An Experimental Study on Learning with Good Edit Similarity Functions

Aurélien Bellet, Marc Sebban
Laboratoire Hubert Curien UMR CNRS 5516
University of Jean Monnet
42000 Saint-Etienne Cedex 2, France
Email: {aurelien.bellet, marc.sebba@univ-st-etienne.fr

Abstract—Similarity functions are essential to many learning
algorithms. To allow their use in support vector machines
(SVM), i.e., for the convergence of the learning algorithm
to be guaranteed, they must be validkernels. In the case
of structured data, the similarities based on the popularedit
distance often do not satisfy this requirement, which explains
why they are typically used with k-nearest neighbor §-NN).
A common approach to use suchedit similarities in SVM is
to transform them into potentially (but not provably) valid
kernels. Recently, a different theory of learning with (e, v, 7)-
good similarity functions was proposed, allowing the use of
non-kernel similarity functions. Moreover, the resulting models
are supposedlysparse, as opposed to standard SVM models
that can be unnecessarily dense. In this paper, we study the
relevance and applicability of this theory in the context of
string edit similarities. We show that they are naturally good
for a given string classification task and provide experimental
evidence that the obtained models not only clearly outperform
the k-NN approach, but are also competitive with standard
SVM models learned with state-of-the-art edit kernels, while
being much sparser.

Keywords-similarity function; linear program; sparsity; edit
distance; structured data
I. INTRODUCTION
A good similarity functiod (distance, kernel, etc.) be-
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work has been devoted to learning such similarities [8], [9]
[10], [11].

For a similarity function to be &erne| which is essential
to the convergence of the SVM learning algorithm, it must
be positive semi-definite (PSD) and symmetric. However, it
can be proved that the aboeglit similaritiesare not PSD
[12]. This explains why their use is often limited toNN
classifiers. There exist two general approaches to go around
this problem. The first one consists in building a function
that may be a valid kernel under some circumstances. A
popular choice is to plug the edit similarity; into a
Gaussian-like kernel of the fornk (z,2/) = e tes(®:2"),
wheret > 0 is a parameter [12], [13], [14]. In practice,
is tuned by cross-validation and the value offering the best
classification accuracy is chosen. Note that if this stsateg
is likely to ensure the resultingd to be valid, Cortes et
al. [12] proved that there exist values bfor which K is
not a kernel. Moreover, a slight modification of the value
of ¢ can lead to dramatic changes in performance. The edit
functions proposed by Neuhaus & Bunke [15] also fall in
the same category: they may work well in practice but
their positive semi-definiteness has not been established.
The second strategy consists in directly building a valid

tween objects is key to the effectiveness of many superkernel from the edit similarity, usually by expressing itas
vised and unsupervised learning methods, among which thgot product (which ensures positive semi-definiteness). Fo
popular k-nearest neighbork¢(NN), k-means and support instance, Bellet et al. [16] proposed the kerdé{z, z') =
vector machines (SVM). For this reason, a lot of researcrE ex- €s(7,y) - es(2’,y), wherey is any string on the
has been put into learning good similarity functions betwee aIphabetZ Despite the presence of an infinite sum, this
numerical vectors, often in the form of a Mahalanobiskernel can be computed exactly (using a composition of
distance (e.g., [1], [2], [3]), which is usually referredds  stochastic edit transducers), but becomes intractablenwhe
metric learning When dealing with structured data (strings, the input strings are long.

trees, graphs), which is the case in this paper, a popular On top of the difficulty of building valid kernels from
choice of similarity functions are those based on &t  edit similarities, a general drawback of SVM learning is
distance such as the string edit distance [4], the tree editthat it produces rathetensemodels, i.e., the ratio between
distance [5], the graph edit distance [6] or the local gappedhe number of support vectors (SV) and the total number of
alignment [7]. Roughly speaking, the edit distance betweerraining examples tends to be large. The number of SV is
two objects is the minimum number of operations (insertionactually known to grow linearly with the size of the training
deletion, substitution) required to transform an obje¢bin set [17]. In many situations, especially in the presence of
another. Because they involve more complex procedures, lesedundant or irrelevant noisy features [18], a sparser inode
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IThroughout this paper, we will use the term “similarity fuoet’ to
refer to a function giving a measure of either closeness dantie.

