
HAL Id: hal-01953434
https://hal.univ-lyon2.fr/hal-01953434

Submitted on 12 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tagging Choreographic Data for Data Mining and
Classification

Catalina Anca Ioan, Julien Velcin, Stefan Trausan-Matu

To cite this version:
Catalina Anca Ioan, Julien Velcin, Stefan Trausan-Matu. Tagging Choreographic Data for Data
Mining and Classification. 24th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI), Jul 2013, Athens, Greece. �hal-01953434�

https://hal.univ-lyon2.fr/hal-01953434
https://hal.archives-ouvertes.fr


Tagging Choreographic Data for Data Mining and
Classification

Cǎtǎlina - Anca Ioan
”Politehnica” University of Bucharest

Bucharest, Romania
Email: catalina.ioan@cs.pub.ro

Julien Velcin
Laboratoire ERIC,

Université Lumière Lyon 2
Lyon, France

Email: julien.velcin@eric.univ-lyon2.fr

Ştefan Trǎuşan - Matu
”Politehnica” University of Bucharest

Bucharest, Romania
Email: stefan.trausan@cs.pub.ro

Abstract—We propose an original approach for mapping the
choreographic data into a new representation language adapted
to data mining techniques. Our approach relies mainly on the
notion of “dance tags” that we took from the NLP community
by analogy with Part-of-Speech tagging. The process starts
from scores described in Labanotation and produces in a fully
automatic manner a high-level, comprehensive representation
of the choreographic sequence. Our experiments show that
we succeed in retrieving manually translated scores with an
accuracy of 85% to 94%. Using this new representation of the
choreographic data, one can then perform several useful tasks in
an efficient manner. Among these are: music recommendation,
automated detection of dance style or genre, and ultimately
any task that requires a deeper understanding of the meaning
of choreographic information than traditional processing can
provide. In this paper, we demonstrate the usefulness of our
approach with a simple example for discriminating between
classical ballet, modern ballet, and folkloric dances.

I. INTRODUCTION

Several approaches have been proposed for storing a seg-
ment of choreographic data: video recordings of dance per-
formances, choreographer notes, and so on. But how do we
approach the issue of storing that segment in a formal fashion,
for the purpose of indexing, retrieval, classification, or just
for sharing this artistic event with someone else, and in its
exact initial form? Dozens of formal languages have been
created by dance experts during the last century, but only a few
among them are actually used today [2][6][12]. For instance,
Labanotation provides a standardized way of representing
dance in written form. Several attempts have been made to
take advantage of the power of computer science (e.g. score
editing [16], visualization [9]) in order to improve the way we
store dance scores. Until today, data mining techniques have
been rarely used for manipulating dance scores [4].

Our research objective is precisely to offer a new approach
for dealing with choreographic data. More specifically, we
propose an approach that analyzes the choreographic data
given in Labanotation by using the notion of “dance tags”.
In the field of Natural Language Processing, the task of
Part-of-Speech (PoS in short) tagging maps each word with
its associated PoS (e.g., noun, verb, adjective). By analogy,
we propose to map each symbol (or sequence of symbols)
extracted from the score with a “dance tag” (e.g., weight
shift, sweep, flex). For this purpose, we subject our data

to a certain amount of preprocessing and we adapt a rule-
based tagger, specifically the one created by E. Brill [5], to
our specific needs. This way, our algorithm is able to map
the initial choreographic data into a high-level language of
basic “gestures”. This new comprehensive representation can
then be used for applying various data mining techniques:
association rules, visualization, classification, etc. In particular,
we prove in this paper that our approach leads to promising
results in discriminating three genres of dance: classical ballet,
modern ballet, and folkloric dances. Our solution might, in
future work, be developed into a fully functional framework
dedicated to performing such tasks.

The research that has been carried out in this field up to
date is rather limited in its range [1][4][8][9][15][17][19].
To the best of our knowledge, the only known previous
attempt at machine learning in the field of dance is [18]. This,
however, took a different path than the one we have in mind
(specifically, motion interpolation). We chose, therefore, to
draw inspiration from another work, less elaborate, but closer
to our goal, namely a previous attempt [19] to annotate a
corpus of dance sequences by manually labeling identifiable
motion patterns. We wish to develop an automated version
of this process, and then employ a modified part-of-speech
tagger to identify “dance tags” and use them to classify the
given sequence. As of the date of this work and to the best
of our knowledge, ours is the very first such attempt of using
data mining and pattern recognition with Labanotation. The
repository of Laban scores is very rich (albeit in analogical, not
directly usable format) and varied (including classical pieces,
but also modern ballet, folkloric dance, etc.). Which is why
our solution is a way of valorizing the work of a great number
of artists, but it may also lead to several future exciting broader
lines of research.

