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Working as a team: using social criteria in the

timed patrolling problem

Cyril Poulet, Vincent Corruble and Amal El Fallah Seghrouchni

LIP6, Université Pierre et Marie Curie, Paris, France. Email: name.surname@lip6.fr

Abstract—The multi-agent patrolling task constitutes a chal-
lenging issue for Artificial Intelligence and has the potential to
cover a variety of domains ranging from agent-based simulations
to crises management. Several techniques have been proposed
in the last few years to address the multi-agent patrolling task
with a closed-system setting. A few centralized strategies were
also described to address the open-system setting, in which the
agents can enter or leave the patrolling task at will.
In this article, we propose two decentralized, cooperative,
auction-based strategies in which agents trade the nodes they
have to visit. These strategies are inspired from the computational
social choice theory and allow the agents to reason on the
performances of the group rather than on their own. We show
that these strategies perform at least as well as the state-of-the-art
centralized performances, and better on specific criteria.

I. INTRODUCTION

Multi-agent patrolling is an abstract problem in which an

area containing multiple points of interest need to be visited as

often as possible by a team of people or agents. Two distinct

variations have been studied in the past years: adversarial

patrolling, in which the area needs to be guarded against

intruders, and timed patrolling [1], where the task is to visit

repetitively each point of interest. Performances are evaluated

using metrics based on the temporal distribution of the visits.

This problem is very interesting for studying coordination

in Multi-Agent Systems (MAS): it is simple enough to be

described and understood, and various coordination strategies

can be compared experimentally by varying metrics. Indeed,

the performances of the strategies are directly related to how

well the agents are coordinated and share out the visits to all

nodes between themselves. Yet the timed patrolling problem

can model a wide variety of both real and artificial situations,

such as area patrolling in war-games or repetitive maintenance

in real-life factories. This is why this problem was proposed

as a benchmark for MAS ([2]).

Recently, we proposed in [3] a variation for the timed pa-

trolling problem: the open-system setting. In this new problem,

agents may enter or leave the patrolling task at any time, thus

requiring the system to adapt and reconfigure as the population

of agents changes. This dynamicity allows for more complex

applications, in which agents are multi-objectives and can

participate in several concurrent tasks. These include rescue

scenarios in which a rescue agent finds a victim, and must stop

patrolling to begin the rescue operations. Another example is

shift change in repetitive maintenance tasks.

Decentralization is a powerful way to avoid bottlenecks in

computational power and communication when the population

of the system rises, and also avoids a crash of the system

when the coordinator fails, or when global communication

is not possible. Using auctions to assign nodes to patrolling

agents is an efficient, decentralized coordination strategy that

has been successfully investigated in [4], using synchronous

communication (allowing the auctions to be instantaneous).

Lifting this assumption to use asynchronous communication

leads however to an important loss in performances (see sec-

tion III-A). In this context, we propose two strategies adapted

from the computational social choice literature: Minimax and

Minisum. They are both decentralized and asynchronous,

which allows them to tackle all the previously cited problems.

Computational social choice has received a lot of attention

in various coordination problems. We propose an auction

protocol based on [4] and show how to adapt it to cooperative

auctions. We then present in details the Minimax and Minisum

strategies. We finally show that these two decentralized strate-

gies perform as well as centralized, state-of-the-art strategies

on the patrolling problem, and better on specific criteria.

In this paper, section II defines formally the patrolling task,

its metrics and the state-of-the-art. Section III presents an

auction protocol and details the use of social criteria in this

mechanism. Section IV presents our experimentation, and we

discuss the results obtained in section V. Section VI concludes

this paper and sketches some future work.

II. THE PATROLLING PROBLEM

A. The patrolling task - formal model

The patrolling task takes place in an environment repre-

sented as a graph. Each node of this graph is a point of

interest in the environment, and each edge is a link between

two neighbouring points. Building on the formal descriptions

we proposed in [3], we propose the following formal model

of the multi-agent patrolling task.

The multi-agent patrolling task is formally represented as a

tuple 〈G,S,M〉, with G a graph, S a society of agents and

M a set of metrics. The graph G = 〈N,E〉 is composed of

a set of nodes N and the associated set of edges E. Each

node ni ∈ N has a priority pi. Each edge ej ∈ E has a

length lj representing the distance between the nodes linked

by ej . G may be static or evolve over time: nodes can become

accessible or inaccessible, edges can become impracticable,

priorities can change.

