:COl

Title Sorted-pareto dominance: an extension to pareto dominance and
its application in soft constraints
Authors O'Mahony, Conor;Wilson, Nic

Publication date

2012-11-07

Original Citation

0'Mahony C., Wilson, N. (2012) Sorted-Pareto Dominance:

an extension to Pareto Dominance and its application in Soft
Constraints. 24th |IEEE International Conference on Tools with
Artificial Intelligence (ICTAI). Athens, Greece, 7-9 November 2012.

Type of publication

Conference item

Rights

© 2012 IEEE. Personal use of this material is permitted.
Permission from |IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date

2024-04-25 06:04:32

[tem downloaded
from

https://hdl.handle.net/10468/910

University College Cork, Ireland
Colaiste na hQOllscoile Corcaigh

https://hdl.handle.net/10468/910

Sorted-Pareto Dominance: an extension to Pareto
Dominance and its application in Soft Constraints

Conor O’Mahony
Cork Constraint Computation Centre
University College Cork, Ireland
Email: c.omahony @4c.ucc.ie

Abstract—The Pareto dominance relation compares decisions
with each other over multiple aspects, and any decision that
is not dominated by another is called Pareto optimal, which is
a desirable property in decision making. However, the Pareto
dominance relation is not very discerning, and often leads to
a large number of non-dominated or Pareto optimal decisions.
By strengthening the relation, we can narrow down this non-
dominated set of decisions to a smaller set, e.g., for presenting
a smaller number of more interesting decisions to a decision
maker. In this paper, we look at a particular strengthening of the
Pareto dominance called Sorted-Pareto dominance, giving some
properties that characterise the relation, and giving a semantics
in the context of decision making under uncertainty. We then
examine the use of the relation in a Soft Constraints setting, and
explore some algorithms for generating Sorted-Pareto optimal
solutions to Soft Constraints problems.

I. INTRODUCTION

The notion of Pareto optimality originated in social welfare
and economic theory, and the Pareto dominance relation is
widely used in that field and many other related decision
making fields. In a general decision-making context, a decision
Pareto dominates another if it is strictly preferred in at least
one aspect of the decision and at least as good in all other
aspects [22, Ch. 2] (where an aspect could be: a voter in
collective decision making, a state of the world in decision
making under uncertainty [6], or a criterion in multi-criteria
decision-making [14]). However, a problem with Pareto domi-
nance is its lack of discriminatory power, as many comparisons
between pairs of decisions do not result in dominance, which
in turn leads to a large number of non-dominated or Pareto
optimal solutions. Therefore, it is desirable to look at relations
that extend Pareto dominance, where the extending relation
has more power when comparing decisions, thus leading to a
smaller set of non-dominated decisions that are all still Pareto
optimal.

In this paper we look at an extension to the Pareto domi-
nance relation, called Sorted-Pareto dominance. This relation
is extended by the Leximin/Leximax relation [7], [20], which
compares two decisions by lexicographically comparing the
worst evaluations of the decisions. However, Leximin/Leximax
places excessive emphasis on the worst evaluations (as it
ignores the better evaluations when comparing two decisions,
except if the decisions have the same worst evaluation)
whereas Sorted-Pareto compares decisions considering all

Nic Wilson
Cork Constraint Computation Centre
University College Cork, Ireland
Email: n.wilson@4c.ucc.ie

evaluations. Also, Sorted-Pareto assumes only a qualitative
or ordinal scale, and therefore does not rely on quantitative
information to compare decisions (as in, for example, the
sum of weights approach, where decision evaluations are
aggregated via summation and then compared).

The remainder of the paper is outlined as follows. Section II
describes a simple decision making framework and the notion
of Pareto dominance. Section III defines the Sorted-Pareto
dominance relation, giving some properties that characterise
the relation, and a semantics in terms of Weighted Constraint
Satisfaction Problems in situations where there is uncertainty
surrounding the weights. Section IV examines Sorted-Pareto
dominance in the context of a general Soft Constraints problem
framework, and describes a backtracking search algorithm and
depth first branch and bound algorithms where (as well as
a lower bound) an upper bound is used. Section V details
our implementation of the Sorted-Pareto framework and the
algorithms in our Soft Constraints solver, and discusses results
obtained when solving particular instances of Sorted-Pareto
problems using this implementation, where the use of an upper
bound is shown to be helpful in some cases. Section VI briefly
describe some extensions to the Sorted-Pareto dominance
relation, with a view to motivating possible future work.
Section VII highlights some similar work in this area, and
Section VIII concludes with some discussion.

II. PRELIMINARIES

In what follows, we describe a decision making setup where
the objective is to minimise (e.g., costs), however, as usual,
an alternative representation can be formulated where the
objective is to maximise (e.g., utility). Let A represent a set
of decisions, and let S = {1,...,m}, represent a finite set of
decision aspects. Let «; represent an evaluation, on a totally
ordered scale 7', of decision « in aspect ¢, where the scale
T is ordered by <. This induces a relation <; on A defined
as, for all o, B € A, o =; B, if and only if, o; < S, ie.,
« is as least as good as (in aspect i. Let <; represent the
strict part of <;, (i.e., @ <; B, if and only if, a <; S and
B #; a). Let =; represent the indifference part of <, (i.e.,
a =; B, if and only if, a <; 8 and 8 <; «). Therefore for
each decision o € A, we have a vector of evaluations over
the m aspects, (a1, ..., a,,). Each decision is characterised
by its vector of evaluations, and so for simplicity, we refer

to a decision « as meaning some « € A (i.e., some decision
in the set of decisions) or as meaning a vector of evaluations
corresponding to a decision (i.e., & = (a1, ..., Qnm)).