would lead to equal or higher classification accuracy, while
saving many kernel evaluations at classification time. This
explains why a decent amount of research has gone into



developing sparseversions of SVM. A classic approach, B. Learning with(e, v, 7)-Good Similarity Functions
often referred to ad-norm SVM[18], is to useL,-norm In recent work, Balcan et al. [24], [25] highlight two major
regularization to obtain sparsity. However, a significaatt p dr

. awbacks of the kernel theory. First, the PSD requirement
of the handy SVM theory (such as some learning guaranteeésﬂen rules out natural similarity functions for the pratle

in the projection space given by a nonlinear kernel and thet hand. As we have mentioned before, this is especially

notion of reproducing kernel Hilbert space) does not hol true for structured data (edit similarities make a striking

for 1-norm SVM. For this reason, other methods aim atexam le). Second, the notion of good kernel (which is
developing sparse versions of standakd)(SVM [19], [20], Pi€). S org T .
related to the underlying margin in an implicit, possibly
[21], [22], [23]. Unfortunately, most of these methods are S : o
: . unknown projection space) is not often intuitive and does
expensive to compute and applying them on structured data, N . .
not provide insights into how to design a good kernel for

where kernel evaluations are often costly, would slow down_~ . o2
. a given problem. To overcome these limitations, Balcan et
the computation even more.

Recently, Balcan et al. [24], [25] introduced a theory of al. introduced a new theory of learning with any similarity

learning with so-called(e, v, 7)-good similarity functions function K:XxX = [7.1’ 1. In pqrtlcular, they bropose
b L the following, rather intuitive definition of a good simiigr

that can be seen as a less restrictive and sparse alternat% ction:
to SVM. It generalizes the notion of good kernel without '
requiring the similarity function to be PSD nor symmetric. Definition 1 (Balcan et al. [25]) A similarity functionK is
Unlike in SVM theory, the learning guarantees are in termsan (¢, ~, 7)-good similarity function for a learning problem
of natural properties of the similarity function. Furthexra, P if there exists a (random) indicator functid®(z) defining
learning is achieved through a linear program that can ba (probabilistic) set of “reasonable points” such that the
solved efficiently and tends to induce sparse models. following conditions hold:

In this paper, we study the applicability and relevance 1) A1 — e probability mass of examples;, ¢) satisfy
of the theory of Balcan et al. in the context of string edit
similarities. We first show that standard edit similarite@e E(m/,g/)NpW’K(x,x’)IR(x’)] > 5
naturally (¢, v, 7)-good for a given classification task. Then,
we provide experimental evidence that learning with Balcan 2) Pr,.[R(z')] > 7.
et al’s linear program induces a separator that (i) clearly
outperforms thek-NN approach, and (i) is competitve ~ Assuming that the proportion of positive and negative
with the standard SVM approach, but is much sparseexamplesink is equal, we can interpret the first condition as
and provides sparsity control. Lastly, we provide resultsmost examples are on averagey more similar to random
suggesting that the use of the exponential together with edreasonable examples of the same class than to random
similarities may further improve accuracy. reasonable examples of the opposite clagsl the second

The rest of the paper is organized as follows: in Section licondition asat least ar proportion of the examples should
we give a few notations and review the theory of Balcan et alb€ reasonable
[25]. In Section I1I, we introduce two string edit simildes, Of course, this is just one way of defining what makes a
explain how one can estimate théir, v, 7)-goodness and, Similarity function good for a given problem. Other defini-
given a classification task, show that they are indeed gootions are possible, for example those proposed by Wang et
for that task. Section IV presents an experimental study oi@l- for unbounded similarity functions [26]. Yet Definition
two datasets: a handwritten digit dataset (where images ha is very interesting in two respects. First, it includes all
been coded into strings) and a dataset of English and Fren@pod kernels as well as some non-PSD similarity functions.
words. We conclude this work by outlining a promising line In that sense, this is a strict generalization of the notibn o

of research on similarity-based learning. good kernel [25]. Second, these conditions are sufficient to
be able to learn well. This is formalized by the following
[I. NOTATIONS AND RELATED WORK PAC-like learning guarantee.
A. Notations Theorem 1 (Balcan et al. [25]) [25] Let K be an(e, v, 7)-
Wi me we are given some label xam good similarity function for a Iegrnlng problenP. Let
€ assume we are given some labeled exampies) S = {zf,2,...,2} be a (potentially unlabeled) sample