The society of agents S = {ai}i≤|S| is a set of size |S| of

agents ai. Each agent is defined by the sets of perceptions

and actions that it has access to. The available perceptions



are the perception of the environment: internal time of the

simulation, the agent’s position on G, and the graph around

the agent up to a distance of dG, and the perception of the

society of agents: the other agents’ positions on G if they are

under a distance (dSoc) of the agent, and the communications.

The available actions, which are not exclusive, are those on

the environment: visiting the node the agent is situated on,

and moving toward a destination, and those on the society

of agents: sending a message by broadcast or to a single

recipient, in both cases within a distance of dC of the sender.

The society S can be closed - the number of agents is constant

over time - or open - agents can join or leave at any time.

Finally, M is a set of evaluation criteria based on the temporal

distribution of the visits. The timed multi-agent patrolling task

is then the objective given to the agents of S to visit each node

of G repetitively in order to optimize the set of criteria in M.

In this paper, we are primarily concerned with the dynamic

aspect of S (i.e. the number of agents changes over time). We

will thus only consider a static graph G. We also consider

each node to be equally important, thus all priorities are the

same. Finally, communications are not restricted: agents can

communicate as often and as far as needed (dC = ∞).

B. Metrics

The first metrics proposed for the patrolling problem in

closed-system setting were based on the concept of idleness

([5]). If tivisit is the time of the last visit on node ni

and t the current time, the instantaneous node idleness is

Idi(t) = t − tivisit. It can then be averaged over the graph

(instantaneous graph idleness IdG(t)) and over time (graph

idleness IdG
t1
t2

). However, graph idleness is difficult to link

directly to the events happening during the simulation.

For this reason, [6] proposed interval-based metrics: the av-

erage interval Iav and the Mean Square Interval (MSI). With

N as the set of nodes in the graph, Ii as the set of intervals

between the visits of node ni during the simulation, I the

entire set of intervals of the simulation and |Ini
| the length of

an interval Ini
of node ni, the MSI is:

MSI =

√

∑

{ni∈N}

∑

{Ini
∈Ii}

|Ini
|2

card(I)

With |N | the number of nodes in the graph and Tmax the

number of cycles in the simulation, Iav is then:

Iav =

{ni∈N}
∑

{Ini
∈Ii}

∑

|Ini
|

card(I)
=

|N | × Tmax

card(I)

Following [6], we can prove that their criteria can be related

directly to the graph idleness by the following relation:

IdG
Tmax

0 =
MSI2

2Iav
−

1

2

For this reason, we propose to use the average interval and

the MSI, since we think that they provide complementary

information: how often the visits are in average for the first

criterion, and how well the visits are spread over the graph

for the second. However, for instantaneous measures, the

instantaneous graph idleness still provides a good measure of

the state of the system.

For the patrolling problem in open-system setting, [3] pro-

posed additional criteria to measure performance during tran-

sitional phases :

- stabilization time: represents the time taken by the system

to return to a stable phase. For this, [3] propose to calculate

a mean over the stable phase following the transition on one

of the criterion, then to compare short averages on a hundred

cycles to this value, starting from the time at which the event

occurred (change in the agents number) and stopping when

the short average is less than 1% different of the stable value

- amplitude of variations: measures the eventual loss of

performances during the transitional phase. [3] propose to use

the ratio between the maximum value of the instantaneous

idleness during the transition and its average value during

the stable phase showing the worst performances between the

stable phase before the transition, and the stable phase after.

C. Background

Many different strategies have been proposed for the pa-

trolling task with a closed-system setting (e.g. [5], [7]). In this

paper we will only detail those that present state-of-the-art per-

formances that will be used as references. For the centralized

approaches, two strategies stand out: the Single-Cycle agent

and the Heuristic Pathfinding Cognitive Coordinated agent.

