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Abstract—In real-world multi-agent systems, as in the context
of the automatic transportation of goods, autonomous vehicles
can face unexpected events like the failure of a vehicle, the
presence of obstacles on the road, etc. Such events can generate
first local congestions, and then, if they persist, global phenomena
and complex traffic congestions (such as traffic jams). We want
to manage space sharing conflicts at the local level, when they
appear, to allow a quick (real-time) regulation, i.e., without re-
quiring to re-plan the routes of all involved agents. Our approach
relies on reactive coordination between vehicles using simple
interactions between neighboring agents, using perceptions and
little or no communication. We consider in particular a scenario
where two queues of vehicles share a single lane, describing the
model of the network as well as the agents, and proposing simple
coordination rules that only involve the two vehicles at the front of
each queue. We then conduct experiments that allow the analysis
and the comparison of the proposed self-regulation rules.

Index Terms—Multi-Agent Systems; Reactive Coordination;
Space Conflict Resolution; Autonomous Vehicles; Traffic Reg-
ulation; Traffic Simulation

I. INTRODUCTION

In real-world multi-agent systems, as in the context of

the automatic transportation of goods, autonomous vehicles

can face unexpected events like the failure of a vehicle,

the presence of obstacles on the road, etc. Such events can

generate first local congestions, and then, if they persist,

global phenomena and complex traffic congestions (such as

traffic jams). We aim at avoiding such undesirable emergent

behaviors by exploring local rules for coordinating agents

(vehicles). We want to manage conflicts at the local level,

when they appear, to allow a quick (real-time) regulation, i.e.,

without requiring to re-plan the routes of all involved agents.

Re-planning [1] is not adapted to large multi-agent systems

due to its combinatorial complexity. To avoid such a limitation,

we are looking for reactive behaviors allowing to minimize

delays and, if possible, to repair the plans.

Our approach relies on cooperative behaviors, based on

reactive local coordination in multi-agent systems [2], [3].

Coordination is obtained from simple interactions between

neighboring agents, using perceptions and little or no com-

munication. Such assumptions allow to react to conflicts in

real time. As examples of successful uses of local reactive

coordination, we can mention [4] for the navigation of large

sets of agents (flocking), [3] for multi-robot/flight avoidance,

and [5], [6] for multi-robot navigation conflict solving.

Our work addresses the general problem of space shar-

ing in multi autonomous vehicle/robot systems, such as the

one envisaged for transporting goods (in seaports or other

large platforms1). In such systems, vehicles receive plans,

i.e., routes, to follow for transporting goods. These systems are

highly sensitive to local delays/conflicts as these will impact

on all the vehicles whose plans go past the local blocking.

Then we consider, as a case study, a road in which a lane

is suddenly blocked, e.g., by a vehicle breakdown, requiring

that blocked vehicles use the other lane, initially dedicated

to vehicles moving in the opposite direction. This problem

generalizes the problem of sharing a common space among

some agents to two infinite queues of agents.

For this purpose we investigate two approaches relying on

simple coordination rules, which require only simple commu-

nications between the two vehicles at the front of the queues.

We aim at ensuring the simultaneous freeing of both queues,

while minimizing the delays of the vehicles. Then we conduct

experiments to analyze and compare the proposed approaches.

The paper is organized as follows. Section II presents

previous work related to this problem of space resource sharing

among multiple agents.Section III describes a formalization

of the problem and the multi-agent model, i.e., the definition

of the possible actions and decision rules of the agents.

Section IV proposes two decision rules that produce two

different strategies. Then Section V details several experiments

with deterministic and stochastic scenarios, showing the effi-

ciency and limits of the strategies. Finally, we conclude with

a discussion on these results and some promising research

directions.

II. RELATED WORK

There are two main approaches for modeling urban traffic:

Macroscopic models that consider traffic as a flow through a

graph. They use analytical models based for example on fluid

dynamics [7], [8]. These macroscopic models offer a high-

level model, and thus do not describe individual behaviors.

Microscopic models are individual-based (or entity-oriented)

models. They describe the movement of each vehicle, as

well as their interactions [9]–[11]. As these models are very

detailed, very complex to implement, they process a large

quantity of data, which is the main restriction on their use for

1http://www.intrade-nwe.eu/



modeling a real network, e.g., of a city. In our case, since we

want to propose local individual behaviors to solve problems

in a portion of a road, we choose to use a detailed model, i.e.,

a microscopic model.