For all «, 8 € A, o Pareto dominates (3, written as a <p (3,
if and only if (a) for all < € {1,...,m}, o %; 3, and (b) there
exists j € S such that o <; § [22]. (For the weak version of
the relation, <p, only condition (a) is required). A decision
a € A is Pareto non-dominated if and only if, it is not Pareto
dominated by any other decision, i.e., there is no 5 € A such
that 8 <p «. The set of these decisions, we will denote as
OPTp(A).

III. SORTED-PARETO DOMINANCE

In this section, we define the Sorted-Pareto dominance re-
lation, which is an extension to the Pareto dominance relation,
and based on an ordering defined in [15]. An extension <, to
some relation <, is a relation such that, if « is preferred to
[according to the original relation, then it is still preferred
according to the extension, ie., @ < f = a <, (. For
these definitions, we assume decision making situations where
the evaluations of the aspects are using the same scale, for
example in the situation where the aspects correspond to
different voters or experts, or even different criteria that use the
same scale. However, even in situations where evaluations of
aspects may not be on the same scale, then there are methods
for modifying or normalising the different scales, e.g., using
[15], so that the scales are commensurate. We also assume that
each of the aspects are of equal importance, or in other terms,
that the the ordering of the evaluation vector is irrelevant.
This naturally occurs in decision making situations such as,
group decision making where all experts are considered equal,
or in decision making under uncertainty where there is no
information on which state will occur.

To faciliate the definitions we introduce some additional
notation: A sorted permutation o' of a decision « is a re-
ordering of the evaluations of the decision in ascending order,
ie., al = (a(l), RN a(m)), such that, am) <. S Q-

Definition 1. For all o, € A, o Weak Sorted-Pareto
dominates (3, written as o <g S, if and only if. o' <p 7,
ie, agy < By, foralli € {1,...,m}. Forall o, € A «
Sorted-Pareto dominates (3, written as « <g 3, if and only if,
al <p A1, ie. aiy < By, foralli € {1,...,m} and there
exists j € {1,...,m} such that oy < B;. Equivalently,
Sorted-Pareto Dominance can be defined in terms of g, as,
a <g B, if and only if, a X 5 and B £s a.

The following proposition gives an alternative character-
isation of Weak Sorted-Pareto dominance. This relates the
relation to the orderings defined in Definition 2.1 of [4] and
Definition 11 of [19].

Proposition 1. For all o, € A, « Weak Sorted-Pareto
dominates B, if and only if, there exists a permutation o of «,
such that, o(a) <p B.

A decision o« € A is Sorted-Pareto non-dominated, if
and only if, it is not Sorted-Pareto dominated by any other

decision, i.e., there is no § € A such that 8 <g a. We
will denote this set as OPTg(.A). Proposition 2(iii) below
implies that the set of Sorted-Pareto non-dominated decisions
OPTs(A) is a subset of the Pareto non-dominated decision
OPTp(A), therefore we have a smaller set of solutions that
are still Pareto optimal. Let us look at an example.

Example 1. Consider a trivial group decision making prob-
lem, where the evaluation occurs of two decisions, A =
{a, B}, by three different decision makers, S = {1,2,3},
on the ordered scale T = {low,med, high} (where of
course low < med < high). Suppose decision « is eval-
uated as (low, high,med) and decision 3 is evaluated as
(low, low, high). According to Pareto dominance, we see that
a Ap B, and B £p q, Le., neither decision dominates the
other, and therefore OPTp(A) = {a, B} (so either could
be chosen as the actual decision). Now, if we use Sorted-
Pareto dominance instead of Pareto dominance, then the sorted
permutations of the decisions are o = (low, med, high) and
BT = (low,low, high), and we can see that 37 <p o, ie.,
B <s «, i.e., B dominates o using the Sorted-Pareto relation.
Therefore, in this instance, [is the only non-dominated
decision, i.e., OPTg(A) = {B}, and therefore it could make
sense to choose decision 3 over o.

A. Properties of Sorted-Pareto dominance

We now look at some general properties of the Weak Sorted-
Pareto and Sorted-Pareto dominance relations, followed by
properties of the relations when viewed as a ordering on
multisets.

Proposition 2.
(i) KXg is reflexive (ie., for all « € A o <5 «) and

transitive (i.e., for all o, 5,7 € A, if « <g B and
B <s 7, then o Xs 7y), therefore it is a preorder.

(ii) <g is irreflexive (ie., for all « € A, o 4Ag5 «) and
transitive.

(iii) <Xs (resp., <g) extends the weak Pareto (resp., Pareto)
ordering, i.e., for all a, 5 € A, if a xp B (resp., a <p
B), then o <g B (resp., o <5 B).

(iv) Let <R be some ordering on A that extends the weak
Pareto ordering <p. Define relation < on A by, for all
a,fEA a=xB < ot < BT Then <X extends <.

Part (iv) above, which follows immediately from the defini-
tions, implies that Sorted-Pareto dominance is extended by the
Leximin and Leximax [7], [20] total preorders. Sorted-Pareto
is also extended by generalized Lorenz dominance, and by
Ordered Weighted Averages [11], which are other refinements
of Pareto dominance, however unlike these relations Sorted-
Pareto can be used for purely ordinal or qualitative information
aggregation.

Sorted-Pareto on multisets and its properties: We show how
the Sorted-Pareto ordering can be characterised, in particular,
when viewed as an ordering on multisets.