We will begin the main part of this paper (Section 2,
specifically) by briefly iterating over our prerequisites in this
endeavour and the main previous achievements in the field.
We will then, in Section 3, proceed to elaborate on the details
of our approach and fully describe the algorithm we use. In
Section 4 we will present the experiments we have conducted
in order to test our approach, along with the interpretation of
our results, and lastly, in Section 5, the conclusions that are
to be drawn from these experiments.



II. RELATED WORK

A. Labanotation

Along the years, several standardized notations have been
suggested for representing dance in written form. The most
popular of these (and also the one that we are going to use
in developing this work) is the Laban Notation (also known
as Labanotation), which is a component of the wider field of
Laban Movement Analysis [10][12][13]. This notation allows
the description of virtually any type of human motion up
to the highest degree of detail and specificity. But at the
same time, it does not restrict its usability to a particular
type of performance. As such, it may just as well be used in
classical ballet, modern dance, and even theater. The actual
notation makes use of a set of predetermined symbols in
order to precisely represent the direction of the movement,
the executing body part, the nature of the motion, as well as
the duration of the latter.

B. Machine-readable representation of Labanotation scores

The obvious first step in transporting the Laban dance
notation to the computer world was to develop a formal
representation of a dance score. This representation should
capture the semantics of the score in a format that could be
automatically interpreted by a machine. The format that we
have decided to use in conducting our research is the output
format of the LabanWriter application, developed at the Ohio
State University [16]. LabanWriter is a software application
developed for the Macintosh OS X, that allows users to “draw”
from scratch, edit, and store Laban scores in an electronic
format. The output file is basically a text file that consists of
lines of number sequences, each line denoting an individual
symbol or notation on the page.

C. High-level semantic representation for dance choreography

As we have previously stated, our main goal in conducting
our research is to obtain a high-level representation of dance
sequences. We would like this representation to be semanti-
cally significant on a machine level, so that any number of
advanced procedures (pattern recognition, music recommen-
dation, etc.) can later be carried out in an automated manner.

One promising work in this direction is that of M. Brennan
et al. [4]. Their goal was to identify the particular dancer
performing an input dance, based on certain peculiarities that
were machine “learned” from several dances performed by
multiple dancers. Their suggested approach consisted of seg-
menting the dance sequence at hand into very short fragments
that could be labeled with one (or more) of several available
tags, from within six categories (such as body actions, shape,
etc.). They would then employ a data mining technique to
draw a conclusion. In conducting our own research, we plan
to maintain the approach of segmentation and tagging, with
three key differences, which we will discuss a little further
on.

Fig. 1. Hierarchical segmentation of a short movement sequence. The
sequence of low-level “step” tokens is subsequently organized into high-level
“walk” tokens.

D. Movement tagging and Part-of-Speech tagging. A parallel
between motion and text

We have mentioned earlier that we are interested in creating
a parallel between part-of-speech tagging and “movement tag-
ging”, as we have chosen to name the process of segmenting
the choreographic information into elementary tokens. The
advantages of obtaining a functional analogy such as this are
obvious. Part-of-speech (PoS) tagging is already an established
field in itself and extensive research has been conducted, with
promising and practically usable results [3][7][14]. If we have
a working correspondence between the two, we can easily
adapt any of several algorithms available for PoS tagging and
apply it in our particular scenario.

E. Segmentation

When dealing with a corpus that does not hold its semantic
load within itself (as text does, for instance), segmentation is
in itself quite a difficult step. While it is true that Labanotation
scores consist of individual symbols, this segmentation alone
is far too low-level to be of much use to us. As such, our
first objective in this stage is to divide the score into the
shortest movement sequences that are still long enough to
be identified as significant and repeatable gestures. Once the
initial segmentation is done, we can subject the score to
a second segmentation pass, producing higher level entities.
Pictured in Fig.1 is an example of a hierarchical segmentation.

On the lowest level we have segmented the sequence into
“step” tokens, while on a higher level we group those “step”
tokens into “walk” tokens. Each of the two levels provides us
with a specific degree of segmentation granularity, and we can
later on choose between the two, depending on our particular
processing needs.