drawn from an unknown distributiof? over X x {—1,1}, 5 lo(2/5)

where X is the instance space. We want to learn a classifiePf d = = (log(2/6) + 87) landmarks drawn fromP.
h : X — {—1,1} whose error rate is as low as possible, Consider the mapping® : X — R? defined as follows:
only using pairwise similarities between examples given by (v) = K(x,2}), i € {1,...,d}. Then, with probability
a similarity functionk : X x X — [—1,1]. We say thatl’  at least1 — ¢ over the random samplé, the induced
is symmetric if K (z,2') = K(2/,z) for all z,2’ € X. K  distribution #°(P) in R? has a linear separator of error
is a valid kernel if it is symmetric and PSD. at moste + § relative to L; margin at leasty/2.



string edit distance, known as thieevenshtein distance
[28], and a stochastic learned version [10]. The Levenshtei
distanceey, is defined as follows.
> > Definition 2. The Levenshtein distance,(z,2’) between
two stringsz and x’ (of lengthm and n respectively) is

the minimum number of edit operations to transforrinto
(8) Ly regularization (b) L, regularization z'. The allowable operations are insertion, deletion and
? ! substitution of a single symbol.

Figure 1. Geometric interpretation di> and L; constraints (adapted . . . .
from [27]). The L;-norm tends to zero out coordinates, thus reducing €L Can be computed i0)(m-n) time using dynamic pro-
dimensionality. This intuition also holds in the caselof regularization.  gramming. Instead of only counting the minimum number

of required operations, we can use a mafvixthat provides
a cost (or probability) for each edit operation, and defire th
Therefore, if we are given afe,~,7)-good similarity generalize(_jLevenshFe!n distance as beir)g the sequence of

function for a learning problen® and enough (unlabeled) €dit operations of minimum cost (or maximum probability).
landmark examples, then with high probability there exists 1here exists a few methods to leai for a given string
low-error linear separator in the explicib“space”, which is ~ classification task (e.g., [8], [9], [10]) which often takieet
essentially the space of the similarities to théandmarks. orm Of probabilistic models that allow us to compute the
As Balcan et al. mention, using, unlabeled examples and conditional edit probabilityp.(2’|z) that z is transformed

d, labeled examples, we can efficiently find this separatoft0 ' using edit operations. o o
a € R% by solving the following problen: Whichever edit similarity function is used, it raises a

crucial question: is ife,~y, 7)-good? Looking at Definition
d du 1, we can easily estimate, v and 7 using a randomly
m(inz 1=> ailiK(zi,7)| +Mealli, (1) selected set of examples. Let us illustrate this on the well-
i=1 J=1 i known NIST Special Database 3 of the National Institute of
Standards and Technology, describing a set of handwritten
characters in the form of 128x128 bitmap images. Each
jnstance can be represented as a string of Freeman codes
29] following the contour (starting from the top left pixel

where[l — 2]+ = max(0, 1 — z) is the hinge-loss and > 0
a parameter.

Problem (1) is a linear program (LP) and can be solve
efficiently. It is essentially a 1-norm SVM with an empirical - N
similarity map [25]. While one cannot enjoy some of the of the digit), as shown in Figure 2.

SVM learning guarantees when using 1-norm SVM, the We Consi_d_er the I__evenshtein diStamﬂ{E’I/) and the
theory of Balcan et al. offers a suitable framework forecjlt probability functionp. (') learned using the method
learning well using (1) presented in [10},known to perform well on this task. Note

Note that the use af, regularization orx tends to induce that we actually used-e;, so that both similarities express

sparse models, as opposediie regularization (see Figure a measure (_)f closeness, making the comparison easier. We
1). Indeed, a significant proportion f's coordinates will also normalized therh.In the following, they are referred

. . o . to aser, andp,.

