Combining Mixed Integer Programming and Supervised Learning for Fast
Re-planning

Emmanuel Rachelson
Department of EECS
University of Liege
B-4000 Liege, Belgium
emmanuel.rachelson@ulg.ac.be

Abstract—We introduce a new plan repair method for
problems cast as Mixed Integer Programs. In order to tackle
the inherent complexity of these NP-hard problems, our
approach relies on the use of Supervised Learning method
for the offline construction of a predictor which takes the
problem’s parameters as input and infers values for the discrete
optimization variables. This way, the online resolution time of
the plan repair problem can be greatly decreased by avoiding a
large part of the combinatorial search among discrete variables.
This contribution was motivated by the large-scale problem of
intra-daily recourse strategy computation in electrical power
systems. We report and discuss results on this benchmark,
illustrating the different aspects and mechanisms of this new
approach which provided close-to-optimal solutions in only
a fraction of the computational time necessary for existing
solvers.

Keywords-Mixed Integer Programming, Boosting, Power Sys-
tems Planning, Hybrid methods.

I. INTRODUCTION

Many large-scale planning problems can be cast as Mixed
Integer Programming (MIP) problems, where one tries to
minimize a global linear cost function, depending on con-
tinuous and discrete variables, under a number of linear
constraints. Consider, for instance, the problem of mod-
ifying the production plan of an electricity provider, in
order to fit the demand in real-time during the day. This
problem is subject to many constraints, involving continuous
variables (the production levels, for instance) and boolean
ones (Is a plant functioning or not? Has its plan been
changed compared to the reference plan?) with the general
goal of minimizing the production cost while satisfying
the numerous operational and regulatory constraints. Many
such problems exhibit significant complexity because of the
interaction between continuous and discrete variables, on top
of a rich formulation, often implying millions of variables
and constraints. This complexity makes their exact online
resolution incompatible with the operational time constraints
on power networks. The approach we develop in this paper
aims at making this problem tractable and solvable in a time
window that is compatible with the operational requirements.

Ala Ben Abbes and Sébastien Diemer

Optimisation, Simulation, Risques et Statistiques

EDF R&D
F-92141 Clamart, France
ala.ben-abbes, sebastien.diemer@ edf.fr

The introduction of discrete variables in linear optimiza-
tion strongly changes the nature of the problems and makes
their resolution NP-hard. The causes for this complexity
increase are the loss of the problem’s convexity properties
(which makes standard continuous optimization methods
inappropriate) and the appearance of a combinatorial search
problem in the space of discrete variables. Traditional
methods used to address this complexity issue range from
local search [1] — which suffers from the absence of
optimality guarantees — to global optimization through
continuous relaxation [2] or heuristic search [3]. Based on
our experience on power systems re-planning, we introduce
a new boolean variable assignment method in order to
predict quasi-optimal values of the boolean variables for a
given MIP problem, and hence, to reduce the computation
time for its resolution. The key idea we develop consists
in exploiting the structuring aspect of discrete variables in
order to predict the values of subsets of variables which are
crucial to the optimal solution. Our approach considers an
offline/online scheme that builds a boolean variable predictor
offline, using Supervised Learning methods, in order to make
the online resolution of similar instances of the MIP problem
compatible with real-life computational constraints.

We introduce the general formulation of our method in
Section II and detail a particular instance of the Boosting [4]
algorithm used as a Supervised Learning method in Section
III. Then, Section IV introduces the large-scale problem
of computing intra-daily recourse strategies in electrical
production systems. Section V reports experimental results
on the previous problem, along with a thorough discussion
on the various aspects, advantages and weaknesses of the
proposed method. Section VI finally summarizes our contri-
bution and suggests some perspectives to this work.