F. The Brill tagger approach

Moving on, we now need to choose a particular Part-of-
Speech tagger to adapt to our needs. As far as category is
concerned, although statistical taggers generally produce better



results, a rule-based approach would be better for us. The
main reason for this is the continued performance of the latter
even with small datasets (as opposed to the former, which
are highly sensitive to this factor). Due to the elaborate and
time consuming nature of the translation process between
handwritten scores and electronic files (even with the aid of
LabanWriter), training data is limited. Our tagger of choice is
named the Brill tagger [5] and it works in two stages. The first
step consists of scanning the entire text and tagging each word
with the most likely Part-of-Speech tag, statistically based on
the training corpus. The second step consists of a repeated
process of acquiring so-called patches that aim to improve the
output accuracy. A patch is a rule by which movements (or
“visual words”) previously tagged a certain way are retagged
based on their context and the trained observation that in this
context, the most likely correct tag is another. In Section 3 we
will describe the way we plan to adapt the Brill tagger so that
we may apply its principles to our problem.

III. PROBLEM FORMULATION AND SUGGESTED
APPROACH

To reiterate the purpose of our project, we aim to create a
parallel between Part-of-Speech tagging for text and “dance
tagging” for choreographic data. Since PoS tagging is a
thoroughly studied field, the creation of this parallel will
provide several new leads toward improving the accuracy
and flexibility of the type of processing we have expressed
our interest in. In order to define the correlation we wish
to establish between the two, we must first define the con-
cept of motion tagging for dance notation. As we know, a
choreographic sequence is composed of a multitude of small
individual motions that are to be carried out by various limbs.
The Laban notation, as we have seen before, consists of a
sequence of special symbols that describe each of these small
individual motions or the key body positions between which
they evolve. Continuing our parallel with the field of natural
language processing, these symbols would be the equivalent
of letters. While significant in themselves, they are far too
low-level to provide any real, usable information. For us, the
process of motion tagging has the purpose of grouping several
such adjacent symbols together into a meaningful, identifiable
pattern, such as that of a walk, for instance. The equivalent of
this would be identifying a group of letters as a specific word.
And the final and most important step, the actual tagging, is,
of course, the equivalent of determining the part of speech
associated with a previously identified word. Once we obtain
a tagged dance score, as we have stated before, we can apply
any of a number of data mining techniques (based on a large
enough corpus of training data that has been tagged manually
by a human expert) in order to automatically classify the score
or perform a multitude of high-level tasks. The tagging process
itself, as well, is carried out automatically, by a pre-trained
system. In this section we will now proceed to describe the
problem at hand, the structure of our data and our suggested
approach.

A. Initial data

Our input data consists of LabanWriter output files, which
are essentially text files composed of lines of numbers. Each
of these lines represents either a part of the description of the
staves that compose the score, or, more importantly, one (and
only one) of the symbols used in Labanotation. Also, each
number on a given line denotes one specific attribute of the
symbol or staff description. One important thing to mention
here is that due to the overwhelming complexity of the Laban
notation, for the purpose of our study we have chosen to
consider only a fraction of its capabilities. Specifically, we
only consider the most basic and statistically most frequently
used symbols (roughly 25% of its capabilities, in terms of
symbols and symbol combinations we are able to “recognize”).
In future development we aim to include more, and eventually
all, of the capabilities of this language.

B. Preprocessing

Our suggested approach consists of two stages, that we are
going to describe in detail. The first of these - the preprocess-
ing stage - comprises two subphases of its own. The first of
these deals with the parsing of the input file and the conversion
of each file line into its Symbol counterpart. Basically, the
Symbol is a data type that groups together in a stand-alone
entity the information provided in the corresponding line that
is relevant to our system. The second sub-phase, which we
will from here on out call the first pass, deals with grouping
the primitive Symbols into intermediate level Gestures (we
will define the term a little further on). It is worth noting here
the difference between a Symbol (capitalized), representing
the entity described above, and a symbol (non-capitalized),
representing any of the individual shapes that populate the
Laban manuscript. Structurally, a Symbol is essentially a tuple
of the 5 basic attributes of the motion “token” considered
- position in timeline, duration, limb, horizontal orientation,
vertical orientation.

