
An Experimental Study on Learning with Good Edit Similarity Functions
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Abstract—Similarity functions are essential to many learning
algorithms. To allow their use in support vector machines
(SVM), i.e., for the convergence of the learning algorithm
to be guaranteed, they must be validkernels. In the case
of structured data, the similarities based on the popularedit
distance often do not satisfy this requirement, which explains
why they are typically used with k-nearest neighbor (k-NN).
A common approach to use suchedit similarities in SVM is
to transform them into potentially (but not provably) valid
kernels. Recently, a different theory of learning with (ǫ, γ, τ)-
good similarity functions was proposed, allowing the use of
non-kernel similarity functions. Moreover, the resulting models
are supposedlysparse, as opposed to standard SVM models
that can be unnecessarily dense. In this paper, we study the
relevance and applicability of this theory in the context of
string edit similarities. We show that they are naturally good
for a given string classification task and provide experimental
evidence that the obtained models not only clearly outperform
the k-NN approach, but are also competitive with standard
SVM models learned with state-of-the-art edit kernels, while
being much sparser.

Keywords-similarity function; linear program; sparsity; edit
distance; structured data

I. I NTRODUCTION

A good similarity function1 (distance, kernel, etc.) be-
tween objects is key to the effectiveness of many super-
vised and unsupervised learning methods, among which the
popular k-nearest neighbor (k-NN), k-means and support
vector machines (SVM). For this reason, a lot of research
has been put into learning good similarity functions between
numerical vectors, often in the form of a Mahalanobis
distance (e.g., [1], [2], [3]), which is usually referred toas
metric learning. When dealing with structured data (strings,
trees, graphs), which is the case in this paper, a popular
choice of similarity functions are those based on theedit
distance, such as the string edit distance [4], the tree edit
distance [5], the graph edit distance [6] or the local gapped
alignment [7]. Roughly speaking, the edit distance between
two objects is the minimum number of operations (insertion,
deletion, substitution) required to transform an object into
another. Because they involve more complex procedures, less
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1Throughout this paper, we will use the term “similarity function” to

refer to a function giving a measure of either closeness or distance.

work has been devoted to learning such similarities [8], [9],
[10], [11].

For a similarity function to be akernel, which is essential
to the convergence of the SVM learning algorithm, it must
be positive semi-definite (PSD) and symmetric. However, it
can be proved that the aboveedit similaritiesare not PSD
[12]. This explains why their use is often limited tok-NN
classifiers. There exist two general approaches to go around
this problem. The first one consists in building a function
that may be a valid kernel under some circumstances. A
popular choice is to plug the edit similarityes into a
Gaussian-like kernel of the formK(x, x′) = e−t·es(x,x′),
where t > 0 is a parameter [12], [13], [14]. In practice,t
is tuned by cross-validation and the value offering the best
classification accuracy is chosen. Note that if this strategy
is likely to ensure the resultingK to be valid, Cortes et
al. [12] proved that there exist values oft for which K is
not a kernel. Moreover, a slight modification of the value
of t can lead to dramatic changes in performance. The edit
functions proposed by Neuhaus & Bunke [15] also fall in
the same category: they may work well in practice but
their positive semi-definiteness has not been established.
The second strategy consists in directly building a valid
kernel from the edit similarity, usually by expressing it asa
dot product (which ensures positive semi-definiteness). For
instance, Bellet et al. [16] proposed the kernelK(x, x′) =
∑

y∈Σ∗ es(x, y) · es(x
′, y), where y is any string on the

alphabetΣ. Despite the presence of an infinite sum, this
kernel can be computed exactly (using a composition of
stochastic edit transducers), but becomes intractable when
the input strings are long.