II. ALGORITHM

Consider a Mixed Integer Programming problem. Such
problems involve continuous and integer variables, although
in practice, the discrete variables often are boolean ones.
For this reason, we will restrict our presentation to boolean
variables (and hence, should speak of Mixed Boolean Pro-

gramming), and will discuss the straightforward extension to
integer ones in the conclusion of this paper. Thus, consider
the MIP problem M, with n; boolean and n. continuous
variables, written under augmented form! as in Equation 1.
minimize ¢’z
M : < subjectto Ax=0b €))
€ {0;1}" x RT"™*

M is entirely defined by the data of the ¢, A and b
vectors and matrix. One of the keys in solving such MIP
problems lies in finding an appropriate search strategy for the
combinatorial problem of assigning values to the n; discrete
variables. The main contribution of our work consists in
using a Supervised Learning method in order to assign these
values, in order to facilitate the online resolution of the
problem described in Equation 1.

In the context where Planning [5] is cast as a MIP
problem, the planning domain knowledge is encoded in the
constraints of the problem through the A and b elements
and the goal of the agent is specified using the c vector.
When unexpected events occur, for instance when the en-
vironment’s behaviour does not fit the description given by
the problem’s constraints, one usually triggers a plan repair
phase, based on the reference plan. In terms of MIP solving,
it consists in constructing a new MIP problem from the new
initial state and the updated knowledge about the constraints,
and solving it. A desirable property of plan repair methods
is to run in real-time; however, for large-scale problems,
this generally conflicts with the combinatorial complexity
of MIP problems and common search heuristics can end
up providing solutions far from the optimal solution of
the updated problem. For example, in practice, local search
starting from the optimal solution of the previous problem
can turn out to be a very bad choice.

In a nutshell, our approach supposes two separate phases
of offline and online computation. Before the problem at
hand is provided, a series (M;);c(; yj of similar problems
can be solved offline, as illustrated in Figure 1. The solution
x} of problem M; is a fully-instantiated vector of {0; 1}"* x
R™. The difficult part of the optimization procedure being
to find correct values for the n, boolean variables, we focus
on these ones. One can extract these 1, variables from the]
vectors and, for each problem M; and boolean variable index
k € [1,np], one can associate the pair (M;, k) to the value
yik of the kth boolean variable in ;. The crucial idea here
is that if one had a reliable predictor of the value associated
to (M, k) — M being a new, yet unsolved problem — then
the resolution of M would be a lot easier. Based on the set of
((M;, k), yi x) pairs, we build a boolean variable predictor
by training a carefully chosen classification algorithm.

Then, when the new problem M becomes available, the
boolean variable predictor is used to assign values to the n

'In augmented form, all inequality constraints are transformed to equal-
ities through the introduction of positive slack variables.

(2]S

. boolean
supervised .
: - variable
: : learning dictor
solve P pre
/ T
My | P

Figure 1. Construction of the boolean variable predictor
boolean |
. . 7 solve "
variable | — MIP/LP
predictor

Figure 2. Online MIP simplification

boolean variables, and a reduced problem M’ is specified
and solved as illustrated by Figure 2. This operation relies
on the following two ideas:

o If a certain structure exists in the boolean variables
assignment, across several instances of similar MIP
problems, then we hope to better capture it with this
Supervised Learning approach than with predefined
heuristics. Note that from this point of view, our
approach can be seen as an automated heuristic com-
putation.

o In the reduced problem M, there are none or few
boolean variables? which dramatically reduces the com-
binatorial search time and brings the overall resolution
time close to the one of a Linear Program defined only
on the n. continuous variables.

III. A BOOSTING-BASED BOOLEAN VARIABLE
PREDICTOR

The previous section showed how we cast the prob-
lem of selecting boolean variables in MIP problems as
a supervised classification problem. A crucial element in
this offline/online architecture is the classification method
used. In order to compute reliable predictors with as little
parametric tuning as possible and to obtain classifiers that
are easy to interpret, we chose to implement the ADABOOST
meta-algorithm [6].

Classification problems consist in constructing a function
h : X — {-1;+1} which maps elements of a set X to
the —1 or +1 labels. More generally, it consists in finding
a function h : X — R for which sign(h(x)) provides the
label of element x. Such algorithms exploit the knowledge
of a training set of examples {(zi, ¥i) };¢ (1, v Where z; € X
and y; € {—1;+1}.

