
A new implicit branching strategy for exact maximum clique

Pablo San Segundo, Cristóbal Tapia
Intelligent Control Group

CAR (UPM-CSIC), Spain
pablo. sansegundo@upm. es

Abstract

We present a new implicit branching strategy for
maximum clique. The new strategy is based in Konj and
Janecic's improvement over reference MCR algorithm. It
uses a fixed initial non increasing degree vertex ordering
at every step of the search, to obtain tighter bounds than
MCR on average.

We show that the new branching strategy integrates
nicely with a natural bit model for the domain. This
allows for efficient bound computing using bit masking
operations, so that overall improvement in performance is
achieved. We present empirical validation over structured
and random graphs.

Keywords: maximum clique, branch and bound, exact
search, coloring.

1. I n t r o d u c t i o n

A complete graph, or clique, is a graph such that all
its vertices are pairwise adjacent. For a given
graph G = (V,E), the k-clique problem determines the
existence of a subgraph which forms a clique of size k
and is well known to be NP-complete [1]. The
corresponding optimization problem is the maximum
clique problem (MCP) which consists in finding the
largest possible clique hidden in G. MCP is known to
be NP-hard so no efficient exact polynomial time
algorithms are expected to be found.

Finding a maximum clique has been deeply studied
in graph theory and is a very important NP-hard
problem with applications in many fields:
bioinformatics and computational biology [2] [3],
computer vision [4, robotics [5] etc. A slightly
outdated but nevertheless good survey on maximum
clique applications can be found in Chapter 7 of [6].

Many efforts have been made at implementing fast
MCP algorithms in practice. Most successful attempt at
exact MCP use branch and bound as metaheuristic.
One of the earliest was [7], but there have followed [8],
[9] [10], [11], to name but a few. These algorithms
perform a systematic search pruning false solutions by
computing upper bounds for the maximal clique
achievable at each step. The tradeoff between
computational cost and tight bounds is maximized

using sequential vertex coloring heuristics to obtain the
bounds.

In sequential vertex coloring, vertices in a graph are
assigned a symbol (usually referred to as color by
analogy with the famous map coloring problem) such
that pairwise adjacent vertices are all colored
differently. It is well known that the number of colors
employed to color a graph G is an upper bound of the
size of its maximum clique. The tightest possible upper
bound is therefore the minimum number of colors
needed to paint the graph, known as its chromatic
number %(G). Unfortunately determining ^(G) is also
NP-hard [1] so, in practice, heuristics which produce
approximate colorings are employed.

This paper is structured as follows: Section 2 and 3
deal with preliminary definitions and related word.
Section 4 presents the new approximate coloring
heuristic. Section 5 presents a comparison between the
new algorithm and current leading reference algorithm.
Finally Section 6 summarizes the paper's contribution.

2 . P r e l i m i n a r i e s a n d n o t a t i o n

A simple undirected graph G = (V, E) consists of a
finite set of vertices V and a finite set of edges
E a VxV made up of pairs of distinct vertices. Two
vertices are said to be adjacent if they are connected by
an edge. The complement of G is a graph G o_n the
same vertices as G such that two vertices u, v in G are
adjacent iff (u,v)éE. NG(v) (or just N(v) when the
graph is clear from the context) denotes the neighbor
set of v in G, i.e. the set of all vertices in G which are
adjacent to v. A set of pairwise non adjacent vertices is
an independent set. The set of non adjacent vertices of
any vertex veV (i.e. those which are not its neighbors)
will be referred to as TV-(v) (its neighbors in the
complement graph).

For any set of vertices U c V , G(U) = (U,E(U))

refers to the induced subgraph over G by vertices in U

(i.e. E(U) = {(u,v)lue U,ve U,(u,v)e E]). deg(v) is

the degree of vertex v, the number of its neighbors. The
degree of a graph, AG , is the maximum degree of any
of its vertices. The density p of a graph is the
probability of having an edge between any two pair of

vertices (for undirected graphs with n vertices and m

edges, p = 2m/ _,-.). co(G) refers to the number

of vertices in a maximum clique in G and u(G)

denotes any upper bound over co(G) (co(G)<u(G)).