On top of the difficulty of building valid kernels from
edit similarities, a general drawback of SVM learning is
that it produces ratherdensemodels, i.e., the ratio between
the number of support vectors (SV) and the total number of
training examples tends to be large. The number of SV is
actually known to grow linearly with the size of the training
set [17]. In many situations, especially in the presence of
redundant or irrelevant noisy features [18], a sparser model
would lead to equal or higher classification accuracy, while
saving many kernel evaluations at classification time. This
explains why a decent amount of research has gone into



developingsparseversions of SVM. A classic approach,
often referred to as1-norm SVM[18], is to useL1-norm
regularization to obtain sparsity. However, a significant part
of the handy SVM theory (such as some learning guarantees
in the projection space given by a nonlinear kernel and the
notion of reproducing kernel Hilbert space) does not hold
for 1-norm SVM. For this reason, other methods aim at
developing sparse versions of standard (L2) SVM [19], [20],
[21], [22], [23]. Unfortunately, most of these methods are
expensive to compute and applying them on structured data,
where kernel evaluations are often costly, would slow down
the computation even more.

Recently, Balcan et al. [24], [25] introduced a theory of
learning with so-called(ǫ, γ, τ)-good similarity functions
that can be seen as a less restrictive and sparse alternative
to SVM. It generalizes the notion of good kernel without
requiring the similarity function to be PSD nor symmetric.
Unlike in SVM theory, the learning guarantees are in terms
of natural properties of the similarity function. Furthermore,
learning is achieved through a linear program that can be
solved efficiently and tends to induce sparse models.

In this paper, we study the applicability and relevance
of the theory of Balcan et al. in the context of string edit
similarities. We first show that standard edit similaritiesare
naturally(ǫ, γ, τ)-good for a given classification task. Then,
we provide experimental evidence that learning with Balcan
et al.’s linear program induces a separator that (i) clearly
outperforms thek-NN approach, and (ii) is competitive
with the standard SVM approach, but is much sparser
and provides sparsity control. Lastly, we provide results
suggesting that the use of the exponential together with edit
similarities may further improve accuracy.

The rest of the paper is organized as follows: in Section II
we give a few notations and review the theory of Balcan et al.
[25]. In Section III, we introduce two string edit similarities,
explain how one can estimate their(ǫ, γ, τ)-goodness and,
given a classification task, show that they are indeed good
for that task. Section IV presents an experimental study on
two datasets: a handwritten digit dataset (where images have
been coded into strings) and a dataset of English and French
words. We conclude this work by outlining a promising line
of research on similarity-based learning.

II. N OTATIONS AND RELATED WORK

A. Notations

We assume we are given some labeled examples(x, ℓ)
drawn from an unknown distributionP over X × {−1, 1},
whereX is the instance space. We want to learn a classifier
h : X → {−1, 1} whose error rate is as low as possible,
only using pairwise similarities between examples given by
a similarity functionK : X ×X → [−1, 1]. We say thatK
is symmetric ifK(x, x′) = K(x′, x) for all x, x′ ∈ X. K
is a valid kernel if it is symmetric and PSD.

B. Learning with(ǫ, γ, τ)-Good Similarity Functions

In recent work, Balcan et al. [24], [25] highlight two major
drawbacks of the kernel theory. First, the PSD requirement
often rules out natural similarity functions for the problem
at hand. As we have mentioned before, this is especially
true for structured data (edit similarities make a striking
example). Second, the notion of good kernel (which is
related to the underlying margin in an implicit, possibly
unknown projection space) is not often intuitive and does
not provide insights into how to design a good kernel for
a given problem. To overcome these limitations, Balcan et
al. introduced a new theory of learning with any similarity
function K : X × X → [−1, 1]. In particular, they propose
the following, rather intuitive definition of a good similarity
function:

Definition 1 (Balcan et al. [25]). A similarity functionK is
an (ǫ, γ, τ)-good similarity function for a learning problem
P if there exists a (random) indicator functionR(x) defining
a (probabilistic) set of “reasonable points” such that the
following conditions hold:

1) A 1 − ǫ probability mass of examples(x, ℓ) satisfy

E(x′,ℓ′)∼P [ℓℓ′K(x, x′)|R(x′)] ≥ γ

2) Prx′ [R(x′)] ≥ τ .

Assuming that the proportion of positive and negative
examples inR is equal, we can interpret the first condition as
most examplesx are on average2γ more similar to random
reasonable examples of the same class than to random
reasonable examples of the opposite classand the second
condition asat least aτ proportion of the examples should
be reasonable.