The Single-Cycle agent (SC) was proposed in [1]. It uses

two types of agents: a single coordinator agent, and as many

performer agents as needed/wanted. The coordinator agent

calculates the minimal cycle of graph G with a TSP-like

algorithm (dG=∞), and then distributes evenly the performer

agents around this single chosen path according to their

starting point. The performer agents simply follow the chosen

path, visiting the nodes as they reach them. It is clear that

since the interval between 2 visits of a single node is the exact

distance between two performer agents, the more performers

there are, the better this strategy performs. As we described in

[3], in an open environment the agents are redistributed after

each event (agents entering or leaving the patrolling task):

agents are stopped various amounts of time in order to generate

spaces for the new agents, or to fill the spaces left by agents

leaving. This is the role of the coordinator to calculate for

each performer agent the time it needs to wait before setting

off again, and to transmit it.

It has been demonstrated that the SC strategy is the best

possible on the Imax criterion. However, its flaws are obvious:

on the first hand it is very sensible to the size of the graph

(as finding a good TSP solution is NP-hard), even more if

the graph is not static, and on the second hand changing the

size of the population implies to partially stop the agents, thus

causing important losses in the performances (see part IV).

The Heuristic Pathfinding Cognitive Coordinated agent

(HPCC) was proposed in [5]. Again, it uses two types of

agent: a single coordinator agent, and as many performer

agents as needed/wanted. The role of the coordinator is to



calculate, after each visit made by a performer on a node, the

new target of the visiting performer agent using a combination

of distance and expected idleness of the target. Once informed

of its new target, the performer agent calculates the most

interesting path to its new target, maximizing the idleness of

the nodes visited along the path. This strategy is naturally

adapted to the open environment. It requires dG=dC=∞.

Though HPCC obtains the best performances currently and

has no obvious flaw, it is centralized, which is not failsafe,

and even without failure can become a problem as the size of

the task increases. At any given time, the average number of

visits, and thus the amount of messages and calculations that

the coordinator has to manage, is proportional to the size of

the population, and it can become a bottleneck for high-scale

patrolling tasks.

Various decentralized approaches have also been proposed.

We can cite the Flexible Bidder agent [4] which is discussed

in section III, reinforcement learning approaches [8] and a

gravitational strategy [6].

III. USING SOCIAL CRITERIA IN THE AUCTION PROTOCOL

A. General auction protocol

In this strategy, there is only one type of agents. The nodes

of G are distributed among the agents, and each agent must

visit the nodes that have been assigned to him as often as

possible. For this, each agent chooses its new target and the

associated path according to the same heuristics as in the

HPCC strategy. Coordination results from a process in which

the agents can swap their nodes using auctions, with the goal

of minimizing a distance function (here the length of the path

they have to walk to visit all their nodes) on their set of nodes.

Following [4] and the Flexible Bidder Agent (FBA), the

auction protocol that was selected is a private value, sealed

bid auction protocol. During an auction, two roles appear: the

initiator agent, and the participants. All agents can play each

role, but each auction has a single initiator. An auction takes

place as follows:

- The initiator agent (agent 1) identifies 1 or 2 nodes that it

wants to trade, using a given value function f. With Ni the set

of nodes of agent i :
{

n1 = argminn1i∈N1
f(N1\{n1i})

n2 = argminn1i∈N1\{n11}f(N1\{n1i,n11})

It then informs the other agents of the beginning of an auction

via an INFORM message containing the nodes put to auction.

- The participants a2 to an then choose to propose nodes in

exchange (1 for 1, 1 for 2 or 2 for 2) via a PROPOSE message

containing the chosen nodes, or refuse to participate in the

auction (REFUSE). For example, for participant ak and the

proposed node n11, ∃?nk ∈ Nk/f(Nk ∪ {n11} \ {nk}) <
f(Nk) ? If it is the case, there is an swap that is beneficial

to ak and agent ak participates. Only the initiator receives the

answers from the participants.

- Finally, the initiator agent reviews the propositions once it

has received all the expected answers. It accepts the most

interesting swap (ACCEPT) and rejects the others (REJECT).