As we have stated before, each of the Symbols that we
have extracted directly from the input score in the first
preprocessing stage relates to the smallest available division of
motion. As such, for the purpose of obtaining better results in
the automatic high-level tagging step, we submit the sequence
of Symbols that we have obtained in the first preprocessing
to an intermediate tagging, the first pass, which is, essentially,
a second preprocessing. It is very important to note here that
although this step is rule-based, using a small set of rules
designed by hand, it is in no way a “recipe” for any high-
level tagging. Therefore, it does not interfere in any way with
the automatic nature of our tagging system. This stage merely
represents a part of the preprocessing phase, and the only
reason why we treat it separately from the initial preprocessing
is that, unlike the latter, this stage does not map each single
token to another single superior token, but rather groups
pairs of adjacent tokens together, resulting in a superior level
token. More precisely, while the actual preprocessing stage
converts score symbols to Symbol entities on a one-to-one



correspondence, the first pass converts Symbols to Gestures
on a two-to-one correspondence.

The way this stage works is by associating a pair of
consecutive same-limb Symbols that define a meaningful
sequence (such as a jump, or a weight shift, for instance),
with the corresponding Gesture. It goes to say that not all
sequences of two adjacent Symbols produce a meaningful
Gesture. Structurally, a Gesture is basically a tuple of four
attributes: position in timeline, duration, limb and gesture type.

We consider a number of six limb channels between which
we divide the score symbols, Symbol entities, and Gestures -
left and right support (where we define support as a leg with
weight on it), left and right leg (no weight on it), left and right
arm. During the first pass, we introduce an additional channel
- both support - where we include the Symbols and Gestures
from both regular support channels. The reason for this is that
one particular Gesture type is defined by conditions pertaining
to both regular support columns, and this approach leads to a
simpler decision process.

The Gesture “vocabulary” we have chosen to use comprises
the notions of weight shift, sweep, weightlessness, flex, and
extend. For example, a succession of a “left arm low-front”
symbol (non-capitalized) and a “left arm high-left” symbol
would be identified as a sweep Gesture, or a succession
of “both legs support” symbols separated by a long enough
“break” with nothing present in the support channels is iden-
tified as a “weightlessness” Gesture, and so on. Pictured in
Fig. 2 is an example of the preprocessing stage, namely the
transformation of a set of Symbols (pictured in the upper part
of the figure) into a set of Gestures (pictured in the lower
part).

One final important observation that we need to make at this
point is that unlike the Symbols obtained in preprocessing,
which are strictly sequential, the Gestures produced by the
first pass of processing may overlap in the dance timeline.
The reason we have chosen this approach is to allow the final
processing stage greater freedom in selecting the tag that is to
be attributed to a given sequence.

C. Tagging

The actual tagging, or second pass, is the final stage in our
suggested approach to dance tagging, and it encompasses the
actual creation of the high-level structure that constitutes the
main objective of our work. In one of the previous sections
we briefly described a Part-of-Speech tagger named the Brill
tagger, and stated our desire to adapt its main ideas to our
problem and apply its principles in the field of choreographic
notation, as opposed to actual text. To reiterate, our proposed
approach consists of two steps - an initial statistical tagging,
and a final, patched tagging. The tag vocabulary that we have
chosen to use is as follows: vertical shift (any motion of
the body’s center of gravity along the vertical axis), walk (a
succession of several steps), leap (a jump from one leg to either
the other leg, or both legs), hop (also a jump, but from both
legs to either one leg, or again both), gesture (a sequence of
fluid motion carried out by the same limb), step (as the name

Fig. 2. Preprocessing stage example

suggests, an isolated step), and weightlessness (lack of weight
on a leg).

Let us now take a look at the two individual tagging stages.
1) Statistical tagging: From here on, we are going to use

the notation Tag (capitalized) to denote the label attributed to a
given Gesture. As with the Brill tagger, our approach includes
an initial tagging phase based solely on a statistical training.
What this means is that our system is initially subjected to a
training phase, where it is provided with a corpus of sequences
that have been correctly tagged by a human. Based on this
corpus, our system computes a statistic of what the most likely
Tag is for each Gesture. Considering that we use a relatively
small vocabulary of Gestures compared to the corpus volume,
it is virtually impossible for us to encounter a Gesture with
unknown statistical tagging status, i.e. for which we do not
have enough occurrences within the training data to compile
a reliable statistic. In this stage of tagging we do not consider
the context of the Gestures to be tagged, and, as we have stated
before, we produce an exact one-to-one mapping.



2) Patched tagging: The second step of tagging, according
to the Brill model, is called patched tagging. Once all the
Gestures have been subjected to the preliminary tagging phase
that we have described above, the system reiterates over them
and applies all of the eligible patches that it has automatically
acquired, therefore modifying temporary Tags to final ones
wherever such a modification is required. We will describe
the patch acquisition process over the course of the next
subsection, but for now we will simply state that, to put it
succinctly, patches are contexts in which Gestures previously
tagged one way should be retagged in a different way. These
patches are acquired fully automatically, without any human
intervention.

