧I ′i = †i, rj is the least
important original requirement such that I ′j 6= †j ∧ Ij = †j ,
and ri ≺ rj .

Many conflicts may exist so we focus on the preferred one.
If I and I ′ are two minimal conflicts of R and I ≺antilex I ′
then it means that I is more important than I ′.

Definition 8 (Preferred Conflict): Given a total order ≺ in
terms of importance on set of requirements Υ, a minimal
conflict I of a QCSP φ is a preferred conflict if and only if there
is no other minimal conflict I ′ of φ such that I ′ ≺antilex I.

Example 3 (Antilex Ordering on Instances of R):
Consider an unsatisfiable QCSP defined on variables x1,

x2 and x3 such that D(x1) = {1, 2}, D(x2) = {1, 2, 3} and
D(x3) = {2, 3} as follows: ∃x1∀x2∃x3.{x1 < x2, x2 < x3}.
Let Υ = {r1, r2, r3} be the set of original requirements
that can be relaxed, where r1 ≡ ∀x2 ∈ {1, 2, 3},
r2 ≡ x1 < x2, and r3 ≡ x2 < x3. Let us assume
that r1 ≺ r2 ≺ r3 is the order of importance on the
requirements. The relaxation function R is defined as follows:
R1 = {∀x2 ∈ {1, 2, 3},∀x2 ∈ ∅}, R2 = {x1 < x2, true},
and R3 = {x2 < x3, true}. Here †1 ≡ ∀x2 ∈ ∅, †2 ≡ true,
and †3 ≡ true. From the definition of minimal conflict
it follows that I = {∀x2 ∈ {1, 2, 3}, x1 < x2, true} and
I ′ = {∀x2 ∈ {1, 2, 3}, true, x2 < x3} are the only minimal
conflicts of R. The least important requirements that need
to be relaxed for resolving the conflicts I and I ′ are r2

and r3 respectively, and since r2 is more important than r3,
I ≺antilex I ′. Since there are only two minimal conflicts, I
is also the preferred conflict.

N

V. TWO-POINT RELAXATION FUNCTIONS

We present an algorithm for computing a preferred conflict
of φ under the two-point relaxation function R, where for
every original requirement ri ∈ Υ, Ri = {†i, ri}. If †i is in
Ri then ri is allowed to relax fully. Notice that any pair of
instances, say I and I ′, can only be different if there exists
at least one rj ∈ Υ such that Ij 6= I ′j , and that would
imply that either Ij = †j or I ′j = †j holds in a two-point
relaxation function. Therefore, any pair of instances of the
two-point relaxation function R are comparable and hence
they are totally ordered with respect to ≺antilex.

The following proposition shows how to compute a pre-
ferred conflict by decomposing a given two-point relaxation
function defined on a given set of original requirements, which
will form the basis for Algorithm 2.

Proposition 1: Let Υ = {r1, . . . , rm} be an
original set of requirements of a QCSP φ and let
R = {{†1, r1}, . . . , {†m, rm}} be a relaxation function on Υ.
Suppose that Υ1 = {r1, . . . , rk} and Υ2 = {rk+1, . . . , rm}
are disjoint sets of requirements of φ and that no
requirement of Υ2 is preferred to a requirement of
Υ1. Let I2 be the preferred conflict of φ under
R2 = {{r1}, . . . , {rk}, {†k+1, rk+1}, . . . , {†m, rm}}.
Let I1 be the preferred conflict of φ under
R1 = {{†1, r1}, . . . , {†k, rk}, {I2

k+1}, . . . , {I2
m}}. If I1

is the preferred conflict of φ under R1 and I is the preferred
conflict of φ under R then I = I1.

Proof: To prove that I = I1, i.e., I1 is the preferred
conflict of φ under R, we prove that any instance of R
that is not in R1 cannot be the preferred conflict of R.
From the definition of R1, this is equivalent to proving that
the projection of Υ2 on I i.e., I⇓Υ2 , is equal to I2

⇓Υ2 . We
prove this by contradiction. If we assume that I⇓Υ2 6= I2

⇓Υ2

then either I⇓Υ2 ≺antilex I2
⇓Υ2 or I⇓Υ2 �antilex I2

⇓Υ2 . If
I⇓Υ2 ≺antilex I2

⇓Υ2 then it means that there exists a conflict
I ′ under R2 such that I ′⇓Υ1 = I2

⇓Υ1 and I ′⇓Υ2 = I⇓Υ2 .
This would imply that I ′ ≺antilex I2, which contradicts



the assumption that I2 is the preferred conflict of R2. If
I⇓Υ2 �antilex I2

⇓Υ2 then I �antilex I2. This would imply I
is not the preferred conflict under R, which also contradicts
the assumption.