Let us say that an ordering < on A is unaffected by
permutations if, for any two decisions « and 3, and for any

two permutations o and o’ of the decision aspects, a < 3
< o(a) < o/'(8). In this case, < can be represented as
an ordering on M T the set of multisets of T, rather than
vectors of T'. Orderings that are unaffected by permutations are
important, for instance, in the context of soft constraints, where
the ordering of the soft constraints is taken to be irrelevant (so
we can view the input as being a multiset of soft constraints).
Its definition immediately implies that the Sorted-Pareto is
unaffected by permutations. In fact, it can be easily seen that
it is the (setwise) smallest such relation that extends the Pareto
ordering.

In the remainder of Section III-A we consider the induced
Sorted-Pareto ordering on M7T. If A is a multiset of T' then
we say that vector «, of k values in T, is compatible with A if
A is the multiset {cv; : 4 =1,...,k}. We have that A ¢ B if
and only if there exists some vector o compatible with A and
vector 3 compatible with B such that « weak Pareto dominates
3. We also define () < (. Sorted-Pareto < is a partial order
on MT.

Consider the following two properties for orderings of M7,
where x and y are arbitrary elements of 7', and A, B and C are
arbitrary T'-multisets. The first property relates the ordering on
T with the ordering on singleton multisets. The second is a
kind of independence (& is multiset sum).

M z<y={z} < {y}
2) AXx B=AwC=<xBwC.

Proposition 3. The Sorted-Pareto ordering <g on multisets
of T is the unique minimal preorder on M" satisfying (1) and
(2). That is, Xg satisfies (1) and (2), and if X is an ordering
of multisets of T satisfying (1) and (2) and A and B are both
T-multisets then A <¢ B = A < B.

Another characterisation of Sorted-Pareto is given by Prop-
erty (3) below, where A and B are arbitrary multisets in
T. Proposition 4 shows that the Sorted-Pareto ordering is
the unique ordering (that only compares multisets of equal
cardinality) satisfying (3).

(3) A < B, if and only if],
min(A4) < min(B) and A—{min(A4)} < B—{min(B)}.

Proposition 4. Let < be an ordering on M7 that only
compares multisets of equal cardinality, i.e., such that A X B
= |A| = |B|. Then < satisfies Property (3) if and only if <
= <s-

B. A Semantics for Sorted-Pareto

We now look at a semantics for the Sorted-Pareto domi-
nance. Firstly, as given in Section II, this semantics assumes
some totally ordered qualitative or ordinal scale 7', which is
ordered by <, and each decision o« € A to be characterised
by its vector of m evaluations, where each evaluation is on
the scale 7T'.

One way of comparing decisions using these evaluations is
to map the qualitative scale values onto quantitative values,
for example, representing some sort of cost. To do this, one
can define a weights function f on the scale values, e.g., f :

TABLE 1
RESULTING SUM OF WEIGHTS FOR f1 AND fo.

A ity Ji(wi) | 35 fa(vi)
a = (low, low) 4 2
B = (low, med) 5 5
~v = (low, high) 8 6
8 = (med, med) 6 8
€ = (med, high) 9 9
o = (high, high) 12 10

T — RT, where the function is monotonic with respect to the
ordering of the scale, i.e., for all v,v' € T, v <V’ & f(v) <
f(@"). Therefore, for our set of decisions .4, and using some
weights function f, the decisions can be compared and ordered
using an order relation <y, which is given by the sum of the
m weights, ie., for some «,8 € A, o <y B, if and only
if: 7 flag) < Yo, f(B:). This order relation <y is a
total preorder on decisions, but for different mappings (i.e.,
different f), the resulting orders could be different.

For example, Table I shows the resulting sum of weights
when two functions f; and f5 are applied to a set of decisions
A, where f; is defined by fi(high) = 6, fi(med) = 3, and
filow) =2, and f5 is defined by fa(high) = 5, fa(med) = 4,
and fo(low) = 1). Both f; and fy are monotonic w.r.t. to the
scale but the resulting orders given by the sum of weights are
different (i.e., 6 <y, v, but v <4, 6).

When it is possible to provide a weights function (like f;
or fo) to map the scale values to some quantitative measure,
then it is easy to compare decisions by using the sum of
these weights. However, sometimes it is not possible to create
this quantitative mapping, e.g., when this information is not
available or is uncertain, so we can consider a different order
that does not rely on this quantitative information. If we
consider all possible weights functions f : T — R* (such
that f is monotonic with respect to the ordering of 7'), then
we can define an order relation <y on A as:

Va,8 € A, a <p < a <; f, Vf monotonic w.r.t. T

This relation is the intersection of all possible order relations
<y, for all monotonic functions f defined on 7T'. By Theorem
1, this is equal to the Weak Sorted-Pareto order <g.

Theorem 1. < is equal to the Weak Sorted-Pareto order <s.

Proof: First we show that for all o, 5 € A,a <5 8 =

a <p (. Assume « =<g (. This implies, by definition of
<s, o <p BT, which means that oy < By, for all
i € {1,...,m}. Therefore, for any f, >, flo)) <y
> f(Buy)- Since o' and BT are permutations of « and
B respectively, then Y7 f(aw)) <5 Yty f(Bu) <
S fleg) < 57T f(Bi), which implies, for any monotonic
function f, o <y §3. Since this is true for any f, then a <p .
Now we show that for all o, € A, a 45 8 = a £r S.
Assume a £ 3. This implies, by definition of <5, ol £p
BT, Therefore, 3i € {1,...,m} such that gy £ By We
can construct a monotonic function f such that oo £ 3, and
therefore o £ B. For instance, assign f such that f(v) =

0 if v < ag), and f(v) = 1 otherwise. Hence f(a(;)) =
1 for all j > i and f(B(;)) = O for all j < 4. Therefore,
2%1 flagy) = m i+ 1and 370, f(By)) < m—i, so
> i flagy) > D252 f(B(j))- Hence, 3f such that o £ 3,
which shows a Lp f.]