D. System training

The first part of the training stage consists of elaborating
the statistics we have mentioned previously, of the most likely
Tag for each Gesture type. For this part, we use a portion of
70% of the available corpus. Another 20% (different from the
sample files used in training) we use for patch acquisition, and
the remaining 10% is reserved for testing.

For the patch acquisition, we first tag the patch section of
the corpus using the statistical training we have just completed.
Then we reiterate over the tagged files and compile a list of
errors, where an error is viewed as a triplet of an incorrect
Tag, the correct Tag that should have been attributed, and the
number of times that this exact mistake has been committed
throughout the patch training corpus. Then, for each error
triplet we determine which of the patch templates and in which
context best solves the given error, then we add it to the list
of acquired patches.

Listed below are the definitions of the three templates we
have designed.

• template #1: if told is preceded by ta in the same limb
channel, then change told to tnew

• template #2: if told is followed by ta in the same limb
channel, then change told to tnew

• template #3: if told is preceded by ta and followed by
tb in the same limb channel, then change told to tnew

A patch is defined as a tuple of four elements: a patch
template, an array of either one or two contextual Tags (as
we have seen above, the first two templates require one
contextual Tag, while the third requires two), an old Tag
(presumed mistaken), and a new Tag (presumed correct, meant
to overwrite the initial application of the old Tag). As such,
the patch that best resolves a given error is the one that most
reduces the number of occurrences of the given error, while
introducing as few additional errors as possible (brought on by
the cases where, despite the presence of the defining context,
the old Tag was actually correct).

E. Pseudocode and schematic representation

Before carrying out any of the tagging steps over a given
input file, we need to train the system, subjecting it to a
statistical phase and a patch acquisition phase. The pseudo-
code for the training stage is presented as Algorithm 1.

Algorithm 1 Training
{Input: Training corpus. Output: Final patches list.}
{Statistical training}
for all file ∈ trainingCorpus do

for all taggedGesture ∈ file do
tags(gesture, tag)← tags(gesture, tag) + 1

end for
end for
for all gesture ∈ gestureTypes do
tag(gesture)←MostLikelyTag(gesture)

end for
{Patch acquisition}
for all gesture ∈ gestureTypes do
tag(gesture)←MostLikelyTag(gesture)

end for
for all taggedGesture ∈ allF iles do

if tag(gesture)! = realTag(gesture) then
error ← GetError(tag(gesture), realTag(gesture))
if error ∈ errorsList then

count(error)← count(error) + 1
else

errorsList← errorsList+ error
end if

end if
end for
for all error ∈ errorsList do
GetBestPatch(error, suggestedTag, realTag, context)
finalPatches← finalPatches+ bestPatch

end for

The pseudo-code for the tagging process is presented as
Algorithm 2.

Pictured in Fig. 3 is a schematic of the entire process.Over
the course of the next subsections we will proceed to elaborate
on each of these steps, explaining them in detail. For now, to
briefly iterate over the process, the score file containing lines
of numbers defining the most minute symbols are read line
per line, and each line is interpreted and transformed into a
Symbol (capitalized, representing a data structure comprising
all the relevant features of the minute symbol). Symbols
are then paired into Gestures (using adjacency and context
criteria), and Gestures are then tagged for significance, turning
them into Tagged Gestures, as parts of the highest level of
segmentation.

IV. EXPERIMENTS

In order to test the applicability of our high-level frame-
work of dance tagging, we have gathered a dataset of 20
choreographic scores, which we have tagged according to
our suggested approach. Then, as proof of concept, we have
devised an application that receives a LabanWriter output
file as input, tags it according to the algorithm we have
described above, and then employs a simple data mining
technique (specifically, our own implementation of the Naive
Bayes algorithm) to classify it as either a folkloric eastern



Algorithm 2 Tagging
{Input: Symbols list. Output: Tagged Gestures list.}
{First pass}
limbChannelsList← GetLimbChannels()
for all limbChannel ∈ limbChannelsList do

for all Symbol ∈ limbChannel do
Gesture ← GetGesture(Symbol, next(Symbol))
GesturesList← GesturesList+Gesture

end for
end for
{Statistical tagging}
for all Gesture ∈ GesturesList do

TagGesture(Gesture,MostLikelyTag(Gesture))
end for
{Patched tagging}
for all Gesture ∈ GesturesList do

for all patch ∈ patchesList do
if IsAppliccable(patch, gesture, context) then
ApplyPatch(Gesture, patch) Retag(Gesture)

end if
end for

end for

Fig. 3. Schematic of the tagging process.