be set to zero during learning, resulting in the correspugndi =L ¢ .
landmarks being ignored at classification time. In that sens | Smpe we dof_not k_novlv the set I(I)f re_as{onable pom_t; begore
by solving (1), one performs a selection of “relevant proto- eaming, we fixr = 1 (ie, all points are considere

types”, which one will compare the test examples to in Ordelreasonable) and estimateas a funct|_on va- In order to
analyze these parameter estimates in different contexs, w

to classify them, ignoring the other landmarks. Therefore, ) .
one does not need to know in advance the set of reasonabrlgndomly selected 500 instances of each class and estimated

points: R is automatically worked out during learning (it the ?r:)odnekss ?f lthe_t 5|m|Iar|t_||<|as f:)r :_ach bn;nr?ry prodblem.
corresponds to the set of landmarks that have non-zer or the sake ot clanty, we will on'y discuss the goodness

coordinates in the resulting separata). Moreover, the _(I:_L;‘W?St for ?t\'/s' 1 .andbOE;/sf.. 8,[ shlovyn tlk? tFlgure 3
parameten offers a direct way to the sparsity of the solution € interpretation (given by Definition 1) is that a margin
(the Iarger)\, the sparsetx tends to be)' SWe do not go into details of this learning method, but note tha'ﬂ_

n. A E S G - based on a likelihood maximization process and not on a cleeisifin
. ARE EDIT SIMILARITIES (¢, 7, T)-GOOD? rate optimization. More information and online software available at

In this section, we check if edit similarities afe,y,r)-  Ntp:/labh-curien.univ-st-etienne.fr/SEDIL/

. . 4This is because Definition 1 requires the similarity functionbe in
good. We propose to undertake this study using the standafd; 1}, we thus normalized our edit similarities to have zero-mean and

unit-variance, followed by the thresholding toand —1 of the values> 1
2The original formulation proposed in [25] was actually-constrained.  and < —1 respectively. Note that there may be better normalizatioris bu
We transformed it into an equivaleit; -regularized one. this is not the purpose of this work.
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Figure 2. Three digits (0, 1, 8) and their respective striegresentation.

of v leads to ane proportion of examples violating the the training examples to be the landmarks. Therefore, the
margin. For the “0 vs. 1" problem, shown in Figure 3(a), different algorithms use strictly the same input inforroati
both similarities achieve good margin while sustaining few(that is, similarity measurements between training exam-
violations. We see that the learned similarjfy behaves ples), allowing a very fair comparison.
slightly better. The “0 vs. 8” problem is a harder task: as In the following, we present results on the multi-class
shown in the example from Figure 2, an eight may lookhandwritten digit classification task (already used in Beact
similar to a zero since we only encode the contour of thdll) and on a dataset of English and French words.
digits. Figure 3(b) reflects the difficulty of the task, since
margin violations are always higher for a giverthat in the
“0 vs. 1” case. For the “0 vs. 8" task, the learned similarity Using the handwritten digit classification dataset intro-
provides an important improvement over the standard ediduced in Section Ill, we first aim at evaluating the perfor-
distance: it achieves very few violations for small valués o mance of the models obtained with the different methods.
the margin. We use 40 to 6,000 training examples, reporting the results
To sum up, we see that decent values foand ¢ are  under 5-fold cross-validation. The parameters of the ngdel
achieved even without selecting an appropriate sufisef ~ such as\ for approaches (i-ii) oiC" and ¢ for approaches
reasonable points. Note that we observed the same behavigii-iv), are tuned by cross-validation on an independegit s
for all binary problems in the dataset. Therefore, the ediof examples, always selecting the value that offers the best
similarities fit Definition 1, and the learning guarantees ofclassification accuracy.
Theorem 1 hold. Furthermore, we get better values with 1) Accuracy and sparsityClassification accuracy is re-
than with ¢z, which suggests thai, should lead to better ported in Figure 4(a). All methods perform essentially the
generalization performance (we will see that it is indeex th same, except for 1-NN that is somewhat weaker. Note that

A. Handwritten digit classification

case in the experiments). the methods based on the learned edit probabilities are, as
expected, more accurate than those based on the standard
IV. EXPERIMENTAL RESULTS edit distance. Figure 4(b) shows the average size of a binary

tmodel for approaches (i-iv), i.e., the number of training
examples (reasonable points or support vectors) involwed i

learning with good edit similarities outperforms iaNN he classificati ¢ los. A h 5
approach and is competitive with a standard SVM approacht, € classi ication o NEw examples. Approaches G are
to 6 times sparser than (iii-iv), which confirms that leagin

while inducing much sparser models. We compare the fol-", .
lowing approaches: (i) learning with (1) usinfg(z, z') = with (1) leads to much sparser models than SVM learning.