Unless otherwise specified, it will be assumed that
vertices in a graph are ordered; v¡ or V[i] refer to the

i-th vertex in the set.

3. Related work on MCP

Figure 1. The reference maximum clique algorithm

Our reference basic branch and bound procedure for
finding a maximum clique (RMCP) is described in
Figure 1. It is the general outline of the Tomita and
Seki algorithm [10]. In RMCP search takes place in a

graph space. It uses two global sets S and Smax,

where S is the set of vertices of the currently growing
clique and Smax is the largest maximal clique found so
far. The algorithm starts with an empty set S and
recursively adds (and removes) vertices from S until it
verifies that it is no longer possible to unseat the
current champion Smax. At any node, S always holds

the vertices in the current path (i.e. \S\ corresponds

with depth).
Candidate set U is initially set to G, the input graph.

At each level of recursion a new vertex v is added to S
from the set of vertices in U (step 4). At every new
node a maximum color vertex veU is selected and
deleted from U (steps 1,2). The result of vertex
coloring C(v) (step 6) is an upper bound to the

maximum clique in U in the descendant node.
The search space is pruned in step 3, when the sum

of the size of the current clique and the upper bound
estimate obtained in the previous level cannot improve
the current best clique found at present. If this is not
the case v is added to S and a new induced graph
G(£/n A^ (v)) is computed (and coloured) to become
the new graph in the next level of recursion (step 7).

If a leaf node is reached (U n Nu (v) is the empty

set) and \S\ > \Smax\ (i.e. the current clique is larger than

the best clique found so far) the current champion is
unseated and the new maximal is recorded as new best.
On backtracking, the algorithm deletes v from S and
picks a new vertex from candidate set U until there are
no more candidates left to be examined.

3.1.Approximate colorings

The number of subproblems analyzed by RMPC
diminishes with the number of hits in the pruning
condition evaluated in step 3, i.e. with decreasing
number of color assignments used by COLOR.

Finding the chromatic number of a graph is
intractable, so in practice, some form of approximate
coloring is used. An elaborate approximate coloring
procedure can significantly reduce the search space but
is also time-consuming; therefore an adequate trade-off
is required in the coloring stage.

RMCP does not tell the whole story about the
Tomita and Seki algorithm. Their COLOR function
employed the well known GREEDY sequential
coloring heuristic but seamlessly combined it with a
reordering of vertices by decreasing color so that
maximum color vertex selection (step 1) is then
achieved in constant time. This general strategy is still
the standard de facto for MCP branch and bound.

The GREEDY algorithm can be formalized as
follows:

Definition: Let V be the set of vertices to be

colored and let K = {v1,---,vn}be any strict ordering of

V.

Procedure RMCP (U, C, S, Smax)

Initial values: U=G, C ={c1,---cn }/c, =min{/',AG}
S = ó, S =ó

r ' max r

Step 1: Select a vertex v with maximum color in U

Step 2: C/<-C/\{v}

Step 3: if (\S\ + C(v) < \Sm¡¡x |) return to previous level
of recursion

Step 4: S<^S + {v}

Step 5: if (Ur¡Nu(v) = 0) then

if(\S\ > KJ) then \SmJ^ \S\

goto step 8

endif

Step 6: C <- COLOR(G(U n Nv(v)))

Step 7: MAX_CLIQUE (U n Nv(v) ,C)

Step 8: S ^ S - j v }

Step 9: Repeat all steps from 1 to 9 until U = (¡)

Procedure GREEDY (V, K)
Forv<— Vj to vn

assign vertex v the smallest possible color
EndFor

In practice reordering by decreasing color is done so
that vertex selection in step 1 is made in reverse-order
(maximum color vertices are placed last at the output
of COLOR). However, GREEDY selects vertices in the
order inherited by the previous level. It is well known
that the number of colors used by GREEDY is
improved if vertices are placed initially by non
increasing degree. In RMCP, vertices are dynamically
ordered at each node by non increasing color prior to
the COLOR call, which is suboptimal in this respect
(but good for maximum color selection in step 1).