This protocol has been proposed for competitive auctions in

the Flexible Bidder Agent (FBA) strategy ([4]). The valuation

function chosen for the agents was to select the nodes maxi-

mizing the difference between the current path length of the

agent, and the projected path length (without the chosen node

for the initial choice, and after the swap for the proposition and

awarding). This difference was combined with the estimated

current idleness of the nodes. Although very good results

were obtained, synchronous communications were used in

their implementation. This is a very restrictive condition for a

decentralized strategy, as it requires all agents to be instantly

available when the auction is initiated. Asynchronous commu-

nication is a more realistic approach for multi-agent systems,

as each agent is free to process the messages it receives

whenever it is the most interesting or practical. It is also a

mean to open the patrolling problem to other applications in

which synchronous communication is not possible.

For this reason, we adapted this strategy for asynchronous

communications: auctions can now be simultaneous, i.e. an

agent can be both initiator and participant at the same time,

in different auctions. As shown in [9], this causes an impor-

tant loss in performances for this strategy (as can be seen

in section IV). This observation leads us to the following

question: how can this negative effect be balanced to achieve

good performances in the patrolling task ? We show in this

paper that social choice theory provides powerful answers to

this question. In the remainder of this paper, FBA will refer

to our asynchronous version of this strategy.

B. Social bidding and awarding strategies

Using social choice in this auction protocol lets agents

consider swaps that were not previously allowed in competitive

auctions: swaps that are not mutually beneficial, but are bene-

ficial to the whole society. This will allow a better assignment

of the nodes to the agents, and thus allow better performances

on the patrolling task. However, we do not guaranty optimality,

due to the parallel nature of the auctions.

1) general description: The general protocol is the same

as in the FBA strategy, with a small difference: agents will

be able to propose transfers, i.e. 0 for 1 cooperative swaps in

which the participant offers to unburden the initiator agent by

taking one of its nodes without giving one in exchange. It is

as follow :

- Initiator chooses nodes as decribed, but sends with them

i1(N1, n1i) where i1 is a valuation function allowing other

agents to evaluate if they must accept a non-beneficial trans-

action;

- participants check if there is a possible beneficial swap as

previously described. If that is the case, they propose it. If

there is none, the agent checks non beneficial but collectively

acceptable transactions. With C1(Nk, n1, i1(N1, n11)) a con-

dition depending on the chosen well-being criterion, is C1

verified? If so, ak proposes a transfer to a1, i.e. to take the node

for free, by sending “PROPOSE ik(Nk, n11)”. Otherwise, ak
sends a “REFUSE”.

- The awarding phase is in two parts. First, a1 classifies



propositions in 4 categories: transfers, swaps that are beneficial

to itself (i.e. which validates f(N1∪{nk}\{n11}) < f(N1)),
swaps not beneficial to itself but collectively beneficial (i.e.

for which the previous equation is false but a validating

condition C2(N1, n11, nk, ik(Nk, n11, nk)) depending on the

chosen well-being criterion is met), and swaps not beneficial

to anyone. Then the propositions of the three first categories

are classified according to the chosen well-being criterion, and

the best one is accepted. The others are rejected.

As appears in this description, basic functions and valuations

are dependant on the chosen well-being criterion. We will thus

present now two possible criteria: Minimax and Minisum.

2) Minimax: The egalitarian social welfare criterion ([10])

aims at maximizing the utility of the poorest agent in the

society. To apply this criterion to the patrolling task, we chose

as utility the length of the path each agent has to walk to visit

all its nodes.
{

f(Nk) = pathLength(Nk) abbr. as pL(Nk)
criterion : minmaxa∈A pL(Na)

Of course, we try here to minimize the longest path in the

society, hence the minimax denomination.

To allow the agents to propose transfers, the valuation and

condition used are:
{

i1(N1, n11) = pL(N1)
C1 = pL(N1)− pL(Nk ∪ {n11})

The participant needs to know the initial path length of

the initiator agent (i1), in order to be able to calculate if

accepting a transfer of node n11 will create a path longer

than the initiator’s current one. If C1 is positive, it means that

transferring n11 to ak does not create a path that is longer

than the current path. Two cases are possible: either a1 has

the current longest path and the transfer reduces it, or it has

not and the longest path will not be changed. The transfer is

collectively beneficial, as the welfare criterion is decreased or

unchanged.

