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Abstract 

We present a new implicit branching strategy for 
maximum clique. The new strategy is based in Konj and 
Janecic's improvement over reference MCR algorithm. It 
uses a fixed initial non increasing degree vertex ordering 
at every step of the search, to obtain tighter bounds than 
MCR on average. 

We show that the new branching strategy integrates 
nicely with a natural bit model for the domain. This 
allows for efficient bound computing using bit masking 
operations, so that overall improvement in performance is 
achieved. We present empirical validation over structured 
and random graphs. 

Keywords: maximum clique, branch and bound, exact 
search, coloring. 

1. I n t r o d u c t i o n 

A complete graph, or clique, is a graph such that all 
its vertices are pairwise adjacent. For a given 
graph G = (V,E), the k-clique problem determines the 
existence of a subgraph which forms a clique of size k 
and is well known to be NP-complete [1]. The 
corresponding optimization problem is the maximum 
clique problem (MCP) which consists in finding the 
largest possible clique hidden in G. MCP is known to 
be NP-hard so no efficient exact polynomial time 
algorithms are expected to be found. 

Finding a maximum clique has been deeply studied 
in graph theory and is a very important NP-hard 
problem with applications in many fields: 
bioinformatics and computational biology [2] [3], 
computer vision [4, robotics [5] etc. A slightly 
outdated but nevertheless good survey on maximum 
clique applications can be found in Chapter 7 of [6]. 

Many efforts have been made at implementing fast 
MCP algorithms in practice. Most successful attempt at 
exact MCP use branch and bound as metaheuristic. 
One of the earliest was [7], but there have followed [8], 
[9] [10], [11], to name but a few. These algorithms 
perform a systematic search pruning false solutions by 
computing upper bounds for the maximal clique 
achievable at each step. The tradeoff between 
computational cost and tight bounds is maximized 

using sequential vertex coloring heuristics to obtain the 
bounds. 

In sequential vertex coloring, vertices in a graph are 
assigned a symbol (usually referred to as color by 
analogy with the famous map coloring problem) such 
that pairwise adjacent vertices are all colored 
differently. It is well known that the number of colors 
employed to color a graph G is an upper bound of the 
size of its maximum clique. The tightest possible upper 
bound is therefore the minimum number of colors 
needed to paint the graph, known as its chromatic 
number %(G). Unfortunately determining ^(G) is also 
NP-hard [1] so, in practice, heuristics which produce 
approximate colorings are employed. 

This paper is structured as follows: Section 2 and 3 
deal with preliminary definitions and related word. 
Section 4 presents the new approximate coloring 
heuristic. Section 5 presents a comparison between the 
new algorithm and current leading reference algorithm. 
Finally Section 6 summarizes the paper's contribution. 

2 . P r e l i m i n a r i e s a n d n o t a t i o n 

A simple undirected graph G = (V, E) consists of a 
finite set of vertices V and a finite set of edges 
E a VxV made up of pairs of distinct vertices. Two 
vertices are said to be adjacent if they are connected by 
an edge. The complement of G is a graph G o_n the 
same vertices as G such that two vertices u, v in G are 
adjacent iff (u,v)éE. NG(v) (or just N(v) when the 
graph is clear from the context) denotes the neighbor 
set of v in G, i.e. the set of all vertices in G which are 
adjacent to v. A set of pairwise non adjacent vertices is 
an independent set. The set of non adjacent vertices of 
any vertex veV (i.e. those which are not its neighbors) 
will be referred to as TV-(v) (its neighbors in the 
complement graph). 

For any set of vertices U c V , G(U) = (U,E(U)) 

refers to the induced subgraph over G by vertices in U 

(i.e. E(U) = {(u,v)lue U,ve U,(u,v)e E] ). deg(v) is 

the degree of vertex v, the number of its neighbors. The 
degree of a graph, AG , is the maximum degree of any 
of its vertices. The density p of a graph is the 
probability of having an edge between any two pair of 



vertices (for undirected graphs with n vertices and m 

edges, p = 2m/ _,-.). co(G) refers to the number 

of vertices in a maximum clique in G and u(G) 

denotes any upper bound over co(G) (co(G)<u(G)). 

Unless otherwise specified, it will be assumed that 
vertices in a graph are ordered; v¡ or V[i] refer to the 

i-th vertex in the set. 