This gives a semantics to Sorted-Pareto, as a relation that
can be used in decision making situations where there may
only be ordinal or qualitative information available, and it
provides an ordering that is consistent with any possible
weights function selected to map an ordinal scale to a numer-
ical one. It can be viewed as a more cautious representation
than a weighted constraints one, and it can be applied in
many of the application areas of weighted constraints. The
weighted constraints formalism assumes that the costs are on
an additive scale, where the cost of A and B is the sum of
the costs of A and B; however, in many situations this can be
questionable. For example, suppose one is using a weighted
constraints solver to find a most probable explanation (MPE
problem) [18]. Elicitation of probabilities can be problematic
and unreliable, so instead of taking the elicited values at face
value, one considers them as just representing the ordering
between the probabilities. In this case, Theorem 1 shows that
Sorted-Pareto represents the order relation that all compatible
probability assignments agree with.

IV. SORTED-PARETO IN SOFT CONSTRAINTS

Soft Constraints [3][21, Ch. 9] can be used to model
many real-world problems when there is a need to specify
preferences on particular aspects of the problem solutions. A
soft constraint associates a preference degree to an assignment
of a set of decision or problem variables. All the preference
degrees of an assignment given by the soft constraints can
be combined to give the overall preference degree of the
assignment, with the aim to ordering these assignments and
obtaining a set of optimal solutions. In this section, we look at
a Soft Constraints framework for Sorted-Pareto, and provide
some algorithms for finding Sorted-Pareto optimal solutions
to Soft Constraints problems.

A. A General Framework for Soft Constraints

Here we construct a general framework for Soft Constraints
problems, and create a Sorted-Pareto instance of the frame-
work. Firstly, a Preference Degree Structure (PDS) (based on
[8]) is a tuple P = (I, ®, <), where I is a set of preference
degrees, < is a partial order on /, and ® is a commutative
and associative operator, monotonic with respect to =< (i.e.,
a 2 b= a®c = b®c) which is used to combine the preference
degrees. We define a general Soft Constraints problem (based
on [25]) to be a tuple F = (V,D,C,P), where V is a set
of problem variables, D is a set of variable domains, C is a
multiset of soft constraints, and P is a PDS, and we describe
this Soft Constraints problem briefly as follows.

Let D(X) denote the domain of variable X € V. An
assignment is a tuple representing a mapping of some set
of problem variables to values in their domains, i.e., an
assignment is a tuple in D(U), for some U C V), where

D(U) = [[xecy P(X). A complete assignment is a tuple such
that all problem variables have been assigned, i.e., some tuple
in D(V). A soft constraint ¢ € C is a mapping from a tuple
defined on a set of variables V. (known as the scope of the
constraint) to a preference degree, so, ¢ : D(V,.) — I. Thus,
for some assignment u, each soft constraint ¢ € C is applied
to the subtuple of the assignment corresponding to the scope
of the constraint, i.e., c(u*"*), (where u*"* is the projection of
assignment u to the variables in V.), and we abbreviate this to
¢(u). The overall preference degree p(u) of an assignment v is
the combination of all the preference levels of all constraints,
ie. p(u) = @, cc c(u). An optimal assignment v is a complete
assignment such that there is no other complete assignment '
such that p(u') is preferred to p(u), i.e., there is no other
assignment u’ such that p(u’) < p(u).

For the Sorted-Pareto instance of this problem, we use a
Preference Degree Structure defined as follows. The set of
preference degrees is the set of multisets of T, i.e., I = M7,
the combination operator is multiset sum, i.e., ® = W, and
the preference relation is the Sorted-Pareto ordering, i.e., <
= <g, extended in the obvious way to multisets in 7" of the
same cardinality. So the overall preference degree p(u) of an
assignment v is p(u) = W, o c(u) = {c(u} : c € C}, ie., the
overall preference degree is given by the multiset containing
all the preference degrees. An optimal assignment is one such
that there is no assignment ' such that p(u’) <g p(u).

B. Solving Soft Constraints problems

We now look at some algorithms for searching for a set of
non-dominated solutions to a Soft Constraints Problem. We
also assume that there is a set of hard constraints, C’, i.e.,
constraints which allow or disallow certain tuples of domain
values, so we extend our Soft Constraints Problem definition
to include this set C’. Therefore a Soft Constraints problem is
a tuple G = (V,D,C,C’, P).

BRUTESEARCH algorithm

In a standard backtracking or depth first search, each prob-
lem variable in turn is chosen and assigned a value from its
domain. The domains of the variables are updated and incon-
sistent values are removed, in order to maintain some form of
consistency with the set of hard constraints. If a variable has no
legal values left in its domain, then the search will backtrack.
The algorithm also maintains a set of non-dominated or “opti-
mal” assignments, and once a complete consistent assignment
is encountered, the algorithm will compare the preference
level of this assignment (given by the soft constraints) with
any previously found non-dominated complete assignments,
and update the set of non-dominated assignments if this new
complete assignment is non-dominated. This algorithm, as
described, can be considered as a ‘brute force’ approach to the
soft constraints, so we label this algorithm BRUTESEARCH.