Of course, this is just one way of defining what makes a
similarity function good for a given problem. Other defini-
tions are possible, for example those proposed by Wang et
al. for unbounded similarity functions [26]. Yet Definition
1 is very interesting in two respects. First, it includes all
good kernels as well as some non-PSD similarity functions.
In that sense, this is a strict generalization of the notion of
good kernel [25]. Second, these conditions are sufficient to
be able to learn well. This is formalized by the following
PAC-like learning guarantee.

Theorem 1 (Balcan et al. [25]). [25] Let K be an(ǫ, γ, τ)-
good similarity function for a learning problemP . Let
S = {x′

1, x
′
2, . . . , x

′
d} be a (potentially unlabeled) sample

of d = 2
τ

(

log(2/δ) + 8 log(2/δ)
γ2

)

landmarks drawn fromP .

Consider the mappingφS : X → R
d defined as follows:

φS
i (x) = K(x, x′

i), i ∈ {1, . . . , d}. Then, with probability
at least 1 − δ over the random sampleS, the induced
distribution φS(P ) in R

d has a linear separator of error
at mostǫ + δ relative toL1 margin at leastγ/2.



(a) L2 regularization (b) L1 regularization

Figure 1. Geometric interpretation ofL2 and L1 constraints (adapted
from [27]). The L1-norm tends to zero out coordinates, thus reducing
dimensionality. This intuition also holds in the case ofL1 regularization.

Therefore, if we are given an(ǫ, γ, τ)-good similarity
function for a learning problemP and enough (unlabeled)
landmark examples, then with high probability there existsa
low-error linear separator in the explicit “φ-space”, which is
essentially the space of the similarities to thed landmarks.
As Balcan et al. mention, usingdu unlabeled examples and
dl labeled examples, we can efficiently find this separator
α ∈ R

du by solving the following problem:2

min
α

dl
∑

i=1



1 −

du
∑

j=1

αjℓiK(xi, x
′
j)





+

+ λ‖α‖1, (1)

where[1−z]+ = max(0, 1−z) is the hinge-loss andλ ≥ 0
a parameter.

Problem (1) is a linear program (LP) and can be solved
efficiently. It is essentially a 1-norm SVM with an empirical
similarity map [25]. While one cannot enjoy some of the
SVM learning guarantees when using 1-norm SVM, the
theory of Balcan et al. offers a suitable framework for
learning well using (1).

Note that the use ofL1 regularization onα tends to induce
sparse models, as opposed toL2 regularization (see Figure
1). Indeed, a significant proportion ofα’s coordinates will
be set to zero during learning, resulting in the corresponding
landmarks being ignored at classification time. In that sense,
by solving (1), one performs a selection of “relevant proto-
types”, which one will compare the test examples to in order
to classify them, ignoring the other landmarks. Therefore,
one does not need to know in advance the set of reasonable
points: R is automatically worked out during learning (it
corresponds to the set of landmarks that have non-zero
coordinates in the resulting separatorα). Moreover, the
parameterλ offers a direct way to the sparsity of the solution
(the largerλ, the sparserα tends to be).

III. A RE EDIT SIMILARITIES (ǫ, γ, τ)-GOOD?

In this section, we check if edit similarities are(ǫ, γ, τ)-
good. We propose to undertake this study using the standard

2The original formulation proposed in [25] was actuallyL1-constrained.
We transformed it into an equivalentL1-regularized one.

string edit distance, known as theLevenshtein distance
[28], and a stochastic learned version [10]. The Levenshtein
distanceeL is defined as follows.

Definition 2. The Levenshtein distanceeL(x, x′) between
two stringsx and x′ (of length m and n respectively) is
the minimum number of edit operations to transformx into
x′. The allowable operations are insertion, deletion and
substitution of a single symbol.

eL can be computed inO(m ·n) time using dynamic pro-
gramming. Instead of only counting the minimum number
of required operations, we can use a matrixM that provides
a cost (or probability) for each edit operation, and define the
generalizedLevenshtein distance as being the sequence of
edit operations of minimum cost (or maximum probability).
There exists a few methods to learnM for a given string
classification task (e.g., [8], [9], [10]) which often take the
form of probabilistic models that allow us to compute the
conditional edit probabilitype(x

′|x) that x is transformed
into x′ using edit operations.