The principle of a Boosting meta-algorithm [4] is to turn
weak PAC (Probably Approximately Correct, [7]) learners
into strong ones by assembling them in a weighted ensemble.
It relies on the assumption that the original family of learners
(classifiers) h are weak PAC learners, i.e. they always

i€[1;

2A direct extension of this work is to predict only a subset of the
problem’s boolean variables.

provide a better prediction, in probability, than a random
draw. Then, boosting this family of classifiers provides a
way of combining them into a strong PAC one, for which
the classification error tends to zero.

ADABOOST is the most popular Boosting algorithm. It
considers a distribution over training examples, learns a
weak PAC classifier on this distribution, then updates the
distribution so as to increase the weights of badly labeled
examples and iterates, as illustrated on Algorithm 1. AD-
ABOOST has been shown to provide efficient classifiers
which are relatively insensitive to overfitting.

Algorithm 1 ADABOOST [6]
input: examples {(2;,¥;)};c [,y iterations number 7.
initialisation: ¢ = 1 and Vi € [I; N] D1 (i) =
repeat
train weak learner h; : X — R on Dy
compute the training error €; = P;.p, [kt (z:) # i)

1—es
€t

update the weights distribution:
_ Dy(i)exp(—azyihs(x;))

choose oy = %ln (

Dy (i) = Z
where Z; is a normalization termf
t—t+1

until ¢t > T

return [(z) = sign (Zle atht(x))

The method presented in Section II allows to construct
offline a training set {(xj,yj)}je[l;Nnb]
is a pair (M;, k) and y; is the corresponding y; 5 value. With
this training set and a given weak PAC classifier we are able
to construct a strong PAC boolean variable predictor which
will be used afterwards for the online resolution phase. We
shall discuss the choice of the weak PAC classifiers along
with the experimental framework and results in Sections IV
and V.

where T(;_1yn,+k

IV. INTRA-DAILY RECOURSE STRATEGIES FOR
ELECTRICAL PRODUCTION

This section presents the large-scale application that moti-
vated this research and the characteristics of the model upon
which we applied the approach presented earlier.

Electricity has become a commonly used element of
everyday life during the last century and is today an essential
commodity of our modern societies. Optimal management
of the electrical production is a major issue for power system
actors, who deal permanently with the two main constraints
of stability (insuring the safety of the whole power network)
and equilibrium (balancing the supply and demand).

While some aspects of the electrical demand, such as the
average needs at a certain time of year, are periodic and
predictable, some other aspects are strongly dependent on
exogenous causes that are hard to foresee. A significant

cause of uncertainty in power management systems is the
weather conditions: a drop of one degree Celsius during
the winter time can lead to a raise in demand of more
than 1800 MW, which is more than the power delivered by
a third generation nuclear plant. Similarly, meteorological
conditions affect the water reservoirs of hydro-electrical
plants, the behaviour of individual consumers as well as
industries, or even the pricing of electricity on energy
exchange markets.

Such a variability is hard to predict and the daily produc-
tion plans, designed to balance supply and demand, often
need to be adapted during the course of execution, whenever
an updated demand scenario becomes available.

Our application case deals with the French network. In
France, every electricity producer is bound by a contract
with the network managing company. This contract imposes
that the producers should be able to mobilize extra power
so that the network manager can guarantee the safety of the
network in case of failure. Such power margins are called
reserves and the producer incurs large penalties for not being
able to provide them, so they have to be taken into account
when planning the daily production. Consequently, every
day, when the electricity producer plans its production for
the 7" time steps of the next day, it solves a very large linear
problem where the objective function (Equation 2) is the
overall sum of the production costs Cy,(P,) (for the power
P, generated by plant u, including the reserves), and a cost
of supply failure Cy(Pp), under the following non-exhaustive
list of constraints (which we shall not present in detail for
the sake of clarity):

« supply/demand balance,

o initial state of the network,

« minimal production/rest period for each plant,

« gradient constraints (increases and decreases in produc-
tion are bounded),

o maximum number of starts and extreme changes per
day,

« minimal times between any schedule change for power
and reserve production,

o flux and volume relations on hydro-electrical plants,
etc.