3. Related work on MCP 

Figure 1. The reference maximum clique algorithm 

Our reference basic branch and bound procedure for 
finding a maximum clique (RMCP) is described in 
Figure 1. It is the general outline of the Tomita and 
Seki algorithm [10]. In RMCP search takes place in a 

graph space. It uses two global sets S and Smax, 

where S is the set of vertices of the currently growing 
clique and Smax is the largest maximal clique found so 
far. The algorithm starts with an empty set S and 
recursively adds (and removes) vertices from S until it 
verifies that it is no longer possible to unseat the 
current champion Smax. At any node, S always holds 

the vertices in the current path (i.e. \S\ corresponds 

with depth). 
Candidate set U is initially set to G, the input graph. 

At each level of recursion a new vertex v is added to S 
from the set of vertices in U (step 4). At every new 
node a maximum color vertex veU is selected and 
deleted from U (steps 1,2). The result of vertex 
coloring C(v) (step 6) is an upper bound to the 

maximum clique in U in the descendant node. 
The search space is pruned in step 3, when the sum 

of the size of the current clique and the upper bound 
estimate obtained in the previous level cannot improve 
the current best clique found at present. If this is not 
the case v is added to S and a new induced graph 
G(£/n A^ (v)) is computed (and coloured) to become 
the new graph in the next level of recursion (step 7). 

If a leaf node is reached (U n Nu (v) is the empty 

set) and \S\ > \Smax\ (i.e. the current clique is larger than 

the best clique found so far) the current champion is 
unseated and the new maximal is recorded as new best. 
On backtracking, the algorithm deletes v from S and 
picks a new vertex from candidate set U until there are 
no more candidates left to be examined. 

3.1.Approximate colorings 

The number of subproblems analyzed by RMPC 
diminishes with the number of hits in the pruning 
condition evaluated in step 3, i.e. with decreasing 
number of color assignments used by COLOR. 

Finding the chromatic number of a graph is 
intractable, so in practice, some form of approximate 
coloring is used. An elaborate approximate coloring 
procedure can significantly reduce the search space but 
is also time-consuming; therefore an adequate trade-off 
is required in the coloring stage. 

RMCP does not tell the whole story about the 
Tomita and Seki algorithm. Their COLOR function 
employed the well known GREEDY sequential 
coloring heuristic but seamlessly combined it with a 
reordering of vertices by decreasing color so that 
maximum color vertex selection (step 1) is then 
achieved in constant time. This general strategy is still 
the standard de facto for MCP branch and bound. 

The GREEDY algorithm can be formalized as 
follows: 

Definition: Let V be the set of vertices to be 

colored and let K = {v1,---,vn}be any strict ordering of 

V. 

Procedure RMCP (U, C, S, Smax) 

Initial values: U=G, C ={c1,---cn }/c, =min{/',AG} 
S = ó, S =ó 

r ' max r 

Step 1: Select a vertex v with maximum color in U 

Step 2: C/<-C/\{v} 

Step 3: if (\S\ + C(v) < \Sm¡¡x |) return to previous level 
of recursion 

Step 4: S<^S + {v} 

Step 5: if (Ur¡Nu(v) = 0) then 

if( \S\ > KJ) then \SmJ^ \S\ 

goto step 8 

endif 

Step 6: C <- COLOR(G( U n Nv(v))) 

Step 7: MAX_CLIQUE (U n Nv(v) ,C) 

Step 8: S ^ S - j v } 

Step 9: Repeat all steps from 1 to 9 until U = (¡) 



Procedure GREEDY (V, K) 
Forv<— Vj to vn 

assign vertex v the smallest possible color 
EndFor 

In practice reordering by decreasing color is done so 
that vertex selection in step 1 is made in reverse-order 
(maximum color vertices are placed last at the output 
of COLOR). However, GREEDY selects vertices in the 
order inherited by the previous level. It is well known 
that the number of colors used by GREEDY is 
improved if vertices are placed initially by non 
increasing degree. In RMCP, vertices are dynamically 
ordered at each node by non increasing color prior to 
the COLOR call, which is suboptimal in this respect 
(but good for maximum color selection in step 1). 

In [11], Konc and Janecic introduced an 
improvement over RMCP. They realized that it was 
necessary to reorder by color only those vertices in the 
input set U with color numbers high enough to be 
added to the current clique set S in a direct descendant. 
Any vertex veil with color number C(v) below a 
threshold Kmm := \Smax| - \S\ +1 cannot possibly unseat 
the current champion (Sm!¡K) in the next level of 
recursion and is kept in the same relative order it was 
presented to RMCP initially. Their experiments show 
that this strategy prunes the search space better than 
the Tomita and Seki coloring algorithm, especially in 
the case of graphs with high density. 

Konc and Janecic did some experiments with 
dynamical rearrangement of vertices at each step by 
non increasing degree in order to optimise results 
obtained by COLOR. They showed that, on averaged, 
this strategy pruned the search space best, but the 
overhead introduced made it impractical unless it was 
only used in very shallow levels of the search tree. 