In [11], Konc and Janecic introduced an
improvement over RMCP. They realized that it was
necessary to reorder by color only those vertices in the
input set U with color numbers high enough to be
added to the current clique set S in a direct descendant.
Any vertex veil with color number C(v) below a
threshold Kmm := \Smax| - \S\ +1 cannot possibly unseat
the current champion (Sm!¡K) in the next level of
recursion and is kept in the same relative order it was
presented to RMCP initially. Their experiments show
that this strategy prunes the search space better than
the Tomita and Seki coloring algorithm, especially in
the case of graphs with high density.

Konc and Janecic did some experiments with
dynamical rearrangement of vertices at each step by
non increasing degree in order to optimise results
obtained by COLOR. They showed that, on averaged,
this strategy pruned the search space best, but the
overhead introduced made it impractical unless it was
only used in very shallow levels of the search tree.

4. A new approximate coloring
heurist ic

Based on [11] we propose a further improvement
over [10]: sort vertices dynamically at each step prior
to the COLOR call, not by non-increasing degree, but
by the relative order in which they were presented to
RMCP initially.

Prior to the initial call to RMCP, vertices are
conveniently ordered by non increasing degree so that
in the first call to COLOR, there is no need for dynamic
rearrangement. It is logical to assume that as the depth
of nodes increase, the quality of initial relative order
decreases compared to local non increasing degree.
However, experiments show that it is better, on
average, than the original dynamic color ordering as
proposed by Tomita and Seki.

The additional (practical) point behind a fixed initial
arrangement of nodes is that it is now possible to

implement COLOR efficiently using bit masking
operations. In particular we use bit strings to encode:

• Each row of the adjacency matrix
• Vertex sets induced at each step
• Color sets obtained during COLOR
When it is necessary to make the bit encoding

explicit, we will add subindex BB (i.e. UBB refers to
vertex set U encoded as bit string).

Figure 2. The new approximate color procedure BB-
COLOR. Highlighted rectangles in red mark computations
which benefit from bit-parallelism

The new approximate color heuristic, BB-COLOR, is
described in Figure 2. BB-COLOR obtains tighter
bounds because it reorders the vertices in the input set
U as they were presented initially to the RMCP
procedure (conveniently sorted by non increasing
degree). In practice, the input candidate set is bit
encoded (UBB) and therefore automatically rearranged

Procedure BB-COLOR (URR,U,,C,k .)
^ &&' L' ' mm '

Initial values: QBB. = UBB; kmin: = \Smax\-\S\ + l;

k = 0;
I* Vertices in the input candidate set UBB must be in

the same relative order as in the initial input graph
presented to RMCP */

Step 1: if (UBB =(/)) return

Step 2: Ck^(j)

Step 3: if (QBB =(/)) goto step 9

Step 4: select the next vertex v in QBB

Step 5: Ct<-Ctu{v}

Step 6: QBB^QBB^V};

Step 7:

Step 8:

Step 9:

QBB^QBB^N-(V)

goto step 3

UBB *~ UBB ~^k

SteP10:QBB^UB

Step 11: ii(k>kmin) then

store Ck

C[vek]^k

store Ck in UL in the same order

endif
Step 12: £ < - £ + l

Step 13: Repeat all steps from 1 to 13

on generation at each level of recursion by RMCP,
prior to the call to BB-COLOR.

On output, vertices need to be ordered by color so a
new (conventional) data structure UL is used to
decouple the input and output sets. UL is not bit
encoded to avoid the overhead of bit scanning when
selecting vertices from this set in RMCP. The
decoupling has an additional benefit in that only
vertices which may possibly be selected from UBB by
RMCP in the next level of recursion need to be
explicitly stored. To select these vertices we use
parameter kmm as in [11].