. . . n P P
m})l:ler%‘ze Yonq Cu (Py) + Co (Po)

subject to Py = Dyey —>on_, Py 2
and other constraints

This planning problem, cast as a linear program, contains
millions of variables and constraints and already requires
a significant computational time to produce an optimal
solution for the next day. This problem is generally referred
to as the daily planning problem and its solution is called the
reference plan Pf, with respect to the reference demand
Dyey.

In order to face the various events that could affect the
demand and render the reference plan sub-optimal, the pro-
ducer is allowed to adjust its production every hour during
the day, after warning the network manager in advance. This
adjustment is subject to an additional contractual constraint:
the producer cannot change the production plan of more than
Ninaz = 30 power plants. This new constraint can also be
written as a linear expression by introducing the intermediate
variables xit (resp. =, ;) which are equal to 1 if plant u’s
production program is increased (resp. decreased) at time
step ¢, and x,, which is equal to 1 if at least one of the xit
is non-zero.

Py, =Py
i 2 e

vu,t) Pref”a;;g
+ ut Tt
1-— xu,t > — P

ref

— > Pu,t, 7P“=f«

xu,t = Prax
Vu,t maz_
1 —r Ptt,t_Pu.t

T
Ty <D Tt
Yu ZT -
Z f,:jl_‘ u,t

Z(Eu S Nmam
u

By adding these last boolean constraints to the daily plan-
ning problem, one obtains the so-called intra-daily planning
problem, for which solutions are called intra-daily recourse
strategies. As of today, the resolution of the intra-daily
planning problem is hand-made by experts who take quick
adjustments decisions when unexpected events happen on
the power network. Our focus in this research is on making
the intra-daily planning problem’s resolution compatible
with the time constraints of online operations. Whenever
the predicted demand changes from D,.y, the electricity
producer has a time window of around 10 minutes in order
to compute a recourse strategy, declare it to the network
manager for validation, and put it in practice. Currently,
solving the intra-daily planning problem requires one to
several hours given the size of the French network so we
aim at gaining at least an order of magnitude in resolution
time with as little loss in optimality as possible.

The method presented in Sections II and III is imple-
mented as follows. Since daily plans are computed one day
for the next, whenever D,.; and Pref become available,
a series of N = 120 historically relevant variations AD;
on D,.; are used to generate a corresponding set of N
MIP problems. These problems are solved in parallel and
one builds the boolean variable predictor’s training set from
their results. An example of these variations in demand
in presented on Figure 3. Then the predictor is trained
and stored to be used during the next day, as illustrated
on Figure 4. Note that, in practice, predicting the boolean
variables for the intra-daily planning problem boils down to

dail boolean
Doy — la;n?n — pref variable
b & | predictor
ADy —[= rpr t
: intra-daily : boosted
: planning : classifier
ADN — — P;\(,

Figure 4. Offline construction of the boolean variable selector

selecting which plants will participate in the reorganization
of the network (within the limits of N,,,, plan changes).
The selection of a given plant for plan change is called
redeclaration.

Then, whenever a new demand D # D,y is observed
during the day, the corresponding AD = D — D,..5 is com-
puted and provided to the boolean variable predictor. This
one returns a selection of non-zero variables, corresponding
to a selection of production plants. As illustrated by Figure 2,
a reduced problem M’ is then specified and solved. Note
that since the output of the boolean variable predictor is a
selection of power plants, the reduced problem is similar to
a daily planning problem on a reduced network.

We compared several weak classifiers in order to build the
boolean variable predictor: plain CART trees [8], untuned
Support Vector Machines (SVMs, [9], [10]) trained only on
a fraction of the input variables and a collection of static
decision rules derived from the experts’ knowledge and rules
of thumb. In order to further study how these classifiers
can be combined altogether, we introduced an extra model
selection phase in ADABOOST: when classifier h; is trained,
an instance of each technique is actually trained and the one
providing the best training error is kept. This allows us to
compare the proportion of trees, SVMs and expert rules in
the final ensemble classifier. The theoretical bound on the
generalization error of Boosting is preserved as a worst-case
bound on each classifier family (assuming they all are weak
PAC classifiers).