In order for the initiator to determine if a given, not beneficial

swap is socially acceptable, we propose the following :
{

ik(Nk, n11, nk) = pL(Nk ∪ {n11} \ {nk})
C2 = pL(Nk ∪ {n11} \ {nk})− pL(N1 ∪ {nk} \ {n11})

The initiator uses the projected path length of participant ak
to determine which projected path length is greater between

its own and ak’s. We know that the swap is not beneficial:

pL(N1 ∪ {nk} \ {n11}) > pL(N1), and that it has been

proposed by ak and is therefore beneficial to it: pL(Nk) >
pL(Nk ∪ {n11} \ {nk}). Thus if condition C2 is positive, we

can be sure that ak’s path is currently greater that a1’s, that the

swap decreases ak’s path length and that it does not increase

a1’s path length above the current path length of ak. Again,

there are two cases: either ak’s path is the longest and it will

be shortened (while ensuring that a1 does not get a new max),

or it is not and the longest path has not been changed. The

swap is collectively beneficial.

These conditions ensure that whatever transaction is chosen,

it decreases or does not change the current maximum path

length. Finally, the propositions are classified as follow : 1)

Consider first the swaps beneficial to a1 (which are then by

design mutually beneficial). Choose the one maximizing a1’s

gain (i.e. difference between its current path length and its

projected path length). 2) if no beneficial swap was proposed,

then consider swaps not beneficial to a1: they have been

proposed by agents whose current path is longer than a1’s

path. Choose the one whose ik (i.e. ak’s projected path length)

is maximal (since the corresponding agent has probably the

current longest path). 3) finally, consider transfers: if no swap

has been awarded, a1 has the current longest path. Choose the

transfer with the smallest ik (i.e. ak’s projected path length),

to unburden a1 on the agent which will suffer the less as a

result of the added node.

Other classifications are possible, but we chose to share the

smallest information possible among the agents.
3) Minisum: The utilitarian social welfare criterion ([10])

aims at maximizing the average utility of the agents. As for the

minimax, the utility that we used is the length of the path of

an agent, and we aimed at minimizing the sum of all utilities:
{

f(Nk) = pL(Nk)
criterion : min

∑

a∈A pL(Na)

For clarity, we introduce the notation diff , which represents

the difference between agent ak’s actual path length and its

projected path length (by giving the set of nodes S2 in ex-

change for the set of nodes S1), i.e. how much the agent gains

in the swap: diff(Nk,S1,S2) = pL(Nk) − pL((Nk∪S1)\S2).
Then the valuation and condition for a participant to propose

a transfer are:
{

i1(N1, n11) = diff(N1, ∅, {n11})
C1 = diff(N1, ∅, {n11})− diff(Nk, {n11}, ∅)

Participant ak uses the initiator’s gain (via i1) to determine if

by accepting a transfer, a1 gains more than ak looses. If C1

is positive, it is the case, and transferring the node decreases

the sum of their path length. The transfer is thus collectively

interesting.

To determine if a proposed swap that is not beneficial is

socially acceptable, the initiator uses the following valuation

and condition:
{

ik(Nk, n11, nk) = diff(Nk, {n11}, {nk})
C2 = diff(Nk,{n11},{nk})− diff(N1,{nk},{n11})

Here again, we know that the swap is beneficial to ak, so a1
tries to determine if it looses less in the swap than ak gains. If

that is the case (C2 is positive), the sum of their path lengths

will decrease, which is beneficial to the society.

Finally, to choose the winning proposition, we can write that

for a given auction starting at t1, finishing at t2 and awarded

to ab,
∑

a∈A

pL(Na)(t1)−
∑

a∈A

pL(Na)(t2) =

{

diff(N1, ∅, {n11})− diff(Nb, {n11}, ∅) (transfer)

diff(Nb, {n11}, {nb})− diff(N1, {nb}, {n11}) (swap)

a1 thus awards the auction to the proposition (swap or transfer)

maximizing the gain on the Minisum criterion.



C. Design of a Transition mechanism

We designed and tested several mechanisms to allow the

system to reorganize when agents leave or join the patrolling

task with an auction-based strategy (see [9]). As it is not the

focus of this paper, and due to space constraints, we only

briefly present here the mechanisms that have been used for

the Minimax and Minisum strategies, which were the most

successful on the criteria proposed in II-B: stabilization time

and amplitude of variation. Please refer to [9] for more details.