DFBBSEARCH algorithm

In a depth first branch and bound (DFBB) search, which
is a standard improvement on the simple backtracking search,

instead of only testing if complete assignments are dominated
by the set of non-dominated solutions, the algorithm will
also check to see if partial assignments are dominated. It
does this as follows. First it calculates a lower bound for
the current partial assignment, which is a lower bound on the
preference level of any complete assignment extending this
partial assignment. Then, if this bound is strictly dominated
by some previously found non-dominated solution, the search
will backtrack, since all completed assignments extending the
current partial assignment will be dominated. This approach
improves on the original algorithm by eliminating parts of the
search space that do not contain any non-dominated solutions,
therefore eliminating unnecessary dominance checking and
reducing the amount of time the algorithm spent doing these
checks. We label this algorithm DFBBSEARCH.

For Sorted-Pareto, we can calculate a lower bound pref-
erence level for some partial assignment wu, as follows: Let

c1,...,Cy be the soft constraints in C once u has been
instantiated. Then the lower bound preference level p,(u)
of w is given as p.(u) = (f™,..., ™), where "™ =

ming ¢;(t), i.e., the minimum value of ¢; over all tuples ¢,
where t € [[ey, D(X).

PANDSEARCH algorithm

We now look at another algorithm which is motivated as
follows. Since in this problem we are dealing with a partial
order on the set of complete assignments, we have a set of non-
dominated solutions at each point in the search. However, not
all of these assignments are relevant in each part of the search
space, so if it can be shown that some complete assignment
s fails to dominate any complete assignment extending partial
assignment u, then there is no need to consider assignment s
in the search space extending below u. To determine which
previously found complete assignments are relevant to a partial
assignment at a particular point in the search, the algorithm
calculates an upper bound for the current partial assignment,
which is a upper bound on the preference level of any complete
assignment extending the current assignment. If this bound
is not strictly dominated by the previously found complete
assignment s, then s can be ignored in the subsearch extending
below w. This improves on the previous algorithm by further
eliminating unnecessary dominance checks, but at the cost
of performing this extra test. A similar idea in [26] has
been shown to be effective in optimisation with respect to
comparative preferences.

For Sorted-Pareto, we can calculate an upper bound pref-
erence level for some partial assignment u, as follows: Let

c1,...,Cm be the soft constraints in C once u has been
instantiated. Then the upper bound preference level p*(u)
of w is given as p*(u) = (P, ..., cBa*) where ¢"®* =

max; ¢;(t), i.e., the maximum value of ¢; over all tuples ¢,
where t € [[¢y, D(X).

Algorithm Desclription: The algorithm is given in Figure
1. Firstly, we describe the auxiliary functions used by the
algorithm during the course of the search. NEXTVAR() returns
the next variable to be assigned. HASNEXTVAR() returns

true if there is another variable to assign. NEXTVAL(X)
returns the next value from the domain of variable X to
assign. HASNEXTVAL(X) returns true if there is another
value in the domain of variable X. ISSDOMINATED(u, S)
returns true if complete assignment u is strictly dominated
by any s € S. REMOVESDOMINATED(S, S”) returns a new
set, containing the elements of set S that are not domi-
nated by any element of set S’. ISCONSISTENT(u) returns
true if partial assignment wu is consistent with the hard
constraints of the problem. ISPAD(Ib, OPT) returns true if
the preference level bound [b is dominated by some solu-
tion in the set OPT. CALCULATEUPPERBOUND(u)) calcu-
lates an upper bound preference level of partial assignment
1. CALCULATELOWERBOUND(u) calculates a lower bound
preference level of partial assignment w. REDUCE(ub, OPT)
returns a pair of sets (S,S"), where S contains elements of
OPT that dominate the bound ub, and S’ contains elements
of OPT that do not dominate the bound ub.

The main details of the algorithm are outlined as follows.
The recursive function PANDSEARCH takes as input a partial
assignment u and a set RUS, which is the set of relevant
undominated solutions inherited from the parent node. NEW
is the set of undominated solutions found so far in leaf nodes
(line 2). If u is a complete assignment, i.e., there are no more
variables to be assigned (line 3), then, if w is not dominated
by any solution in RUS (line 4), it is added to the set NEW
(line 5). Any solutions in RUS that are dominated by u are
removed (line 6), and the pair of sets RUS and NEW are
returned (line 8). Otherwise, if u is not a complete assignment,
then a variable X is chosen (line 11), and a value in the
domain of X is chosen to extend partial assignment u (line
13). A lower bound preference level (b for u is calculated
(line 14), and if the lower bound of u is not dominated by
any other solution (line 15), then the search continues. An
upper bound preference level ub for u is calculated (line 16),
and any previously found complete assignment s that does
not dominate this upper bound is removed from RUS, and
added to set variable OTS to allow such s to be restored on
backtracking (line 17). The search continues with the recursive
call to PANDSEARCH (line 18), until all non-dominated
solutions are found and returned (line 25).

V. EXPERIMENTAL RESULTS

To generate the Sorted-Pareto problem instances, we used
our Random Binary Soft CSP generator, which generates
random problems using the following parameters: n is the
number of variables, d is the domain size, and since we
have separate soft and hard constraints, we have separate
parameters for soft (sd) and hard (hd) density, and soft (st)
and hard (ht) tightness. hd € [0,1] is the fraction of hard
constraints in the problem w.rt. the maximum number of
possible hard constraints. Similarly, sd € [0,1] and is the
fraction of soft constraints in the problem. ht € [0, 1], which
is the fraction of the tuples of each hard constraint that are
forbidden. st € [0, 1], is the fraction of the tuples of each soft
constraint that have a non-zero weight. Optionally, instead of

Input: wu: assignment, RUS: set of optimal solutions
Output: (RUS,NEW) : pair of solution sets