The next section reports optimization results on a bench-
mark network composed of 27 power plants of various
types. The maximum number of plants that can undergo a
plan change is set to Ny,q, = 9. This results in a MIP
problem for intra-daily planning of 96219 variables and
61455 constraints.

V. EXPERIMENTAL RESULTS
A. Cross-validation of the classification phase

In order to evaluate the generalization accuracy of the
boolean variable predictor, we ran an N-fold, leave-one-
out, cross-validation estimation on the classification error,
at each ADABOOST iteration, as reported on Figure 5. For
this purpose, we separated the results of one of the MIP
problems from the training set, trained the classifier against
the remaining examples and tested it on the previously

Delta on demand

25

Time steps

a 500 1000 1500

2000

2500 3000 3500 4000 4500 MWh

Distribution of trajectories' energy

Figure 3.

Test error
- Training error

Error rate

0 1 L I L 1 B e
an 40 50 Bl 70

Boosting iteration

80 30 100

Figure 5. Training and test errors

isolated data. Since we use N = 120 separate MIP problems,
this resulted in a 120-fold cross validation.

As expected from a Boosting algorithm, the learnt clas-
sifier does not overfit the data. However, the generalization
error seems to converge around a 10% error. More specifi-
cally, the number of misclassifications tends towards 3 (out
of 27 power plants) with a standard deviation of 1.35 errors.

B. Respect of the N4, constraint

During the boolean variable predictor construction, the
Nynaq value is never explicitly imposed. Consequently, there
is no strong constraint on the classifier that would lead it to
respect the global NN,,,, constraint. In practice however, we
observed it was mostly the case, since in 55% of cases, this
constraint is exactly respected (8 or 9 redeclarations), in 40%
of cases, the number of reprogrammed plants is 10 and the
remaining 5% cover the case of 11 redeclarations. This can

Variations in demand over 7" = 48 time steps

be intuitively explained by considering the training set upon
which this predictor is built. This training set is composed
of at least twice as many negative examples than positive
ones, since there can be only 9 plant redeclarations and 18
non-redeclarations in a network of 27 plants. This natural
bias is recreated in the classifier’s output.

Interestingly however, the boolean variable predictor tends
to “over-redeclare” (redeclare too many plants) more than
“under-redeclare”. On average, 1.6 plants are redeclared
while they do not participate in the optimal solution, while
only 1.4 plants of the optimal solution are forgotten in the
output of the boolean variable predictor. The latter is a lot
more penalizing for our algorithm than the former since
having an extra useless variable in the reduced M’ problem
only incurs additional computation time, while removing
crucial variables can imply large losses in optimality. We
further discuss this question of sub-optimality in the next
paragraphs.

Figure 6 plots, for each power plant, the number of times
it participated in the network’s reorganization, the number
of times it was forgotten from the optimal solution and the
number of times it was there and should not have been.

C. Choice of classifiers

Recall that, in order to compare the flexibility and the
relevance of the different families of classifiers, we intro-
duced a model selection phase in ADABOOST by allowing
a choice between different classifiers during the computation
of h;, based on the training error. On average, we witnessed
a strong predominance of tree-based models (around 80%),
a few untuned SVMs (20%) and almost no expert rules. This
can be explained by the fact that expert rules are situation-

15
plant number

Figure 6. Number of redeclarations

specific, ill-defined heuristics. On top of this, their ability to
separate the data is very dependent on the problem at hand
and there is no guarantee that they are weak PAC learners
whatsoever. Nevertheless, this also illustrates the potential of
automated learning techniques for formalizing some general
purpose expert knowledge and optimizing it.