For the Minimax and the FBA strategies, the chosen mech-

anisms are utilitarian and give or take more nodes to the

agents that are spatialy close to the agent leaving or entering

(proximity mechanism). The Minisum strategy needed more

egalitarian mechanisms : each agent gets or gives the same

number of nodes. The chosen mechanisms are the Worst Nodes

mechanism for entering, and Worst pre-calculated group of

nodes mechanism for leaving.

IV. EXPERIMENTAL EVALUATION

We used as experimental environment the Simpatrol simu-

lator initiated at CIn, UFPE (Recife, Brazil) ([2]). We chose

as environments the maps described in [5] and widely used

in the literature: a random map that is strongly connected

(50 nodes/106 edges): map A, a random map that is loosely

connected (50/69): map B, a circle (50/50), a corridor (49/50),

a grid (50/90) and a map of 9 islands, strongly connected

inside and loosely connected between them (50/84). On each

map, we ran experiments on closed settings (30 for each

population size) to measure stable performances of the various

strategies. Then long experiments (20000 cycles) were made

with an open system whose size evolves between 2 and 13

agents. These long experiments allowed us to have a better

understanding of the behaviour of the strategies on the long

term. For all experiments, the original node assignment for

FBA, Minimax and Minisum is uniform and randomized.

To compare the average performances of the strategies, on

each map and for each population size we normalized the

measures by multiplying them by the number of agent in

the system. This showed as first result that for Iav and MSI,

all strategies obtain performances that are quasi-linear in the

number of agents on all maps, with standard deviations under

5% for Iav and under 20% for MSI. This allows us to consider

that averaging over population size represents fairly well the

performances of a given strategy. We use these averages in the

remainder of this paper.

A second result is that the average interval Iav is not a

discriminating criterion. On each map, for each population

size, HPCC has the best performance on Iav , followed by

Minisum, but all the other strategies are less than 20% behind

(above) HPCC, sometimes less than 2% for all population sizes

(circle, grid). The SC strategy is on average the worse strategy

on this criterion.

The MSI however shows more differences between the strate-

gies (see Fig. 1, top). The Single Cycle has the smallest

MSI on all maps, followed closely by HPCC. Minisum and

Minimax have similar performances on this criterion, and FBA

has the worst performance on all maps.

As the main goal of Minimax is to minimize the maximal path

in the society of agents, it is natural to mention the maximum

interval criterion (Imax). With the same averaging method,

Fig. 1 (bottom) present the results of the various strategies

on this criterion. As has been shown in [1], SC is the optimal

strategy on this criterion, and thus shows the best performances

on all maps. However, Minimax performs here exceedingly

well by obtaining the 2nd best performance on 4 maps out

of 6, and a close 3rd on the 2 other maps. As predicted in

section III-A, FBA obtains very poor performances on this

criterion.

In long experiments, agents may enter or leave every 100

cycles, up to 4 agents at a time. The maximum size of the

population is 13 (1/4th of the number of nodes of the map),

and the more (less) agents there are, the most likely it is that

agents leave (enter). For each map, we ran 15 experiments

with random starting positions and node assignments. These

allowed to observe the behaviour of the strategies in a complex

environment. A first observation is that the FBA strategy

performs better during the long simulations than what could

be expected from the short simulations. However, it still does

not perform as well as the other strategies on the MSI and

Imax criteria. We will discuss this result in section V.

On the criteria related to transitional phases, we can make the

following observations:

- Stabilization time: HPCC is the quickest to adapt to an event

(with an average stabilization in 132 cycles), followed by FBA

(170), Minimax (186), Minisum (173) and finally SC (205);

- Amplitude of variations: FBA is the strategy that offers

the smallest loss of performance in transition with a ratio

log(Max
Av

) of 0.013 (i.e. 3.4%), followed by Minimax and

HPCC (0.016/5%), Minisum (0.023/7%) and SC (0.24/85%).

V. DISCUSSION

These results offer a good picture of how the various strate-

gies work. The SC strategy is optimized to visit every node

with the same regularity, which gives it the best performances

on both MSI and Imax. However, it is not optimized on Iav ,

and is costly to reconfigure both in time and performances.