Let Υ = {r1, . . . , rm} be an original set of re-
quirements of φ that can be relaxed and let R =
{{†1, r1}, . . . , {†m, rm}} be a relaxation function on Υ. The
algorithm QUICKQCSPXPLAIN for computing a preferred
conflict is depicted in Algorithm 1. If the input QCSP,
φ, is consistent then there is no conflict in which case
the algorithm raises an exception. Otherwise, the algorithm
QUICKQCSPXPLAIN′ (Algorithm 2) is invoked, which com-
putes the preferred conflict I of φ under R on the set of
requirements Υ.

Algorithm 1 QUICKQCSPXPLAIN(φ,Υ,R,≺)

Require: : A QCSP φ; ∀ri ∈ Υ, Ri = {†i, ri}.
Ensure: : A preferred conflict of φ.

1: if ⊥ 6∈ Π(φ) then
2: return exception “no conflict”
3: I ← QUICKQCSPXPLAIN′(φ,true,Υ,R,≺)
4: return I

The invariant of QUICKQCSPXPLAIN′ is that φ under the
top instance of R is inconsistent. If it is not the case then it
means that φ is consistent under R. One of the parameters
of the algorithm is ∆, which is a Boolean variable. It is
true if it is unknown that φ is inconsistent under the bottom
instance B =

⊔
(R). If φ is inconsistent under B, then the

preferred conflict of φ under R is B (Line 1-2). If |Υ| = 1
then it means that there exists only one requirement with two
possible relaxations. As the bottom instance is already known
to be consistent from Line 1, the top instance of R has to be
inconsistent and the preferred conflict is

d
(R).

If the cardinality of the set of the original requirements
is greater than one, it is ordered in decreasing order of
importance with respect to ≺. To find the preferred conflict
the ordered set of original requirements is divided into two
sets, Υ1 = {r1, . . . , rk} and Υ2 = {rk+1, . . . , rm}, such that
no requirement of Υ2 is more important than one of Υ1. First,
a relaxation function R2 is obtained from R by enforcing that
each requirement in Υ1 cannot be relaxed (Line 8-9). If I2 is
the preferred conflict of φ under relaxation function R2 then,
from Proposition 1, the preferred conflict of R is the preferred
conflict of R1, obtained from R by setting each Rr for each
r ∈ Υ2 to the corresponding one in I2 (Line 10-12).

QUICKQCSPXPLAIN′ avoids unnecessary consistency
checks in cases where it is known that φ is consistent under
the bottom instance. More precisely, if all the requirements
in Υ2 are set to their bottom relaxation in I2 then if all the
requirements in Υ1 are set to their bottom relaxation in I1

then this would imply that φ is consistent under the bottom
instance of R, which is a contradiction. Therefore, whenever
all the requirements in Υ2 are set to their bottom relaxation
in I2, ∆2 is set to false (Line 13) to avoid the consistency
check in Line 1 when computing I1.

Algorithm 2 QUICKQCSPXPLAIN′(φ,∆,Υ,R,≺)

1: if ∆ and ⊥ ∈ Π(φ[
⊔

(R)]) then
2: return

⊔
(R)

3: if |Υ| = 1 then
4: return

d
(R)

5: let r1, . . . , rm be an enumeration of Υ that respects ≺
6: let k = b(1 +m)/2c where 1 ≤ k < m
7: Υ1 ← {r1, . . . , rk} and Υ2 ← {rk+1, . . . , rm}
8: R2 ← R
9: ∀r ∈ Υ1,R2

r ← {u(Rr)}
10: I2 ← QUICKQCSPXPLAIN′(φ,true,Υ2,R2,≺)
11: R1 ← R
12: ∀r ∈ Υ2,R1

r ← {I2
r }

13: ∆2 ≡
((

(I2)⇓Υ2

)
6=
(⊔

(R2)⇓Υ2

))
14: I1 ← QUICKQCSPXPLAIN′(φ,∆2,Υ

1,R1,≺)
15: return I1

QUICKQCSPXPLAIN is a reformulation of QUICKX-
PLAIN [4] in terms of relaxations, and thereby generalis-
ing it to QCSP with at most one distinct relaxation avail-
able for each of the original requirements, i.e., a require-
ment is either present or fully relaxed. In the worst-case,
QUICKQCSPXPLAIN will perform O(k log n

k ) number of con-
sistency checks, where n is the number of original require-
ments and k is the number of original requirements in the
preferred conflict that are not fully relaxed. Here consistency
checks refers to the number of times consistency of a QCSP
is checked using Π.

VI. CONCLUSIONS

In this paper we presented a framework for generating most
preferred explanations for the inconsistency of a QCSP. The ad-
ditional expressiveness of the QCSP can help model problems
in which a subset of the variables take value assignments that
are outside the control of the decision maker. We presented
an approach to representing preferences, and a corresponding
algorithm for computing preferred explanations based on the
notion of conflict.
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