D. Generalization error and local minima

When trying to search for the causes of misclassifica-
tions, one can try training two separate boolean variable
predictors on two close data sets, as was the case during the
cross-validation phase presented earlier. The purpose of this
comparison is to evaluate why these two predictors might
provide different results. On the one hand, the classifiers
built during the two first ADABOOST iterations were very
similar, comforting the idea that the global structure of
the boolean variable selection function was well captured
by the data set and the classifiers. On the other hand,
the classifiers built at further iterations quickly diverged
from each other and lead to the misclassifications. This
last phenomenon can be better studied by a finer analysis
of the underlying MIP problem. The intra-daily planning
problem admits many quasi-optimal solutions that are quite
different in nature but very close in cost. Consequently,
from one training set to the other, some of these local
optima could have been captured while others were not,
hence resulting in the discrepancies between the classifiers,
while still providing close-to-optimal cost values. This finer
analysis allows to interpret the margin results provided in
the example of Figure 7. In a given point z, the margin of
an ensemble classifier output by ADABOOST is the absolute
value of the corresponding >, ; a;hi(x) value, measuring
the confidence in the classification output. The previous
analysis illustrates why, in Figure 7, the three misclassified
power plants were not the ones with the smallest margins.

One of the causes of these almost equivalent local minima
which affect the generalization error is that, at a given time,
in the power network, several plants have almost equivalent
characteristics. For instance, two thermo-electrical plants
that are not functioning and have similar characteristics will

15
plant number

Figure 7. Example of margins per power plant

yield similar costs when started. Consequently, the crucial
problem here might not be to predict exactly which one is
the best plant, but to show that the other costly plants are
never started instead. Hence, misclassifications might very
well be errors in choosing between two very good choices,
hiding the fact that the bad choices were safely discarded.
Indeed, a second consequence of this analysis is that, since
several local optima exist and are close to each other in
value (the associated costs of the redeclarations are similar),
it might be more relevant to compare the overall costs of the
recourse strategies, rather than the classification accuracy.

E. Optimality loss

As illustrated by the previous paragraph, a good global
measure of our approach’s efficiency is the overall optimality
loss of the cost function, rather than the difference between
the boolean variables of an optimal redeclaration and the
ones output by the predictor. Recall that the initial motivation
of this work is to leverage the computational cost of solving
the large MIP problem while retaining a good strategy with
respect to this overall cost.

Figure 8 compares the costs of three different strategies
over the 120 scenarios considered (note the vertical price
scale). The solid (red) bottom line is the optimal cost,
computed offline by fully solving the MIP problem. The
dashed (blue) line which almost coincides with the first solid
line is the cost of the redeclarations output by the predictor.
Finally, the top solid (green) line provides an estimate of
what would happen if the 9 plants of the redeclaration were
chosen at random and then their plans optimized.

The few cases (3 out of 120) where the dashed line
notably differs from the optimal cost consist in situations
where the predicted redeclaration resulted in a power supply
failure, which led to large penalties. However, on average,
we observe an additional cost of less than 1000 euros for
using the boolean variable predictor, for a global production
cost of around 3 million euros.

More precisely, Figure 9 reports the distribution of addi-
tional costs over scenarios. In 70% of cases, this additional
cost was less than 100 euros. This result needs to be put
in perspective with the existence of the local minima of the
cost function. As the random draw of the redeclared plants
illustrated, it is rather easy to reach a situation where the
optimization of a subset of plants leads to a very suboptimal

optimal cost
——=-boolean var. pred,
36 random redecl,

cost (euros)

o Zn 40 B0 &0 100 120
scenario number

Figure 8. Costs of different plant selection strategies

frequency
= = = =
rJa [} = on

=1

0 100 200 300 400 SO0 GO0 700 1000
difference with the optimal cost

=1000

Figure 9. Optimality loss (note the difference of scale with Figure 8

solution. However, if there exists several local minima that
are quasi-equivalent in cost to the global minimum, then our
goal is to predict well at least one of these minima, in order
for the optimization to reach a final cost that is within a
short range of the optimal solution.