Whichever edit similarity function is used, it raises a
crucial question: is it(ǫ, γ, τ)-good? Looking at Definition
1, we can easily estimateǫ, γ and τ using a randomly
selected set of examples. Let us illustrate this on the well-
known NIST Special Database 3 of the National Institute of
Standards and Technology, describing a set of handwritten
characters in the form of 128x128 bitmap images. Each
instance can be represented as a string of Freeman codes
[29] following the contour (starting from the top left pixel
of the digit), as shown in Figure 2.

We consider the Levenshtein distanceeL(x, x′) and the
edit probability functionpe(x

′|x) learned using the method
presented in [10],3 known to perform well on this task. Note
that we actually used−eL so that both similarities express
a measure of closeness, making the comparison easier. We
also normalized them.4 In the following, they are referred
to as ẽL and p̃e.

Since we do not know the set of reasonable points before
learning, we fix τ = 1 (i.e., all points are considered
reasonable) and estimateǫ as a function ofγ. In order to
analyze these parameter estimates in different contexts, we
randomly selected 500 instances of each class and estimated
the goodness of the similarities for each binary problem.
For the sake of clarity, we will only discuss the goodness
curves for “0 vs. 1” and “0 vs. 8”, shown in Figure 3.
The interpretation (given by Definition 1) is that a margin

3We do not go into details of this learning method, but note thatit is
based on a likelihood maximization process and not on a classification
rate optimization. More information and online software are available at
http://labh-curien.univ-st-etienne.fr/SEDiL/

4This is because Definition 1 requires the similarity functionto be in
[−1, 1]. We thus normalized our edit similarities to have zero-mean and
unit-variance, followed by the thresholding to1 and−1 of the values> 1
and < −1 respectively. Note that there may be better normalizations but
this is not the purpose of this work.
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Figure 2. Three digits (0, 1, 8) and their respective string representation.

of γ leads to anǫ proportion of examples violating the
margin. For the “0 vs. 1” problem, shown in Figure 3(a),
both similarities achieve good margin while sustaining few
violations. We see that the learned similaritỹpe behaves
slightly better. The “0 vs. 8” problem is a harder task: as
shown in the example from Figure 2, an eight may look
similar to a zero since we only encode the contour of the
digits. Figure 3(b) reflects the difficulty of the task, since
margin violations are always higher for a givenγ that in the
“0 vs. 1” case. For the “0 vs. 8” task, the learned similarity
provides an important improvement over the standard edit
distance: it achieves very few violations for small values of
the margin.

To sum up, we see that decent values forγ and ǫ are
achieved even without selecting an appropriate subsetR of
reasonable points. Note that we observed the same behavior
for all binary problems in the dataset. Therefore, the edit
similarities fit Definition 1, and the learning guarantees of
Theorem 1 hold. Furthermore, we get better values withp̃e

than with ẽL, which suggests that̃pe should lead to better
generalization performance (we will see that it is indeed the
case in the experiments).

IV. EXPERIMENTAL RESULTS

In this section, we provide experimental evidence that
learning with good edit similarities outperforms ak-NN
approach and is competitive with a standard SVM approach,
while inducing much sparser models. We compare the fol-
lowing approaches: (i) learning with (1) usingK(x, x′) =
ẽL(x, x′), (ii) learning with (1) usingK(x, x′) = p̃e(x

′|x),
(iii) SVM learning using K(x, x′) = e−t·eL(x,x′), the
baseline SVM approach based oneL, (iv) SVM learning
usingK(x, x′) = e

1

2
t(log pe(x′|x)+log pe(x|x′)), the equivalent

of (iii) when using edit probabilities,5 (v) 1-NN using
eL(x, x′), and (vi) 1-NN using−pe(x

′|x). We choose LIB-
SVM [30] as our SVM implementation, which takes a one-
versus-one approach for multi-class classification. We thus
take the same principle for multi-class classification using
(1). Note that in this series of experiments, we simply take

5Since pe is not symmetric, the kernel is made symmetric by adding
pe(x′|x) andpe(x|x′).

the training examples to be the landmarks. Therefore, the
different algorithms use strictly the same input information
(that is, similarity measurements between training exam-
ples), allowing a very fair comparison.