Let C = {C1,C2,---,Q}be the k-coloring output of

BB-COLOR (in our implementation color sets are
numbered from 0 to n-1, but we will employ standard
notation for clearness). At the start of the procedure the
first color class Cl (initially the empty set) is selected
and the first vertex vi of the input candidate set UBB is
added toCl (step 4). As a result, the set UBB of
remaining candidate vertices ve UBB which can still be
assigned color Cl are non adjacent vertices to Vj (i.e.
UBB=UBBnNu-(v1)).

UBB is computed in step 7 (QBB is simply needed for

auxiliary storage); the first vertex vj e UBB is then

added to Cl and a new set U"BB = UBBriN—(v[) is

computed. The process continues until the resulting
induced graph is empty, in which case the assigned
vertices are removed from candidate set UBB and the
process is repeated for the next empty color class C2.
BB-COLOR ends when all vertices in UBB have been
assigned a particular color.

Marked in red in Figure 2 are the operations that
benefit form bit parallelism. In particular step 7 is
critical and explains the improvement in overall
performance obtained empirically over the reference
algorithm. The proposed bit encoding allows
QBB n N—(v) to be computed by the following two bit

QBB

masks:
QBB n N— (v) = QBB AND NOT BB(Ai)

where BB(A¡) refers to the i-th row of the adjacency
matrix of the inital input graph. A similar analysis
shows that step 9 can be computed with a combination
of bit masks.

To sum up, BB-COLOR differs from [10] [11] in the
following points:

• It receives as input a (bit) set of vertices in the
fixed initial order they were presented to RMCP.

• Outputs a (conventional) list of vertices sorted
by color (as long as the color is equal or greater

than parameter kmm). The rest of colours are not
stored in UL (step 11).

• Uses a sequential by color approximate coloring
heuristic (w.r.t. a typical vetex coloring).

All three issues allow BB-COLOR to be computed by
efficient bitwise operations.

5. Experiments

We have implemented in C language a number of
algorithms for the experiments: RMCP (the reference
MCP algorithm proposed in [10] (which includes the
original approximate coloring procedure), RKJ (the
approximate coloring variant in [11], which introduces
selective rearrangement of vertices only in color
classes with color greater than a certain threshold), and
our new bit-parallel BB-MCP which uses BB-COLOR
for approximate coloring.

Computational experiments were performed on a 2.4
GHz Intel Quad processor with a 64 bit Windows
operating system (so as to exploit bit masking
operations by a factor of 64), against a set of
structured graphs from the well known DIMACS1

benchmark, and a number of random graphs.
The time limit for all the experiments was set at 5h

(18000 seconds) and instances not solved in the time
slot were classified as Fail. Our user times for the
DIMACS machine benchmark graphs rl00.5-r500.5 are
0.000, 0.031, 0.234, 1.531 and 5.766 seconds
respectively.

We note that while BB-MCP uses bit parallel
enhancements, we have not been able to find similar
efficient bit encodings for the RMCP and RKJ COLOR
procedure, which requires a different sorting of
vertices in each call. It is the fixed initial order of
vertices that allows a natural integration of a typical
graph bit model so that bit operators over sets of
vertices do not lose the reference inside the bit strings.

In any case an important effort has been made in
optimizing all three algorithms, so this might explain
discrepancies between user times for RMCP and RKJ
found elsewhere. The latter are, on average, at least no
worse (and in many cases better).

Tables 1 and 2 record user times and number of steps
taken by RMCP and our algorithm for a subset of
DIMACS graphs. As expected, the number of steps is,
on average, reduced by our BB-COLOR procedure. In
some of the structured graphs the reduction in the
number of subproblems is very significant (e.g. brocks
or phat) whereas in other families it has no effect. In

1 <URL:ftp://dimacs.rutgers.edu/pub/challenge /graph/
benchmarks/clique>

ftp://dimacs.rutgers.edu/pub/challenge

the majority of cases BB-MCP performs better overall
and this trend appears to be more acute with the more
difficult, denser graphs.