The existence of these quasi-equivalent local minima, in
the first place, is due to the existence of quasi-equivalent
plants in the network: choosing one or the other for the
redeclaration makes a negligible difference on the final cost.
Consequently, when the predictor learns to redeclare a given
plant in a given situation, it might not exactly correspond
to the optimal plant in another situation, but still provides
us with a very good global cost. This is indeed another
advantage compared to an ad hoc heuristic-based boolean
variable selection strategy: by trying to capture the structure
of good redeclarations via automated learning, one reduces
the dependency on an expert-based heuristic, which reduces
the risk of falling in a unexpected bad case of this heuristic.

FE. Computation times

Finally, while we wanted to keep good quality solutions,
the main goal of this study was to reduce the computation

time of a quasi-optimal solution. Table I summarizes this
gain. On the reduced network of 27 power plants (which is
approximately one tenth of the actual French network size),
the exact optimization of the intra-daily planning problem
M takes 1 hour on average. On the other hand, evaluating
the boolean variable predictor and computing a solution to
the reduced problem M’ takes a little more than 2 minutes
on the same computer.

Consequently, we can report a gain in computation time
of a factor almost 30, with a loss in optimality of less than
1%0. We conjecture that with larger power networks, the
computational time improvement will be more than a factor
30 since the difference between V,,,, and the number of
plants in the network increases.

Exact optimization of M 1h
Power plant selection 0.24s
Reduced optimization of M’ | 128.07s

Table I
COMPARISON OF AVERAGE COMPUTATIONAL TIMES

G. Generalization

More generally, the complexity of a standard Branch-and-
Bound method for solving MIP problems is polynomial in
the best case and exponential in the worse?, in the number of
discrete variables [11]. Consequently, predicting the values
of some or all of these variables allows to dramatically
reduce the optimization times.

While there are no more theoretical guarantees on the
optimality of our approach in the general case than on
heuristic search, we argue that automatically extracting the
discrete variables optimal value’s structure through a sound
statistical learning technique might be safer than relying on
precomputed heuristics. In particular, for problems such as
the intra-daily recourse strategy computation, that exhibit
several equivalent local minima, our approach proved to be
more robust that direct heuristic optimization.

VI. CONCLUSION

We introduced a general method for the online resolution
of Mixed Integer Programming problems, based on the
assumption that several instances of a similar problem can be
solved offline. Our contribution combines MIP optimization
with a Supervised Learning approach in order to predict
the values of the discrete variables of the MIP problem’s
optimal solution. This allows to greatly reduce the time
complexity of the optimization phase. We provided a fully
instantiated version of the algorithm, using the ADABOOST
meta-algorithm. We then used it to illustrate our approach
on a large-scale industrial problem: the intra-daily recourse
strategies computation, in power systems management. This

3Depending on the branching and bounding functions.

allowed us to analyze the behaviour of our method, highlight
its mechanisms, its strengths and potential weaknesses. The
overall conclusion of this empirical study is that our method
was able to find quasi-optimal solutions (less than 1%o
optimality loss) while gaining an order of magnitude in
computation time (from hours to minutes). Hence these em-
pirical results suggest this pragmatic approach is promising
and deserves further analysis and experiments.

In particular, on the intra-daily planning problem, the
algorithm exhibited two remarkable domain-specific proper-
ties. First, the Supervised Learning approach led to a close to
optimal respect of the constraint on the maximum number of
redeclarations, even on cases very different from the ones of
the training set. This was never imposed in any way so it was
an unexpected encouraging result for this algorithm. Sec-
ondly, the algorithm proved itself robust to generalization,
in the sense that even when the predicted plants were not
exactly the ones of the optimal redeclaration, their associated
optimized cost was still very close to the global optimal
cost for the situation at hand. More generally, the use of a
simple, non-parametric method such as ADABOOST allowed
us to combine around 50 simple classifiers to capture the
structure of the optimal discrete variables assignment over
different instances of the MIP problem. This led to an overall
optimality loss of less than 0.1%c in 70% of the scenarios
considered and less than 1%¢ on average.