1: function PANDSEARCH(u, RUS)

2: NEW « ()

3: if (-HASNEXTVAR())

4: if (-ISSDOMINATED(u, RUS))

5: NEW < u

6: RUS < REMOVESDOMINATED(RUS, NEW)
7: end if

8: return (RUS, NEW)

9: end if

10: RUS' «+ RUS

11: X < NEXTVAR()

12: while (HASNEXTVAL(X)) do

13: u <4 u U (X,NEXTVAL(X))

14: b + CALCULATELOWERBOUND(u)

15: if ([ISCONSISTENT(u)] A [-ISPAD(Ib, RUS)])
16: ub <~ CALCULATEUPPERBOUND ()

17: (RUS', OTS) «+ REDUCE(ub, RUS’)

18: (RUS’,NEW') «+ PANDSEARCH(u, RUS’)
19: OTS < REMOVESDOMINATED(OTS, NEW’)
20: RUS’ + RUS’ UOTS UNEW’

21: end if

22: end while

23: NEW <« RUS’\ RUS
24: RUS «+ RUS’ N RUS
25: return (RUS, NEW)
26: end function

Fig. 1. PANDSEARCH algorithm

specifying the soft and hard density values, the exact number
of soft and hard constraints can be specified using the hc
and sc parameters. For the purposes of the experiments, our
solver uses a MAC3 algorithm [16] to maintain consistency,
the min domain over degree heuristic [2] for variable selection,
and a min sum of weights heuristic for value selection. The
experiments were run on a dual Intel Xeon E5430 Processor
(2.66Ghz) machine, with 12GB RAM.

Comparing Pareto and Sorted-Pareto: Table Il shows the
average number of consistent solutions |SOL|; the average
number of Pareto non-dominated solutions |OPTp|; and the
average number of Sorted-Pareto non-dominated solutions
|OPTg|, for a set of 50 problem instances which were
randomly generated using the following parameters: d = 2,
hd = 0.06, ht = 0.25, sd = 0.25, st = 1.00. These
parameters represent a family of problems where the number
of consistent solutions grows exponentially with the size of the
problem, given the range of the values of n used, (however at
bigger values of increasing n, the rate of growth of the number
of consistent solutions will drop off and eventually decline).
For these small size problems we can see that for increasing
values of n, the size of the set of Pareto non-dominated
solutions grows very rapidly, whereas the the size of the set
of Sorted-Pareto non-dominated solutions experiences much

TABLE II
AVERAGE NUMBER OF CONSISTENT, PARETO NON-DOMINATED, AND
SORTED-PARETO NON-DOMINATED SOLUTIONS OVER 50 INSTANCES, FOR
d =2, hd =0.06, ht = 0.25, sd = 0.25, st = 1.00.

n 10 12 14 16 18 20

|SOL| 432 | 1292 | 3830 | 8785 | 19974 | 47018

|OPTp| 38 141 419 | 1120 3838 | 13443

|OPTg| 7 13 22 28 43 75
TABLE III

AVERAGE NUMBER OF CONSISTENT AND SORTED-PARETO
NON-DOMINATED SOLUTIONS OVER 50 INSTANCES, FOR d = 2,
hd = 0.06, ht = 0.25, sd = 0.25, st = 1.00

n 24 28 32 36 40
[SOL| 126500 | 417507 | 702907 | 1476080 | 1759033
|OPTg| 128 216 247 352 403

slower growth. Table III shows the sizes of the sets of Sorted-
Pareto non-dominated solutions for larger values of n, showing
that for larger n these sets are still moderately sized.

Comparing algorithms for Sorted-Pareto: Figure 2
shows the average time in milliseconds (ms) for both
BRUTESEARCH and DFBBSEARCH algorithms for solving
100 Sorted-Pareto problem instances which were randomly
generated using the following parameters: d = 2, hd = 0.06,
ht = 0.25, sd = 0.20, and st = 0.50. As in Tables II and
III, these parameters are representative of problems where the
number of consistent solutions grows exponentially with the
size of the problem. The dotted line shows the average number
of consistent solutions for the problems.

Figure 3 shows the average time in ms for both
BRUTESEARCH and DFBBSEARCH algorithms for solving
100 Sorted-Pareto problem instances, randomly generated us-
ing the following parameters: d = 3, ht = 0.44, sd = 0.20,
st = 0.50, and where the parameter for the number of hard
constraints hc was varied to generate problems where the
expected number of consistent solutions for each problem was
roughly 1000. In both sets of results, the DFBBSEARCH algo-
rithm significantly outperforms the BRUTESEARCH algorithm.

108) l 108
BRUTESEARCH(ms) —e—

107 I~ DFBBSEARCH(ms) —A— - 107

106 b [SOL| -« -+ - I 4106

=)
3 5

g 10 %
10*
103
102

15 20 25 30 35 40
n
Fig. 2. BRUTESEARCH vs. DFBBSEARCH problems with number of

consistent solutions growing, average time in ms on y-axis, number of
variables n on z-axis. The second y-axis shows the average number of
consistent solutions for the problems (dotted line).

500 I I I

BRUTESEARCH —@— 4

DFBBSEARCH —A—

Fig. 3. BRUTESEARCH vs. DFBBSEARCH problems with number of
consistent solutions ~1000, average time in ms on y-axis, number of
variables n on x-axis.

For the data in Figure 2, the DFBBSEARCH algorithm was
on average 10.9 times faster than BRUTESEARCH.