European dance, or a classical ballet piece. We have chosen
this particular algorithm (in its bare-bones implementation)
because it is one of the most basic ones available, making
for a fair test of our framework. Also, without the algorithm
optimizations in other implementations, we are guaranteed
that the classification process will not skew our results in the
segmentation and tagging portion.

A. Dataset

The training stage (statistical and patch acquisition) is
performed using a corpus of twenty choreographic pieces, all
pre-tagged manually (for algorithm evaluation purposes). We

have ten classical ballet pieces and ten folkloric pieces. The
scores have an average of 212 primitive symbols (the number
of primitive symbols in each file corresponding to the number
of useful lines in that file), and acquire an average of 168
Gestures after the preprocessing stage. In other words, the
total volume of data that we have used is of approximately 20
* 212 Symbols, or 20 * 168 Gestures.

B. Automatic tagging

Let us now take a look at the actual results we have
obtained. Even with statistical tagging alone, the accuracy is of
70 to 80%, and after applying the acquired patches, we obtain
an accuracy of over 85%, and as high as 94% (in classical
ballet vs. folkloric dances), which is a very promising result.
Two examples of actual patches that our system has acquired
(“translated” into natural language) are as follows: “If <step>
tag is preceded and/or followed by another <step> tag, then
change it to <walk> tag” and “If <hop> tag is preceded by
<step> tag, then change it to <leap> tag”.

Pictured in Fig. 4 are graphics of the accuracy levels
we have obtained for different dance scores from the two
categories we have considered.

This goes to show that in our particular scenario, the rule-
based approach is indeed an improvement over the traditional
statistical approach, since, as we have explained before, the
former is far more reliable when using a rather limited volume
of training data.

C. A potential application - genre classification

As a means of testing our theoretical framework, we have
implemented an application that employs our solution to dance
tagging (as we have described it over the course of the
previous sections) and used it to decide whether a given dance
score is either a classical ballet piece, or a folkloric eastern
European dance. After the two main stages in our solution
(preprocessing, and actual tagging), the application displays
the list of tokens produced (be they Symbols, Gestures, or
Tags), along with a brief statistic compiled at the end of
each stage, and, of course, the final decision in relation to
the identified genre.

For the verification part of out experiment, which meant
evaluating the classification accuracy when not using our sys-
tem, we considered the symbols in each score (uncapitalized,
meaning the lowest level entities present) to be the features.
For the actual testing, we considered the tagged Gestures,
context sensitive, as the features. In both cases, the training
set consisted of 70% of our entire score collection (meaning
seven complete dances, out of the ten we had available for each
of the three categories considered - classical ballet, modern
ballet, folkloric dance), and the testing set consisted of dance
sequences of varying lengths (but no shorter than a quarter of
the average length over all the complete dances) extracted from
all 100% of the available dances. The reason for imposing
this minimal length was that the complete dance sequences
in themselves being relatively brief (around four minutes of
dance, on average), sequences any shorter than this would



Fig. 4. Accuracy output for classical and folkloric scores (in Gesture tagging).
The accuracy for a given dance is the accuracy with which the Gestures
composing that dance are correctly tagged (according to their known human-
assigned tag).

be far too limited for classification to even make sense. For
instance, one might imagine trying to classify one generic step
as part of a dance genre - the shorter the sequence, the more
universally applicable it is.

As far as results are concerned, we have obtained an accu-
racy of 98% in automatically differentiating between classical
ballet and folkloric dance, based on our framework. This is,
however, partly due to the fact that the two categories have
been specifically selected to be sufficiently different in aspect
(as far as general rythm and most frequent pieces of movement
are concerned). We have also tested with a smaller number
of modern ballet pieces versus classical ballet (the two being
much more similar than the classical ballet - folkloric dance
pairing), and the accuracy has predictably declined to 72%
(which is, however, still quite a promising result). Beside
our own implementation of the Naive Bayes classification
algorithm, we have also tested our data with several other
decision algorithms, using the Weka framework [11]. The
parameters used in testing these algorithms were the default

TABLE I
TEST RESULTS FOR CLASSIFICATION STAGE (FOR TAGGED SCORES,

CONTEXT CONSIDERED).