This work’s promising results open the door to several
research leads. First, they confirm the idea that combin-
ing Supervised Learning and Optimization can yield large
improvements to classical techniques, confirming previous
similar analyses such as [12]. In particular, this work should
be put in perspective with the one reported in [13] that
tackles a similar optimization problem with the help of a
different Supervised Learning regression approach. More
generally, this contribution can be seen as an automated
heuristic computation for variable selection in Optimization
and hence confirms the interest of bridging the gap between
Machine Learning and Optimization for this task.

In Section II, we restricted our analysis to the case
of Mixed Boolean Programming using the argument of
equivalence between boolean and discrete variables. Pre-
serving the integer aspect of MIP problems translates to
considering categorical variables instead of binary ones. On
the classification side, it boils down to considering multi-
class classification problems instead of binary ones, but our
method’s bottom-line remains the same.

These results also raise their share of new questions,
both for the general method and for the specific case of
the intra-daily planning problem. Is it possible to provide
PAC optimality bounds for the results of our algorithm? Is
there an interest in constructing several smaller classifiers
per power plant, instead of the current large one that syn-
thesizes all the information available? How can one extend
the current version of the method to multi-class Boosting

methods such as ADABOOST.MH [14]? Is it possible to
reuse a classifier across several very different instances of
the optimization problem (for instance reuse the boolean
variable predictor of the intra-daily problem for several
days)? All these perspectives (and maybe others) underline
the set of possible contributions from Artificial Intelligence
and Machine Learning to Optimization and emphasize the
strong potential of this currently very active area of research.

ACKNOWLEDGMENTS

Emmanuel Rachelson gratefully acknowledges the sup-
port of the Belgian Network DYSCO, funded by the Inter-
university Attraction Poles Programme, initiated by the
Belgian State, Science Policy Office.

REFERENCES

[1] M. Fischetti and A. Lodi, “Local branching,” Math. Program.,
vol. 98, no. 1-3, pp. 23-47, 2003.

[2] E. Danna, E. Rothberg, and C. L. Pape, “Exploring relaxation
induced neighborhoods to improve MIP solutions,” Math.
Program., vol. 102, no. 1, pp. 71-90, 2005.

[3] T. Achterberg and T. Berthold, “Improving the feasibility
pump,” Discrete Optimization, vol. 4, no. 1, pp. 77-86, 2007.

[4] R. E. Schapire, “Boosting Approach to Machine Learning: An
Overview,” Nonlinear Estimation and Classification, 2003.

[5] M. Ghallab, D. Nau, and P. Traverso, Automated Planning.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2004.

[6] Y. Freund and R. E. Schapire, “Experiments with a New
Boosting Algorithm,” in International Conference on Ma-
chine Learning, 1996.

[7] L. G. Valiant, “A Theory of the Learnable,” Communications
of the ACM, vol. 27, no. 11, pp. 1134-1142, 1984.

[8] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classi-
fication and Regression Trees. Monterey, CA: Wadsworth
and Brooks, 1984.

[9] V. Vapnik, Statistical Learning Theory. Wiley, 1998.

[10] J. Shawe-Taylor and N. Cristianini, An Introduction to Sup-
port Vector Machines. Cambridge University Press, 2000.

[11] W. Zhang, “Branch-and-bound search algorithms and their
computational complexity,” University of California, Tech.
Rep. A895413, 1996.

[12] D. Zupanic, “Value suggestion in mixed integer programming
by machine learning algorithm,” Electronic Notes in discrete
Mathematics, vol. 1, pp. 74-83, 1999.

[13] B. Cornelusse, G. Vignal, B. Defourny, and L. Wehenkel,
“Supervised learning of intra-daily recourse strategies for
generation management under uncertainties,” in /[EEE Power
Tech Conference, 2009.

[14] R. E. Schapire and Y. Singer, “Improved Boosting Algo-
rithms Using Confidence-rated Predictions,” Machine Learn-
ing, vol. 37, no. 3, pp. 297-336, 1999.