Figure 4 shows the average time in ms for BRUTESEARCH,
DFBBSEARCH and PANDSEARCH algorithms for solving 50
Sorted-Pareto problem instances, randomly generated using
the following parameters: d = 2, hd = 0.06, ht = 0.25,
sc = 10, st = 1.0. This set of parameters models a
family of problems where the solutions are evaluated over 10
aspects, and the average sizes of the set of Sorted-Pareto non-
dominated solutions are larger (e.g., for n = 36, the average
number of solutions is 3861). The results show that there exists
families of problems such that the PANDSEARCH algorithm
outperforms the DFBBSEARCH algorithm.

107 T T \

BRUTESEARCH —@&—
DFBBSEARCH —/A—
PANDSEARCH —&—

106 L

P>

§ 10°
10*
103
102 :
20 24 28 32 36 40
n
Fig. 4. BRUTESEARCH vs. DFBBSEARCH vs. PANDSEARCH problems

with solutions evaluated over 10 aspects, average time in ms on y-axis,
number of variables n on z-axis.

Non-random problems: As well as running our solver on
randomly generated problems, Table IV shows some results
for running our solver on some non-random weighted CSP
problems from the planning problems domain. The table shows
for each problem the number of variables (n), number of soft
constraints (sc), number of hard constraints (hc), the number
of min-sum-optimal solutions when solving the problem a
standard weighted CSP (JOPT), and the number of Sorted-
Pareto non-dominated solutions when solving the problem
using Sorted-Pareto (|JOPTg|). In these instances, the sets of
Sorted-Pareto non-dominated solutions are small, but often

TABLE IV
NUMBER OF MIN-SUM-OPTIMAL SOLUTIONS VS. NUMBER OF
SORTED-PARETO NON-DOMINATED SOLUTIONS

n sc he | |OPTys| | |OPTg|
zenotravel02ac 116 538 5223 1 1
zenotravel02bc | 116 538 5223 1 2
zenotravel02c 116 538 5223 1 1
zenotravel02cc 116 538 5223 1 1
zenotravelOdac | 239 | 1112 | 16904 1 2
zenotravelO4be | 239 | 1112 | 16904 1 1
zenotravelO4c 239 | 1112 | 16904 1 2
zenotravelOdcc | 239 | 1112 | 16904 1 5

still larger than the number of min-sum-optimal solutions (and
every min-sum-optimal solution is always Sorted-Pareto non-
dominated).

VI. SORTED-PARETO EXTENSIONS

In this section, we briefly look at a couple of extensions to
the Sorted-Pareto relation (with a view to motivating possible
future work): the first involves a situation where there is
additional information as to the importance of the aspects
on which decisions are evaluated; the second looks at further
refining a set of Sorted-Pareto non-dominated decisions.

A. Lexicographic Sorted-Pareto

Let £L = {Ly,...,L} represent an ordered partition of
the set of aspects S, ordered by > in terms of impor-
tance, where each ¢ € & appears in only one L € L.
The Lex-Sorted permutation, for some o« € A, is defined
as az = (a'[L1],a"[Ls] ..., a[Ly]), where al[L;] is the
sorted permutation of a[L;], i.e., the sorted permutation of
the evaluations of « for the aspects of L;. Then we define
a relation as follows: for all o, 8 € A, o Lex-Sorted-Pareto
dominates (3, written as « <§ B, if and only if, 37, such that,
for all i < j, a'[L;] =p BT[Li] A aT[L;] <p BT[L;].

This represents a situation where decision aspects are given
higher priority than others, for example, the aspects might
be states that are more likely to occur, criteria that are more
important, or voters with more weight. This is similar to the
approach taken by [12] for handling preferences between crite-
ria in multi-criteria problems, and to Lexicographic Constraint
Satisifaction Problems in [9].

B. MinMax-Sorted-Pareto

When we have a set of Sorted-Pareto non-dominated so-
lutions OPTg to a particular problem, we can order the set
using the MinMax-Sorted-Pareto relation <§**, defined as
follows: for all o, 8 € OPTg, o <& B, if and only if,
max(a) < max(f). This relation forms a total pre-order on
the set of decisions, and could be used as a tiebreaker between
decisions, to present a single solution or very small set of
solutions to a decision maker. It can also be considered as an

egalitarian approach, since it prefers the decisions that min-
imise the maximum weights, (if the weights are representing
some sort of cost).

VII. RELATED WORK

The notion of Sorted-Pareto appears in [15], which focuses
more on the elicitation of the preferences and the normali-
sation of different criteria scales, whereas in our paper we
assume that such a normalisation process has occurred and
we look at an application of the relation in Soft Constraints.
Another version appears in [13], where it is called “Ordered
Pareto”, and is used for handling preferences and comparing
alternatives using possibilistic logic. [24] looks at “Pareto-rank
dominance” where Pareto dominance is applied to ordered
income distributions, however it is the nature of the problem
that these income distributions are already ordered before
the Pareto dominance relation is applied. Also [19] and [4]
look at preference based search for generating sets of optimal
solutions for shortest path problems, which is related to
Sorted-Pareto (as described in Section III).

Some work that looks at branch and bound algorithms for
partially ordered Soft Constraints includes [10] and [25]. Both
[23] and [17] look at algorithms for multi-criteria optimisation
in Soft Constraints for approximating Pareto optimal solution
sets, and the work in [5] looks at depth first branch and bound
algorithms for the computation of leximin optimal solutions in
Constraint Networks.