Local coordination 
in order to share 
the delay.

Obstacle

Incidence

Leader
Leader

Queue 1

Queue 2

Fig. 1. Two flows of vehicles blocked by an obstacle

Our interest is focused on controlling autonomous vehicles

which transport goods from a source to a destination. As

shown in Figure 1, our problem is a space sharing problem.

Let us assume that we have a two-lane road, the traffic being

interrupted by an obstacle at t = 0 on one of the lanes

(e.g., due to a vehicle breakdown). This results in a space

sharing problem between two queues of vehicles, which is

equivalent to managing a crossroads intersection, but without

traffic lights.

This situation is traditionally studied in operations research

and queueing theory. To our knowledge, there is no work

proposing vehicle behaviors to deal with such conflicts, but

various approaches have been proposed to model and analyze

traffic flow interrupted by incidents. In 2002, Hidas proposed

a microscopic traffic network simulator with a multi-agent

system, and presented lane changing models (unforced, forced,

and cooperative) to avoid accidents [12]. His results indicate

that only forced and cooperative behaviors reproduce realis-

tic flow-speed relationships in congested situations. Baykal-

Gürsoy et al. in 2009 presented a queueing model to describe

the traffic flow on a road link that is subject to a roadway

incident [13]. For some cases, they present analytical results

and compare them to simulation results.

A problem very similar to ours was treated by Tanner [14]

in 1953. It is the only paper we know which is interested

in the same setting. He defined a mathematical model to

estimate delays that occur when two opposing flows (queues)

of vehicles try to pass simultaneously through a single lane. All

vehicles in this model have the same constant speed and their

starting and stopping times are negligible. However, contrary

to Tanner, our objective is not to estimate delays that occur

in such conflict problems but to find an efficient approach to

reduce delays.

III. PROBLEM FORMALIZATION

In this work, we discretize space and time at an appropriate

level to simplify the microscopic model. We use a discrete

time step (1 second) and all vehicles have the same constant

speed when moving. Space is thus discretized with the unit

length l of displacement in 1s.

A. Network Model

The network is modeled here by a set of discrete (directed)

arcs of size n · l. These arcs are connected together by nodes.

Each flow of vehicles in the network follows a particular path,

i.e., a sequence of arcs. The traffic is considered as a set of

vehicle flows.

Our particular network is modeled by a set of arcs as shown

on Fig. 2. Here, two flows pass through the network. The first

one traverses the arcs A1, A2, A3 and the second one B1,

B2, B3. On a particular road –composed by A2 (for vehicles

from source A) and B2 (for vehicles from source B)– vehicles

travel in both directions. This is the conflict edge, which must

be shared by both flows.

We divide each arc into cells of size l which determine

the position of agents as shown in Fig. 2. Each cell can be

occupied only by one vehicle at a time.

Here we consider two flows of vehicles that will fill in the

queues of the network in case of obstacle as shown in Fig. 1.

The first vehicle in each waiting queue (waiting before the

conflict edge) is referred to as its leader. Negotiations about

crossing will take plIl a ajout qu’ils vont aider rparer les

dommages et qu’ils vont fournir de nouveaux quipements lace

between the two leaders.

Source B
B1 Sink B

B3

Sink A
A3 A1

Conflict

B2

A2

Source A

Fig. 2. Representation of the network at hand

B. Agent Model

The purpose of this section is to define the agents (the

vehicles) and their interactions inside the network.

An agent takes sensory inputs from its environment and

performs actions that affect it as outputs. We are interested in

reactive agents, acting locally in real time. Each such agent

uses only local perceptions coming from its own sensors.

In an agent’s model, we distinguish the “action model” and

the “decision rules” as shown in Fig. 3. The “action model”

describes the actions which can be performed. Each action can

be executed only under certain precise preconditions. After

the execution of each action, an effect on the environment is

expected. The main problem for an agent is to choose an action

in order to best satisfy its objectives. The “decision rules” in

our case are the reactive behaviors and coordination rules of

the agents. They should, here, allow to (possibly) avoid or

solve conflicts by triggering appropriate actions.



Each agent moving on the network has three internal

variables: Tgoal, the date beyond which the agent is considered

to be late; Arc, which indicates in which arc the agent is; and

Abs, its position on the current arc in the network, which is

incremented as it progresses.

Agent Model

Action Model Decision Rules

Precondition Effects

If X then A1,
If Y then A2,
If Z then A3,
.
.
.
.
Default.