¢1(z, '), (i) learning with (1) Usingk (z, ') = p. («'|z), 2) Influence of the parametersiVe now study th_e in-
- ; N —ter(za) fluence of parameters on the accuracy and sparsity of the
(i) SVM learning using K(z,2') = e , the . -

models. Results are obtained on 4,000 training examples.
The influence of\ on the models learned with (1) is shown
in Figure 5. The results confirm thatcan be conveniently
used to control the sparsity of the models thankg. tareg-
ularization. It is worth nothing that while the best accyrac

is obtained with relatively small values\ (€ [1;10]), one

In this section, we provide experimental evidence tha

baseline SVM approach based ep, (iv) SVM learning
using K (z, z') = ezt(lospe(«’|2)+logpe (") the equivalent
of (iii) when using edit probabilities, (v) 1-NN using
er(z,2"), and (vi) 1-NN using—p.(z'|x). We choose LB-
svM [30] as our SVM implementation, which takes a one-
versus-one approach for multi-class classification. Wes thu _ .
can get even sparser but still very accurate models with

take the same principle for multi-class classification gsin . .
larger values X € [10;200]). This is especially true when

1). Note that in this series of experiments, we simply take“ : .
@ P Py using p.. Therefore, one can learn a model using (1) that

5Since pe is not symmetric, the kernel is made symmetric by adding is just 5”9h“y _IeSS accuratg than the corregponding S\_/M
pe (2’ |x) and pe (z|z’). model while being 10 to 18 times sparser. This can certainly
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Figure 4. Digit dataset: classification accuracy and sparssults for methods (i-vi) over a range of training set size

be a useful feature in applications where data storage isparsity of the SVM models are heavily dependent:.amnly
limited and/or high classification speed is required. Onea narrow range of values (probably those achieving positive

might wonder whether the SVM paramet€r can also be

semi-definiteness) allows for accurate and acceptably size

used to improve the sparsity of the models in the same waynodels. Furthermore, this range appears to be specific to

as A. In order to assess this, we try a wide range(f

the edit similarity used. Therefore, must be tuned very

values and record the average sparsity of the models. SViMarefully, which represents a waste of time and data.
could not match the sparsity of the models learned witf? (1).

The best average size for a binary model was greater than
100, i.e., more than 2 times bigger than the worst model
size obtained with (1). This results from the tendency of
L, regularization to select models that put small weights
on many coordinates. Lastly, we investigate the influence o
parametet on the performance of the SVM models. Results!
are shown in Figure 6 (a log-scale is used to allow a bette
appreciation of the variations). Both the accuracy and thé

5We do not report the details of the results due to the limitatibspace.

3) Reasonable pointsRemember that we classify a new
example by computing similarity scores to the set of reason-
able points only, using the vecter to weight each score.
Pnlike support vectors (that lie on the margin), reasonable
points rather correspond to discriminative prototypesof|

g the diversity of both classes and may provide valuable
posteriori information on the underlying classification
problem. In the context of digits, Figure 7 gives an example
of a set of 8 reasonable points for a model learned on
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Figure 5. Digit dataset: classification accuracy and sparssults with . e .
9 g 4 ha 1) Accuracy and sparsityClassification accuracy is re-

respect to the value of. . . . . . L
ported in Figure 8(a). Note that this binary task is signifi-

cantly harder than the one presented in the previous section

g =] and that once again, models based nperform better

§ ] than those based o#,. Models learned with (1) clearly

§ ‘ 1 outperformk-NN, while SVM models are the most accurate.

;g 401 svm with e o Sparsity results are shown in Figure 8(b). The gap in ggarsit

g 20 [ SvM with p. -+ ‘ ‘ 4 between models learned with (1) and SVM models is even
1e-05  0.0001  0.001 0.01 0.1 1 10 more marked on this task: the number of support vectors

3 t (log-scale) grows linearly with the number of training examples.

g 800 2) Reasonable pointsTable | provides an example of

£ oo s a set of 17 reasonable points in the context of word

2 500 [ classification, obtained withy,.° Working on real words

g ool ] makes the analysis easier. The small set shown in Table

£ 200  Qvm vitn e oA ] | actually carries a lot of discriminative patterns (shown i