VIII. SUMMARY AND DISCUSSION

In this paper, we defined an extension to Pareto dominance
called Sorted-Pareto dominance, and gave characterisations of
the relation along with a semantics. We also explored Sorted-
Pareto in the context of Soft Constraints, and implemented
and experimentally tested three different depth-first algorithms
for providing a set of Sorted-Pareto optimal solutions to Soft
Constraints problems, which also involve hard constraints. The
first algorithm only uses the Sorted-Pareto relation between
solutions; the second uses a lower bound to prune the search
tree, and the third also makes use of an upper bound to restrict
the previously found undominated solutions that need to be
considered in a subtree. The lower bound pruning generates
an order of magnitude speedup, and the use of the upper bound
can also sometimes be helpful.

Sorted-Pareto is very relevant to a situation where we have
a weighted constraints problem [21, Ch. 9] (or, similarly, a
GAI decomposition [1]) but the numerical values are only on
an ordinal scale; Theorem 1 shows that one decision weakly
Sorted-Pareto dominates another if and only if it weakly
dominates it in all compatible standard weighted constraints
problems. The experimental results showed that often the
resulting set of optimal solutions is relatively small, and
of certainly a much more manageable size than the set of
Pareto-undominated solutions. If necessary, the set of non-
dominated solutions can be refined by selecting (for example)
the solutions that are also Minimax optimal. Future work will
involve investigation and development of such refinements, for

computing sets of optimal solutions for different notions of
optimality in different situations.

ACKNOWLEDGMENTS

This material is based upon works supported by the Science
Foundation Ireland under Grant No. 08/PI/I1912.

REFERENCES

[1] Fahiem Bacchus and Adam J. Grove. Graphical models for preference
and utility. In Proc. UAIL, 1995, pages 3-10, 1995.

[2] C. Bessiere and J.C. Régin. MAC and combined heuristics: Two reasons
to forsake FC (and CBJ?) on hard problems. In Proc. CP, 1996, pages
61-75, 1996.

[3] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint
satisfaction and optimization. JACM, 44:pp. 201-236, 1997.

[4] U. Bossong and D. Schweigert. Minimal paths on ordered graphs.
Mathematica Slovaca, 56:pp. 23-31, 2006.

[5]1 S. Bouveret and M. Lemaitre. Computing leximin-optimal solutions in
constraint networks. Artif. Intell., 173(2):pp. 343-364, 2009.

[6] R. Congar and F. Maniquet. A trichotomy of attitudes for decision-
making under complete ignorance. Mathematical Social Sciences,
59(1):pp. 15-25, 2010.

[7] D. Dubois, H. Fargier, and H. Prade. Refinements of the maximin
approach to decision-making in fuzzy environment. Fuzzy Sets and
Systems, 81:pp. 103-122, 1996.

[8] H. Fargier, E. Rollon, and N. Wilson. Enabling local computation for
partially ordered preferences. Constraints, 15(4):pp. 516-539, 2010.

[9] E.C. Freuder, R. Heffernan, R.J. Wallace, and N. Wilson.

Lexicographically-ordered constraint satisfaction problems. Constraints,

15(1):1-28, 2010.

M. Gavanelli. Partially ordered constraint optimization problems. In

Proc. CP 2001, page 763, 2001.

C. Gonzales, P. Perny, and J. Dubus. Decision making with multiple

objectives using GAI networks. Artif. Intell., 175:pp. 1153-1179, 2011.

U. Junker. Preference-based search and multi-criteria optimization.

Annals OR, 130(1-4):pp. 75-115, 2004.

S. Kaci and H. Prade. Mastering the processing of preferences by using

symbolic priorities in possibilistic logic. In Proc. ECAI 2008, pages

376-380, 2008.

R.L. Keeney and H. Raiffa. Decisions with multiple objectives: Prefer-

ences and value tradeoffs. J. Wiley, New York, 1976.

O.I. Larichev and H.M. Moshkovich. ZAPROS-LM - a method and

system for ordering multiattribute alternatives. European Journal of

Operational Research, 82(3):pp. 503-521, 1995.

A.K. Mackworth. Consistency in networks of relations. Artif. Intell.,

8(1):pp. 99-118, 1977.

R. Marinescu. Efficient approximation algorithms for multi-objective

constraint optimization. In Proc. ADT 2011, pages 150-164, 2011.

[18] J. Pearl. Probabilistic reasoning in intelligent systems: networks of

plausible inference. Morgan Kaufmann, San Fran., CA, USA, 1988.

P. Perny and O. Spanjaard. A preference-based approach to spanning

trees and shortest paths problems. European Journal of Operational

Research, 162:pp. 584-601, 2005.

P. Perny, O. Spanjaard, and L. Storme. A decision-theoretic approach

to robust optimization in multivalued graphs. Annals of Operations

Research, 147:pp. 317-341, 2006.

F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Program-

ming. Elsevier Science Inc., New York, NY, USA, 2006.

AK. Sen. Collective choice and social welfare. North-Holland

Publishing Co., Amsterdam, 1970.

M. Torrens and B. Faltings. Using soft CSPs for approximating Pareto-

optimal solution sets. In Proc. AAAI 2002 Workshop: Preferences in Al

and CP: Symbolic Approaches, 2002.

S. Traub, C. Seidl, and U. Schmidt. An experimental study on individual

choice, social welfare, and social preferences. European Economic

Review, 53(4):pp. 385-400, 2009.

N. Wilson and H. Fargier. Branch-and-bound for soft constraints based

on partially ordered degrees of preference. In Proc. ECAI 08 Workshop

(WIGSKO0S8), 2008.

N. Wilson and W. Trabelsi. Pruning rules for constrained optimisation

for conditional preferences. In Proc. CP 2011, pages 804-818, 2011.

[10]
(11]
[12]

[13]

[14]

[15]

[16]

[17]

[19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