4. A new approximate coloring 
heurist ic 

Based on [11] we propose a further improvement 
over [10]: sort vertices dynamically at each step prior 
to the COLOR call, not by non-increasing degree, but 
by the relative order in which they were presented to 
RMCP initially. 

Prior to the initial call to RMCP, vertices are 
conveniently ordered by non increasing degree so that 
in the first call to COLOR, there is no need for dynamic 
rearrangement. It is logical to assume that as the depth 
of nodes increase, the quality of initial relative order 
decreases compared to local non increasing degree. 
However, experiments show that it is better, on 
average, than the original dynamic color ordering as 
proposed by Tomita and Seki. 

The additional (practical) point behind a fixed initial 
arrangement of nodes is that it is now possible to 

implement COLOR efficiently using bit masking 
operations. In particular we use bit strings to encode: 

• Each row of the adjacency matrix 
• Vertex sets induced at each step 
• Color sets obtained during COLOR 
When it is necessary to make the bit encoding 

explicit, we will add subindex BB (i.e. UBB refers to 
vertex set U encoded as bit string). 

Figure 2. The new approximate color procedure BB-
COLOR. Highlighted rectangles in red mark computations 
which benefit from bit-parallelism 

The new approximate color heuristic, BB-COLOR, is 
described in Figure 2. BB-COLOR obtains tighter 
bounds because it reorders the vertices in the input set 
U as they were presented initially to the RMCP 
procedure (conveniently sorted by non increasing 
degree). In practice, the input candidate set is bit 
encoded (UBB) and therefore automatically rearranged 

Procedure BB-COLOR (URR,U,,C,k . ) 
^ &&' L' ' mm ' 

Initial values: QBB. = UBB; kmin: = \Smax\-\S\ + l; 

k = 0; 
I* Vertices in the input candidate set UBB must be in 

the same relative order as in the initial input graph 
presented to RMCP */ 

Step 1: if (UBB =(/)) return 

Step 2: Ck^(j) 

Step 3: if (QBB =(/)) goto step 9 

Step 4: select the next vertex v in QBB 

Step 5: Ct<-Ctu{v} 

Step 6: QBB^QBB^V}; 

Step 7: 

Step 8: 

Step 9: 

QBB^QBB^N-(V) 

goto step 3 

UBB *~ UBB ~^k 

SteP10:QBB^UB 

Step 11: ii(k>kmin) then 

store Ck 

C[vek]^k 

store Ck in UL in the same order 

endif 
Step 12: £ < - £ + l 

Step 13: Repeat all steps from 1 to 13 



on generation at each level of recursion by RMCP, 
prior to the call to BB-COLOR. 

On output, vertices need to be ordered by color so a 
new (conventional) data structure UL is used to 
decouple the input and output sets. UL is not bit 
encoded to avoid the overhead of bit scanning when 
selecting vertices from this set in RMCP. The 
decoupling has an additional benefit in that only 
vertices which may possibly be selected from UBB by 
RMCP in the next level of recursion need to be 
explicitly stored. To select these vertices we use 
parameter kmm as in [11]. 

Let C = {C1,C2,---,Q}be the k-coloring output of 

BB-COLOR (in our implementation color sets are 
numbered from 0 to n-1, but we will employ standard 
notation for clearness). At the start of the procedure the 
first color class Cl (initially the empty set) is selected 
and the first vertex vi of the input candidate set UBB is 
added toCl (step 4). As a result, the set UBB of 
remaining candidate vertices ve UBB which can still be 
assigned color Cl are non adjacent vertices to Vj (i.e. 
UBB=UBBnNu-(v1)). 

UBB is computed in step 7 (QBB is simply needed for 

auxiliary storage); the first vertex vj e UBB is then 

added to Cl and a new set U"BB = UBBriN—(v[) is 

computed. The process continues until the resulting 
induced graph is empty, in which case the assigned 
vertices are removed from candidate set UBB and the 
process is repeated for the next empty color class C2. 
BB-COLOR ends when all vertices in UBB have been 
assigned a particular color. 

Marked in red in Figure 2 are the operations that 
benefit form bit parallelism. In particular step 7 is 
critical and explains the improvement in overall 
performance obtained empirically over the reference 
algorithm. The proposed bit encoding allows 
QBB n N—(v) to be computed by the following two bit 

QBB 

masks: 
QBB n N— (v) = QBB AND NOT BB(Ai) 

where BB(A¡) refers to the i-th row of the adjacency 
matrix of the inital input graph. A similar analysis 
shows that step 9 can be computed with a combination 
of bit masks. 