In the following, we present results on the multi-class
handwritten digit classification task (already used in Section
III) and on a dataset of English and French words.

A. Handwritten digit classification

Using the handwritten digit classification dataset intro-
duced in Section III, we first aim at evaluating the perfor-
mance of the models obtained with the different methods.
We use 40 to 6,000 training examples, reporting the results
under 5-fold cross-validation. The parameters of the models,
such asλ for approaches (i-ii) orC and t for approaches
(iii-iv), are tuned by cross-validation on an independent set
of examples, always selecting the value that offers the best
classification accuracy.

1) Accuracy and sparsity:Classification accuracy is re-
ported in Figure 4(a). All methods perform essentially the
same, except for 1-NN that is somewhat weaker. Note that
the methods based on the learned edit probabilities are, as
expected, more accurate than those based on the standard
edit distance. Figure 4(b) shows the average size of a binary
model for approaches (i-iv), i.e., the number of training
examples (reasonable points or support vectors) involved in
the classification of new examples. Approaches (i-ii) are 5
to 6 times sparser than (iii-iv), which confirms that learning
with (1) leads to much sparser models than SVM learning.

2) Influence of the parameters:We now study the in-
fluence of parameters on the accuracy and sparsity of the
models. Results are obtained on 4,000 training examples.
The influence ofλ on the models learned with (1) is shown
in Figure 5. The results confirm thatλ can be conveniently
used to control the sparsity of the models thanks toL1 reg-
ularization. It is worth nothing that while the best accuracy
is obtained with relatively small values (λ ∈ [1; 10]), one
can get even sparser but still very accurate models with
larger values (λ ∈ [10; 200]). This is especially true when
using p̃e. Therefore, one can learn a model using (1) that
is just slightly less accurate than the corresponding SVM
model while being 10 to 18 times sparser. This can certainly
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Figure 3. Estimation ofǫ as a function ofγ for ẽL and p̃e on two handwritten digits binary classification tasks.
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Figure 4. Digit dataset: classification accuracy and sparsity results for methods (i-vi) over a range of training set sizes.

be a useful feature in applications where data storage is
limited and/or high classification speed is required. One
might wonder whether the SVM parameterC can also be
used to improve the sparsity of the models in the same way
as λ. In order to assess this, we try a wide range ofC
values and record the average sparsity of the models. SVM
could not match the sparsity of the models learned with (1).6

The best average size for a binary model was greater than
100, i.e., more than 2 times bigger than the worst model
size obtained with (1). This results from the tendency of
L2 regularization to select models that put small weights
on many coordinates. Lastly, we investigate the influence of
parametert on the performance of the SVM models. Results
are shown in Figure 6 (a log-scale is used to allow a better
appreciation of the variations). Both the accuracy and the

6We do not report the details of the results due to the limitation of space.

sparsity of the SVM models are heavily dependent ont: only
a narrow range oft values (probably those achieving positive
semi-definiteness) allows for accurate and acceptably sized
models. Furthermore, this range appears to be specific to
the edit similarity used. Therefore,t must be tuned very
carefully, which represents a waste of time and data.

3) Reasonable points:Remember that we classify a new
example by computing similarity scores to the set of reason-
able points only, using the vectorα to weight each score.
Unlike support vectors (that lie on the margin), reasonable
points rather correspond to discriminative prototypes reflect-
ing the diversity of both classes and may provide valuable
a posteriori information on the underlying classification
problem. In the context of digits, Figure 7 gives an example
of a set of 8 reasonable points for a model learned on
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zeros and eights with̃pe.7 They are rather discriminative (the
selected members of each class do not look like any member
of the other class) and reflect the within-class variability
(they are of various shapes, sizes and orientations).

B. English and French words classification

In this second series of experiments, we choose a fairly
different and harder task: classifying words as either English
or French. We use the 2,000 top words lists from Wik-
tionary.8 We only consider unique words (i.e., not appearing
in both lists) of length at least 4, and we also get rid of
accent and punctuation marks. We end up with about 1,300
words of each language. We keep 600 words aside for cross-
validation of parameters, 400 words to test the models and
use the remaining words to learn the models.