As explained in [3], HPCC is a local strategy: each agent

tends to stay in a region of the graph, and to visit often the

nodes it is close to. The first ensure a good MSI and Imax

by avoiding “long-distance travels”. The second assures that

some nodes will be visited very often, thus allowing a very

good Iav . Being centralized, the HPCC strategy reacts fast to

a change in the population, but the locality of its nature is here

a drawback since the agents will not go directly to their new

location but multiply visits on the way. This causes the loss

of performance described.

The results confirm our predictions about using asynchronous

communication with the FBA strategy. The FBA shows a

good Iav , a bad MSI and a worse Imax. This is due to a

poor node assignment where some agents have few nodes

that are visited extremely often (thus a good Iav) and with

no reason to unburden the agents less fortunate (thus the



Fig. 1. Normalized performances of the various strategies, by map. Top :
MSI. Bottom : Max Interval.

bad MSI and Imax). This is where the frequent changes in

the population of the long simulations become helpful: it

forces the agents to reorganize often, and thus improves the

assignments during the entry and quitting mechanisms. Since

in fact few transactions are performed after these mechanisms

happen, the FBA strategy is quick to re-stabilize.

For assignment-based strategies, the loss of performance can

be understood as the gain between the new assignment due to

the event, and the assignment reached after the transactions.

The small loss in performances can thus be explained by the

fact that the poor overall performances do not allow to reach

a really worse state in the system, and that the transactions

do not allow a very efficient reassignment. Reallocating the

nodes by proximity during transitions (see section III-C) avoid

to reach worse reassignments (e.g. a node is reassigned to an

agent far away, but the agent closer to the node refuses to

trade it later because it is not interesting for him).

The Minimax strategy shows very good results: minimizing

Imax has the effect of ensuring a good MSI (no agent has

a bad set of nodes, so each node is visited regularly), which

in turn ensure a good Iav . However, a change in population

triggers a longer reassignment process (with more successful

transactions). This explains both the long stabilization time,

and the loss of performance higher than for the FBA strategy:

the reassignment is more efficient.

Finally, the Minisum strategy shows performances similar to

the Minimax strategy, with a few differences. Minimizing the

average path length instead of the longest allows to reach a

better (smaller) Iav at the cost of a worse Imax. Indeed, an

agent can be in the situation where its path is longer than the

average path, but no agent can unburden him for a cost smaller

than his gain. This explains why Imax is greater than for

Minimax. However, having agents with longer paths implies

having agents with smaller paths, which are able to visit their

nodes very often. This explains the better Iav . Concerning the

transition phases, the transition time of the Minisum strategy is

very similar to those of the other auction-based strategies, FBA

and Minimax. However, the amplitude of variation is greater

for the Minisum strategy. This is explained by the chosen entry

and leaving mechanisms: as they reassign more equally the

nodes among all the agents, the new assignments after these

events are less efficient than after the proximity mechanisms,

thus the higher loss in performances.

In summary, both Minimax and Minisum allow an efficient

assignment of nodes, with good performances on all met-

rics. Minimax is especially set for the Imax criterion, on

which it outperforms HPCC, whereas Minisum proposes a

compromise between Iav and MSI. They also show small

losses in performances during transitions. As a final point, it

is possible to bound the number of messages of the protocol

independantly of the population in the system. This allows

us to conclude that unlike the HPCC strategy, the proposed

auction-based strategies can be used in high-scale patrolling

problems without having bottlenecks appearing in the system.

VI. CONCLUSION

In this paper, we presented two strategies for the multi-agent

timed patrolling task with an open system setting and asyn-

chronous communication. These strategies are auction-based,

completely decentralized and inspired from the social choice

theory: the Minimax and the Minisum strategies. We described

how agents can bid on auctions and award them in order to

optimize the egalitarian well-being of the society (Minimax)

or its utilitarian well-being (Minisum). We evaluated these

strategies both on closed and open system setting. Results

show that the Minimax strategy performs better than the previ-

ous state-of-the-art, auction-based strategy, and is better than

centralized, state-of-the-art strategies on at least one criterion.

Minisum shows the same performances on closed system

setting, but needs a more egalitarian transition mechanism to

reach its full potential in the open-system setting. Our studies

also showed that the performances achieved were quasi-linear

in the number of the agent, which is very promising for larger

societies.
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