Algorithm Classical vs. Folkloric Classical vs. Modern

Naive Bayes 98% 72%

ID3 97.3% 74%

AdaBoost 98.5% 75%

K-Nearest Neighbor 96% 70.2%

C4.5 99% 72.4%

Random forest 94.3% 69.5%

TABLE II
TEST RESULTS FOR CLASSIFICATION STAGE (FOR UNTAGGED SCORES,

CONTEXT NOT CONSIDERED).

Algorithm Classical vs. Folkloric Classical vs. Modern

Naive Bayes 65.3% 51.0%

ID3 70.8% 56.4%

AdaBoost 72.0% 64.8%

K-Nearest Neighbor 59.7% 48.2%

C4.5 75.1% 66.3%

Random forest 68.8% 47.3%

ones, since we are aiming to see the baseline result for each of
these algorithms, and since different algorithms have different
available degrees of optimization. We will not elaborate here
on these specific parameters, since this application is merely a
proof of concept, and these parameters could be modified in a
multitude of ways, leading to potentially better results. What
we are interested in is a baseline for each of these algorithms.
Listed in TABLE 1 are the results we have obtained, in terms
of classification accuracy, when using the fully segmented and
tagged scores (by means of our suggested algorithm).

As we can see, the classification accuracy is quite close
for all the algorithms tested, proving that our approach is
universal, and a good starting point for subsequently applying
either of these algorithms, and is not limited to functioning
with any single one. Also, the utility of our segmentation and
tagging process is proven by the difference between these
results and the ones obtained when using the unprocessed
scores (in their original, lowest level segmentation, of Laban
symbols), listed in TABLE 2. The main reason for this decline
in accuracy is the increased occurrence of overfitting when
considering each tiny Laban symbol as a relevant feature. This,
coupled with the limited amount of training data that would
provide examples of all the contexts and symbol combinations
that we can expect and their relevance in the classification
process, fully explains the decline in results when removing
our tagging layer.

As a partial conclusion, we can say that although our dataset
was limited (due to the scarcity of available data already in
usable electronic format, despite its abundence in analogical
format, and thus the necessity for us to convert our own data,
which is a highly time-consuming process) we have been able
to prove that our suggested approach is not only feasible, but



also able to produce very promising results, considering our
achieved accuracy, both in tagging and in genre classification.

V. CONCLUSIONS AND OUTLOOK

In order to reiterate our proposed approach, our main
goal (and original contribution to this field) was to design
a machine learning algorithm based on rules and inspired by
the main concept of the Brill Part-of-Speech tagger, dedicated
to enabling the performance of several high-level tasks, such
as pattern recognition, music recommendation, etc. We began
with an input file in text format, consisting of a large array
of lines of numbers. This input file encodes a Laban score,
and each of its composing lines of numbers corresponds to a
particular Laban symbol. In the preprocessing stage, we first
parse the file and group the information in each line of text
into a Symbol entity, which is the smallest meaningful entity
that we can work with in our application. Having done that,
still in the preprocessing phase, we group pairs of consecutive
Symbols into intermediate-level entities named Gestures. We
then move on to the actual tagging, which, in turn, has two
parts of its own. In the first part, we tag each Gesture based on
its most likely association in the training corpus, while in the
second part we determine a set of patches that improve tagging
accuracy in the training corpus. Once the system has been
trained and a file has been subjected to the tagging process,
we can then employ any of a large number of data mining
techniques in order to decide the genre of the dance, based
on its annotation. Our solution brings innovation to the fields
of Machine Learning and Pattern Recognition and paves the
way to several possibilities as far as potential applications are
concerned. Not only did we expand the field of automated
pattern recognition to the dance world, but our approach has,
as we have seen, yielded very promising results, both in the
tagging stage and in the classification stage. There is, however,
much more that can be done in future work. For the sake of
simplicity and a more focused evaluation of our suggested
approach, we have considered a greatly reduced portion of
the Labanotation vocabulary. Before this solution can be made
available to the general public and commercially used, we need
to scale it up to include the entire array of Laban symbols and
notations. There is still much work to be done in order for our
approach to accommodate the entire richness of this complex
language. One favorable thing about this direction, however,
is that we have implemented our solution in such a way as to
easily allow the expansion of the vocabulary with which we
have designed the system to work. Once we expand our system
to “understand” a wider array of notations and symbols, we
can also expect our classification accuracy to improve as well.
The reason for this would be the newly acquired access to a
greater number of criteria by which to judge the closeness of
a sample dance sequence to one genre or another.