7We used a largeλ in order to get a small set, making the analysis easier.
8http://en.wiktionary.org/wiki/Wiktionary:Frequencylists

Figure 7. Example of a set of reasonable points for the task of classifying
zeros and eights.

1) Accuracy and sparsity:Classification accuracy is re-
ported in Figure 8(a). Note that this binary task is signifi-
cantly harder than the one presented in the previous section,
and that once again, models based onpe perform better
than those based oneL. Models learned with (1) clearly
outperformk-NN, while SVM models are the most accurate.
Sparsity results are shown in Figure 8(b). The gap in sparsity
between models learned with (1) and SVM models is even
more marked on this task: the number of support vectors
grows linearly with the number of training examples.

2) Reasonable points:Table I provides an example of
a set of 17 reasonable points in the context of word
classification, obtained with̃pe.9 Working on real words
makes the analysis easier. The small set shown in Table
I actually carries a lot of discriminative patterns (shown in
Table II along with their number of occurrences in each
class over the entire dataset). For example, words ending
with ly correspond to English words, while those ending
with que characterize French words. Note that Table I also
reflects the fact that English words are shorter on average
(6.99) than French words (8.26) in the dataset. The selected
English (resp. French) reasonable points are significantly
shorter (resp. longer) than the average (mean of 5.56 and
9.75 resp.), which allows better discrimination.

C. Role of the exponential

Finally, we assess the role of the exponential. Indeed, in
addition to allow the similarity to be PSD for some values
of t, taking the exponential of the edit similarity can also
be seen as introducing some nonlinearity to further separate
distant examples while moving closer neighboring examples.
In order to see whether using the exponential when learning
with (1) improves the models, we test two approaches: (vii)
learning with (1) usingK(x, x′) = exp(−eL(x, x′)), (viii)
learning with (1) usingK(x, x′) = exp(pe(x

′|x)). Figure 9
gives the accuracy results for the word dataset.10 We see that

9As in the digit classification setup, we used a largeλ value.
10Results on the digit dataset are not shown because they yielded very

similar results to those presented in Figure 4.
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Figure 8. Word dataset: classification accuracy and sparsity results for methods (i-vi) over a range of training set sizes.

English French
previous hoped liked waited ways parcours positions economiques critique
works hardly whole showed continue informatique partenaire exportations

Table I
EXAMPLE OF A SET OF17 REASONABLE POINTS.

w y k q tion gh ai ed$ ly$ es?$ ques?$ ˆh

English 146 144 83 14 12 34 39 151 51 265 0 62
French 7 19 5 72 65 0 114 51 0 630 43 14

Table II
SOME DISCRIMINATIVE PATTERNS EXTRACTED FROM THE REASONABLEPOINTS OFTABLE I (ˆ : START OF WORD, $: END OF WORD, ?: 0 OR 1

OCCURRENCE OF PRECEDING LETTER).

using the exponential provides improvement over the results
of Figure 8(a) without having to tune a parametert. The
sparsity of the models is essentially the same as that shown
on Figure 8(b) (without exponential). However, tuningt
anyway may further improve the similarity and allow models
learned with (1) to match the accuracy of SVM.

V. CONCLUSION AND FUTURE WORK

In this work, we applied Balcan et al.’s framework to
string edit similarities. We showed through a simple pro-
cedure that edit similarities are(ǫ, γ, τ)-good for a given
classification task. We then provided experimental evidence
on two radically different datasets (a task where strings
are derived from images and a natural string classification
task) that this approach performs better thank-NN and
is competitive with SVM, while inducing sparser models.
This feature can be crucial in many applications due to the
generally high computational cost of edit similarities. Lastly,
we highlighted the potential positive role of the exponential
in the context of edit similarity learning. Our approach
could easily be extended to tree classification using tree edit
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Figure 9. Word dataset: classification accuracy results formethods (iii-viii)
over a range of training set sizes.

similarities [5], [11]. A natural future work could include
learning the edit costs so that the resulting edit similarity is



optimized to be “as(ǫ, γ, τ)-good as possible” for a given
classification problem.
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