To sum up, BB-COLOR differs from [10] [11] in the 
following points: 

• It receives as input a (bit) set of vertices in the 
fixed initial order they were presented to RMCP. 

• Outputs a (conventional) list of vertices sorted 
by color (as long as the color is equal or greater 

than parameter kmm). The rest of colours are not 
stored in UL (step 11). 

• Uses a sequential by color approximate coloring 
heuristic (w.r.t. a typical vetex coloring). 

All three issues allow BB-COLOR to be computed by 
efficient bitwise operations. 

5. Experiments 

We have implemented in C language a number of 
algorithms for the experiments: RMCP (the reference 
MCP algorithm proposed in [10] (which includes the 
original approximate coloring procedure), RKJ (the 
approximate coloring variant in [11], which introduces 
selective rearrangement of vertices only in color 
classes with color greater than a certain threshold), and 
our new bit-parallel BB-MCP which uses BB-COLOR 
for approximate coloring. 

Computational experiments were performed on a 2.4 
GHz Intel Quad processor with a 64 bit Windows 
operating system (so as to exploit bit masking 
operations by a factor of 64), against a set of 
structured graphs from the well known DIMACS1 

benchmark, and a number of random graphs. 
The time limit for all the experiments was set at 5h 

(18000 seconds) and instances not solved in the time 
slot were classified as Fail. Our user times for the 
DIMACS machine benchmark graphs rl00.5-r500.5 are 
0.000, 0.031, 0.234, 1.531 and 5.766 seconds 
respectively. 

We note that while BB-MCP uses bit parallel 
enhancements, we have not been able to find similar 
efficient bit encodings for the RMCP and RKJ COLOR 
procedure, which requires a different sorting of 
vertices in each call. It is the fixed initial order of 
vertices that allows a natural integration of a typical 
graph bit model so that bit operators over sets of 
vertices do not lose the reference inside the bit strings. 

In any case an important effort has been made in 
optimizing all three algorithms, so this might explain 
discrepancies between user times for RMCP and RKJ 
found elsewhere. The latter are, on average, at least no 
worse (and in many cases better). 

Tables 1 and 2 record user times and number of steps 
taken by RMCP and our algorithm for a subset of 
DIMACS graphs. As expected, the number of steps is, 
on average, reduced by our BB-COLOR procedure. In 
some of the structured graphs the reduction in the 
number of subproblems is very significant (e.g. brocks 
or phat) whereas in other families it has no effect. In 

1 <URL:ftp://dimacs.rutgers.edu/pub/challenge /graph/ 
benchmarks/clique> 

ftp://dimacs.rutgers.edu/pub/challenge


the majority of cases BB-MCP performs better overall 
and this trend appears to be more acute with the more 
difficult, denser graphs. 

Table 3 records user times for all 3 algorithms 
against random graphs. As can be seen, BB-MCP 
outperforms the other algorithms and, as in the case of 
structured graphs, the difference tends to be more acute 
as density rises while keeping the size fixed. 

Table 1. Number of steps taken for tests on DIMACS 
benchmark graphs. RMCP is the reference algorithm. BB-
MCP is the new bit parallel algorithm. 

Graph (size, density) 

brock200_l (200, 0.745) 

brock200_2 (200, 0.496) 

brock200_3 (200, 0.605) 

brock200_4 (200,0.658) 

brock400_l (400, 0.748) 

brock400_2 (400, 0.749) 

brock400_3 (400, 0.748) 

phat300-l(300, 0.244) 

phat300-2 (300, 0.489) 

phat300-3 (300, 0.744) 

c-fat200-l (200, 0.077) 

c-fat200-2 (200, 0.163) 

c-fat200-5 (200, 0.426) 

c-fat500-l (500, 0.036) 

c-fat500-2 (500, 0.073) 

hamming6-2 (64, 0.905) 

hamming6-4 (64, 0.349) 

hamming8-2 (256, 0.969) 

johnson8-2-4 (28, 0.556) 

johnson8-4-4 (70, 0.768) 

CO 

21 

12 

15 

17 

27 

29 

31 

8 

25 

36 

12 

24 

58 

14 

26 

32 

4 

128 

4 

14 

RMCP 

485009 

4440 

15703 

87789 

302907107 

114949717 

224563898 

2043 

10734 

2720585 

216 

241 

308 

520 

544 

63 

164 

255 

51 

295 

BB-MCP 

295754 

4004 

13534 

64676 

168767856 

66381296 

118561387 

1982 

6226 

590226 

216 

241 

308 

520 

544 

63 

164 

255 

51 

289 

Large sparse graphs are the worse scenario for BB-
MCP, since our bit-parallel kernel does not use sparse 
encodings and many of the bit masking operations is 
probably a waste of time. Still BB-MCP fares no worse 
for the instances presented here. It is however possible 
that, in the current implementation, it may perform 
poorly with very sparse graphs with many thousands of 
nodes. This would need empirical validation. 