2 s 0000 o000 o0l o1 1 10 Table Il along with their number of occurrences in each

t (log-scale) class over the entire dataset). For example, words ending
with ly correspond to English words, while those ending
Figure 6. Digit dataset: classification accuracy and sparssults with with que characterize French words. Note that Table | also
respect to the value df(log-scale). reflects the fact that English words are shorter on average
(6.99) than French words (8.26) in the dataset. The selected
) " L English (resp. French) reasonable points are significantly
zeros and eights witfi,.” They are rather discriminative (the shorter (resp. longer) than the average (mean of 5.56 and
selected members of each class do not look like any membey 75 resp.), which allows better discrimination.
of the other class) and reflect the within-class variability
(they are of various shapes, sizes and orientations). C. Role of the exponential
B. English and French words classification a dzzgguyiowslls\?vsfﬁes ;?newzilr;rli? of the exponential. Indeed, in
s ] ) . y to be PSD for some values
In this second series of experiments, we choose a fairlyy ; taking the exponential of the edit similarity can also
different and harder task: classifying words as either Bhgl  pe seen as introducing some nonlinearity to further separat
or French. We use the 2,000 top words lists from Wik-gistant examples while moving closer neighboring examples
F|onary? We only consider unique words (i.e., not appearing| order to see whether using the exponential when learning
in both lists) of length at least 4, and we also get rid of it (1) improves the models, we test two approaches: (vii)
accent and punctuation marks. We end up with about 1’30%arning with (1) usingK (z,z') = exp(—ey (z,2")), (Vi)
words of each language. We keep 600 words aside for CroS§sarning with (1) usingk (z, ') = exp(pe (a’|z)). Figure 9

validation of parameters, 400 words to test the models anaives the accuracy results for the word data8atie see that
use the remaining words to learn the models.
9As in the digit classification setup, we used a la’gealue.
“We used a larga in order to get a small set, making the analysis easier. 10Results on the digit dataset are not shown because theyeglielery
8http://en.wiktionary.org/wiki/Wiktionary:Frequenclsts similar results to those presented in Figure 4.
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Figure 8. Word dataset: classification accuracy and spamssiults for methods (i-vi) over a range of training set sizes

[ English [ French
previous  hoped liked waited ways parcours  positions economiques  critique
works hardly whole showed continue informatique  partenaire exportations
Table |

EXAMPLE OF A SET OF17 REASONABLE POINTS

[ [ w [ v [k g Jton [gh T a [ed$ [Iy$ | es?$ | ques?$ [ 'h |
English 146 144 83 14 12 34 39 151 51 265 0 62
French 7 19 5 72 65 0 114 51 0 630 43 14

Table Il

SOME DISCRIMINATIVE PATTERNS EXTRACTED FROM THE REASONABLEPOINTS OFTABLE | (" : START OF WORD $: END OF WORD, ?: OOR 1
OCCURRENCE OF PRECEDING LETTE)R

using the exponential provides improvement over the result 85 T T T T T T T
of Figure 8(a) without having to tune a parameterThe
sparsity of the models is essentially the same as that shown 80 |
on Figure 8(b) (without exponential). However, tuning  »
anyway may further improve the similarity and allow models g nr
learned with (1) to match the accuracy of SVM. §
S 70
V. CONCLUSION AND FUTURE WORK % =
& 65 i PP
In this work, we applied Balcan et al’s framework to © | “'L/PLgiw;ﬂg(%%w —
string edit similarities. We showed through a simple pro- 60 |7/ SVM with ¢, o |
cedure that edit similarities arg,~,7)-good for a given H XN with e T3
classification task. We then provided experimental evidenc 55 ‘ ‘ ‘ ‘ . LNNwithpe 5=
on two radically different datasets (a task where strings 0 200 400 600 800 1000 1200 1400 1600

are derived from images and a natural string classification Size of training set

task) that this approach performs better thafNN and  rigure 9. Word dataset: classification accuracy resultsiethods (iii-viii)
is competitive with SVM, while inducing sparser models. over a range of training set sizes.

This feature can be crucial in many applications due to the

generally high computational cost of edit similaritiesstlg,

we highlighted the potential positive role of the exponainti

in the context of edit similarity learning. Our approach similarities [5], [11]. A natural future work could include
could easily be extended to tree classification using trée edlearning the edit costs so that the resulting edit simifast



optimized to be “age, v, 7)-good as possible” for a given [14] H. Saigo, J.-P. Vert, N. Ueda, and T. Akutsu, “Protein homol-
classification problem.
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