And lastly, one other potential direction of development for
our work would be to provide our system with an interface
enabling input in motion capture form. As such, a given dance
sequence could be entered for processing either by means of
Labanotation scores (as it is now), or by direct motion capture

from a dancer performing the given sequence of movements.
The advantage of this latter approach is mainly the improved
precision in describing the movement we wish to analyze,
as well as the smaller amount of time and effort required
for obtaining our input. As we have stated before, although
Laban scores are widely available, very few of these can be
found in an electronic format that is machine-readable. As
such, at the moment, a considerable amount of manpower
needs to be employed in order to manually convert handwritten
Laban scores to LabanWriter files (or any other file format that
we can work with in an automated manner). By representing
movement as data acquired with the aid of motion capture
equipment, we could circumvent this entire process and have
quicker access to a much larger dataset.

REFERENCES

[1] N.I. Badler and S.W. Smoliar, Digital Representations of Human Move-
ment, University of Pennsylvania, Pennsylvania, 1979.

[2] R. Benesh and J. Benesh, Reading Dance: The Birth of Choreology,
McGraw-Hill Book Company Ltd, 1983.

[3] T. Brants, TnT: A Statistical Part-of-Speech Tagger, Proceedings of the
sixth conference on Applied natural language processing, 2000.

[4] M. Brennan, A Computerized Methodology for Recording and Analyzing
Movement Qualities, Dance Notation Journal, 1986.

[5] E. Brill, A Simple Rule-Based Part of Speech Tagger, University of
Pennsylvania, Pennsylvania, USA, 1992.

[6] N. Eschkol and A. Wachman, Movement notation, Weidenfeld and
Nicolson, London, 1958.

[7] S. Goldwater and T. Griffiths, A Fully Bayesian Approach to Unsuper-
vised Part-of-Speech Tagging, The Annual Meeting of the Association for
Computational Linguistics, 2007.

[8] K. Hachimura, Digital Archiving of Dancing, Ritsumeikan University,
Kusatsu, Japan, 2006.

[9] K. Hachimura, K. Kojima and M. Nakamura, Laban Editor: Graphical
Editor for Dance Notation, Proceedings of the 2002 IEEE Int. Workshop
on Robot and Human Interactive Communication, Berlin, Germany, 2002.

[10] D. Herbison-Evans, Dance and the Computer: A Potential for Graphic
Synergy, University of Sydney, 2003.

[11] G. Holmes, B. Phahringer, P. Reutemann, M. Hall, E. Frank and I.H.
Witten, The WEKA Data Mining Software: An Update, ACM SIGKDD
Explorations Newsletter, vol. 11, nr. 1, p. 10-18, 2009.

[12] A. Hutchinson and A.H. Guest, Labanotation, or Kinetography Laban:
The System of Analyzing and Recording Movement, Dance Books, 1996.

[13] G.P. Kurath, The Journal of American Folklore, JSTOR, 1957.
[14] A. McCallum, J. Lafferty and F. Pereira, Conditional Random Fields:

Probabilistic Models for Segmenting and Labeling Sequence Data, Ma-
chine Learning - International Workshop and Conference, 2001.

[15] M. Nakamura, W. Choi, W. Choensawat, S. Takahashi and
K. Hachimura, Description and Reproduction of Stylized Traditional
Dance Body Motion by Using Labanotation, Transactions of the Virtual
Reality Society of Japan, Vol.15, No.3, p.379-388, 2010.

[16] L. Ross, L. Venable, S. Sutherland and M. Tinsley, Laban-Writer 2.0,
The Ohio State University, Department of Dance, 1989.

[17] R. Ryman, T. Calvert, W. Wilke and I. Fox, Applications of Computers
to Dance, Computer Graphics and Applications, IEEE, vol. 25, nr. 2, p.
6-12, 2005.

[18] J. M. Stuart, and E. Bradley, Learning the Grammar of Dance, Pro-
ceedings of the Fifteenth International Conference on Machine Learning
(ICML 1998), Madison, Wisconsin, USA, July 24-27, 1998

[19] A. Trexler, R.K. Thornton, M. Apostolos, D. Petty, N. Badler, T.W.
Calvert, S.D. Kahn, R. Rhyman, P. Dozzi, J.A. Gray, M.A. Brennan and
G. Politis, Dance Technology: Current Applications and Future Trends,
The American Alliance for Health, Physical Education, Recreation, and
Dance, Virginia, USA, 1989.