6. Conclusions 

In this paper we describe a new implicit branching 
strategy for exact maximum clique search, which 
allows for efficient bit masking operations to compute 
a standard approximate coloring procedure, and also 
obtains, on average, tighter bounds. 

The algorithm employs well known initial non 
increasing order of vertices. After sorting vertex by 
color so as to choose each time a maximum colored 
vertex from the candidate set, it rearranges the 
remaining vertices following the fixed initial order. 

Table 2. CPU user times (sec.) for DIMACS benchmark 
graphs (with a limit of 5h). 

Graph (size, density) 

brock200_l (200, 0.745) 

brock200_2 (200, 0.496) 

brock200_3 (200, 0.605) 

brock200_4 (200,0.658) 

brock400_l (400, 0.75) 

brock400_2 (400, 0.75) 

brock400_3 (400, 0.75) 

phat300-l(300, 0.244) 

phat300-2 (300, 0.489) 

phat300-3 (300, 0.744) 

c-fat200-l (200, 0.077) 

c-fat200-2 (200, 0.163) 

c-fat200-5 (200, 0.426) 

c-fat500-l (500, 0.036) 

c-fat500-2 (500, 0.073) 

hamming6-2 (64, 0.905) 

hamming6-4 (64, 0.349) 

hamming8-2 (256, 0.969) 

johnson8-2-4 (28, 0.556) 

johnson8-4-4 (70, 0.768) 

CO 

21 

12 

15 

17 

27 

29 

31 

8 

25 

36 

12 

24 

58 

14 

26 

32 

4 

128 

4 

14 

RMCP 

1.563 

0.031 

0.062 

0.219 

1486.125 

647.875 

1017.680 

O.001 

0.063 

15.907 

O.001 

O.001 

0.016 

O.001 

0.016 

O.001 

O.001 

0.016 

O.001 

0.016 

BB-MCP 

0.500 

O.001 

0.015 

0.078 

502.796 

211.218 

336.188 

O.001 

0.038 

5.495 

O.001 

O.001 

O.001 

O.001 

O.001 

O.001 

O.001 

0.031 

O.001 

O.001 

With the help of adequate bit data structures, this 
reordering can be done in constant time. Moreover the 
coloring procedure also benefits by the bit encoding so 
that overall performance improves, as shown by the 
experiments. 

BB-MCP seems to outperform current reference 
algorithms in the dense difficult graphs but we expect it 



to perform worse in very large sparse scenarios, 
because the bit kernel in the current implementation 
does not account for sparseness (we are currently 
working on this issue). In addition, further tests are 
required to validate the current version of the algorithm 
against large sparse random graphs. 
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Table 3. CPU user times (sec.) for a collection of random 
graphs (with a limit of 5h). 

n 

100 
100 
100 
100 
100 

150 
150 
150 
150 
150 
150 

200 
200 
200 
200 
200 

300 
300 
300 
300 
300 

500 
500 
500 

P 
0.60 
0.70 
0.80 
0.90 
0.95 

0.50 
0.60 
0.70 
0.80 
0.90 
0.95 

0.40 
0.50 
0.60 
0.70 
0.80 

0.40 
0.50 
0.60 
0.70 
0.80 

0.30 
0.40 
0.50 

RMCP 

0.009 
0.009 
0.028 
0.056 
0.035 

0.006 
0.022 
0.078 
0.581 
7.381 
2.928 

O.001 
0.019 
0.094 
0.662 
12.600 

0.028 
0.134 
1.150 

21.156 

1020.331 

0.047 
0.319 
3.153 

RKJ 

0.006 
0.009 
0.022 
0.053 
0.034 

0.003 
0.022 
0.075 
0.497 
4.200 
1.175 

0.006 
0.025 
0.094 
0.625 
10.994 

0.031 
0.128 
1.088 
18.756 

821.769 

0.050 
0.312 
3.087 

BB-MCP 

0.006 
0.003 
0.010 
0.016 
0.016 

0.006 
0.006 
0.028 
0.178 
0.984 
0.212 

0.003 
0.009 
0.047 
0.250 
3.594 

0.016 
0.066 
0.491 

7.647 
254.706 

0.031 
0.206 
1.906 
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