Table 3 records user times for all 3 algorithms
against random graphs. As can be seen, BB-MCP
outperforms the other algorithms and, as in the case of
structured graphs, the difference tends to be more acute
as density rises while keeping the size fixed.

Table 1. Number of steps taken for tests on DIMACS
benchmark graphs. RMCP is the reference algorithm. BB-
MCP is the new bit parallel algorithm.

Graph (size, density)

brock200_l (200, 0.745)

brock200_2 (200, 0.496)

brock200_3 (200, 0.605)

brock200_4 (200,0.658)

brock400_l (400, 0.748)

brock400_2 (400, 0.749)

brock400_3 (400, 0.748)

phat300-l(300, 0.244)

phat300-2 (300, 0.489)

phat300-3 (300, 0.744)

c-fat200-l (200, 0.077)

c-fat200-2 (200, 0.163)

c-fat200-5 (200, 0.426)

c-fat500-l (500, 0.036)

c-fat500-2 (500, 0.073)

hamming6-2 (64, 0.905)

hamming6-4 (64, 0.349)

hamming8-2 (256, 0.969)

johnson8-2-4 (28, 0.556)

johnson8-4-4 (70, 0.768)

CO

21

12

15

17

27

29

31

8

25

36

12

24

58

14

26

32

4

128

4

14

RMCP

485009

4440

15703

87789

302907107

114949717

224563898

2043

10734

2720585

216

241

308

520

544

63

164

255

51

295

BB-MCP

295754

4004

13534

64676

168767856

66381296

118561387

1982

6226

590226

216

241

308

520

544

63

164

255

51

289

Large sparse graphs are the worse scenario for BB-
MCP, since our bit-parallel kernel does not use sparse
encodings and many of the bit masking operations is
probably a waste of time. Still BB-MCP fares no worse
for the instances presented here. It is however possible
that, in the current implementation, it may perform
poorly with very sparse graphs with many thousands of
nodes. This would need empirical validation.

6. Conclusions

In this paper we describe a new implicit branching
strategy for exact maximum clique search, which
allows for efficient bit masking operations to compute
a standard approximate coloring procedure, and also
obtains, on average, tighter bounds.

The algorithm employs well known initial non
increasing order of vertices. After sorting vertex by
color so as to choose each time a maximum colored
vertex from the candidate set, it rearranges the
remaining vertices following the fixed initial order.

Table 2. CPU user times (sec.) for DIMACS benchmark
graphs (with a limit of 5h).

Graph (size, density)

brock200_l (200, 0.745)

brock200_2 (200, 0.496)

brock200_3 (200, 0.605)

brock200_4 (200,0.658)

brock400_l (400, 0.75)

brock400_2 (400, 0.75)

brock400_3 (400, 0.75)

phat300-l(300, 0.244)

phat300-2 (300, 0.489)

phat300-3 (300, 0.744)

c-fat200-l (200, 0.077)

c-fat200-2 (200, 0.163)

c-fat200-5 (200, 0.426)

c-fat500-l (500, 0.036)

c-fat500-2 (500, 0.073)

hamming6-2 (64, 0.905)

hamming6-4 (64, 0.349)

hamming8-2 (256, 0.969)

johnson8-2-4 (28, 0.556)

johnson8-4-4 (70, 0.768)

CO

21

12

15

17

27

29

31

8

25

36

12

24

58

14

26

32

4

128

4

14

RMCP

1.563

0.031

0.062

0.219

1486.125

647.875

1017.680

O.001

0.063

15.907

O.001

O.001

0.016

O.001

0.016

O.001

O.001

0.016

O.001

0.016

BB-MCP

0.500

O.001

0.015

0.078

502.796

211.218

336.188

O.001

0.038

5.495

O.001

O.001

O.001

O.001

O.001

O.001

O.001

0.031

O.001

O.001

With the help of adequate bit data structures, this
reordering can be done in constant time. Moreover the
coloring procedure also benefits by the bit encoding so
that overall performance improves, as shown by the
experiments.

BB-MCP seems to outperform current reference
algorithms in the dense difficult graphs but we expect it

to perform worse in very large sparse scenarios,
because the bit kernel in the current implementation
does not account for sparseness (we are currently
working on this issue). In addition, further tests are
required to validate the current version of the algorithm
against large sparse random graphs.

7. Acknowledgments

This work is funded by the Spanish Ministry of
Science and Technology (ARABOT: DPI 2010-21247-
C02-01) and supervised by CACSA whose kindness we
gratefully acknowledge.

Table 3. CPU user times (sec.) for a collection of random
graphs (with a limit of 5h).

n

100
100
100
100
100

150
150
150
150
150
150

200
200
200
200
200

300
300
300
300
300

500
500
500

P
0.60
0.70
0.80
0.90
0.95

0.50
0.60
0.70
0.80
0.90
0.95

0.40
0.50
0.60
0.70
0.80

0.40
0.50
0.60
0.70
0.80

0.30
0.40
0.50

RMCP

0.009
0.009
0.028
0.056
0.035

0.006
0.022
0.078
0.581
7.381
2.928

O.001
0.019
0.094
0.662
12.600

0.028
0.134
1.150

21.156

1020.331

0.047
0.319
3.153

RKJ

0.006
0.009
0.022
0.053
0.034

0.003
0.022
0.075
0.497
4.200
1.175

0.006
0.025
0.094
0.625
10.994

0.031
0.128
1.088
18.756

821.769

0.050
0.312
3.087

BB-MCP

0.006
0.003
0.010
0.016
0.016

0.006
0.006
0.028
0.178
0.984
0.212

0.003
0.009
0.047
0.250
3.594

0.016
0.066
0.491

7.647
254.706

0.031
0.206
1.906

8. References

[1] R.M. Karp. Reducibility among Combinatorial
Problems. Editors: R.E. Miller, J. W. Thatcher,
New York, Plenum, pp.85-103, 1972.

[2] Bahadur, D.K.C., Akutsu, T., Tomita, E., Seki, T.,
Fujijama, A.; Point matching under non-uniform
distortions and protein side chain packing based on
efficient maximum clique algorithms. Genome
Inform. 13: 143-152,2006.

[3] Butenko, S., Wilhelm, W.E.; Clique-detection
models in computational biochemistry and
genomics, European Journal of Operational
Research 173: 1-17,2006.

[4] Hotta, K., Tomita, E., Takahashi, H.: A view
invariant hu man FACE detection method based on
maximum cliques. Trans. IPSJ, 44, SIG14 (TOM9):
57-70,2003.

[5] San Segundo, P., Rodríguez-Losada, D., Matía, F.,
Galán, R.; Fast exact feature based data
correspondence search with an efficient bit-parallel
MCP solver. Applied Intelligence, 2008.

[6] Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo,
M.; HandBook of Combinatorial Optimization,
Supplement A. Kluwer Academic Publishers,
Dordrecht (1999) 1-74.

[7] Wood, D.R.; An algorithm for finding a maximum
clique in a graph. Operations Research Letters 21
(1977)211-217.

[8] Carraghan, R, Pardalos, P.M.; An exact algorithm
for the maximum clique problem Operations
Research Letters 9 (1990) 375-382.

[9] ÓOstergárd, P.R.J.; A fast algorithm for the
maximum clique problem. Discrete Applied
Mathematics, 120 (1): 97-207, 2002.

[10] Tomita E., Seki, T.; An efficient branch and
bound algorithm for finding a maximum clique.
Proc. Discrete Mathematics and Theoretical
Computer Science. LNCS 2731, (2003) 278-289.

[11] Konc, J., Janecic, D.; An improved branch and
bound algorithm for the maximum clique problem.
MATCH Commun. Math. Comput. Chem. 58
(2007) 569-590.