\Which is controlled

/Controller

Fig. 3. Action-decision model

Action Formalism and Model: There is no shared represen-

tation formalism in the field of reactive multi-agent systems.

In order to describe environment states and transformations,

we choose a representation inspired from STRIPS (Stanford

Research Institute Problem Solver) like Ferber in [2]. STRIPS

was proposed by Fikes and Nilsson to address planning

problems in Artificial Intelligence (AI) [15]. This is a good

choice making a compromise between expressiveness –its

ability to describe many problems– and simplicity –to ease

the development of efficient algorithms.

In this formalism, a state of the environment is described as

a set of clauses composed of literals. Their conjunction asserts

the validity of this state. An operator, which characterizes

actions, is composed of:

• a precondition, which is a set of predicates that should

be true for the operator to be authorized,

• post-conditions, which are a set of predicates that will be

true and a set of predicates that will be false after the

execution of the operator.

Each operator is described under the following form (t and

t+ 1 being the current and next time steps):

〈name : Action()...,

pre-condition : A(t), B(t)...,

post-condition : C(t+ 1), D(t+ 1)...〉.

In our case, the action model relies on 3 operators, (which

makes use of multi-valued variables): DoNothing, Forward,

and ChangeArc.

DoNothing consists in waiting for one time step.

Forward describes the displacement within arcs:

〈name : Forward(),

pre : ¬Last(Abs,Arc), F ree(Abs+ 1, Arc),

post : Freet+1(Abst, Arct),

Abst+1 = Abst + 1,

¬Freet+1(Abst + 1, Arct)〉,

where:

• Free(Abs,Arc) is true iff the position Abs of the arc

Arc is empty;

• Last(Abs,Arc) is true iff Abs of the agent is the last

position of the arc Arc.

In this action, the agent must verify that the next position of

its arc is free before moving.

ChangeArc describes how an agent moves from one arc

to next:

〈name : ChangeArc(),

pre : Last(Abs,Arc), F ree(1, NextArc),

post : Freet+1(Abst, Arct),

Arct+1 = NextArct,

Abst+1 = 1,

¬Freet+1(1, NextArct)〉,

where NextArc indicates the following arc to the agent. Here,

if the agent wants to move on an arc, it must verify that it is

in the last position of its arc, and that the first position of the

next arc is free.

C. Optimization Criteria

Conflict

Δt CrossMin

Δt Wait

Δt Out

Source B

Sink A Source A

Sink B

Vehicle 1

Vehicle 2

A1

A2

A3

B3

B2

B1

Fig. 4. A particular scenario and the durations that add up to estimate
V ehicle 1’s traversal time

To estimate the delay upon arrival, we must calculate the

time remaining for the vehicle to exit the network. Consider a

generic scenario where we have two vehicles in the network,

V ehicle 1 and V ehicle 2, as shown on Fig. 4. V ehicle 1
wants to enter the conflict edge. However, it must first wait

for V ehicle 2 to pass, implying an initial waiting time. When

V ehicle 2 leaves the conflict edge, it enters its last arc in

the network (B3), and it is V ehicle 1’s turn to pass (on A2).

Finally, to exit the network, V ehicle 1 must go through its

last arc (A3).



In this case, the date at which V ehicle 1 reaches its goal

is computed as follows:

Testimated = Treal +∆tWait +∆tCrossMin +∆tOut, (1)

where Treal is the current date, ∆tWait is the time required to

free/empty the conflict edge of vehicles in the other direction,

∆tCrossMin is the time required to cross the conflict edge,

and ∆tOut is the time required for the vehicle to cross the

last arc in the network and to leave it.

More generally, we call delay of a vehicle the time lost

with respect to the original plan given by the system user. We

define the delay D as

D = max (0, Testimated − Tgoal) . (2)

Now, consider N vehicles v1, v2, v3, ..., vN in the network

and, for each vehicle vi, its delay Di. As the arrival of vehicles

is stochastic, we have to optimize an expected criterion. We

can express our objective to minimize the delay in various

ways as, e.g., with the three following formulas:

fSum(π) = min
π

E

[

N
∑

i=1

Di

N

]

, (3)

fMax(π) = min
π

E

[

max
i∈{1..N}

(Di)

]

, (4)

fSum2(π) = min
π

E





√

√

√

√

N
∑

i=1

D2
i

N



 . (5)

The first formula –a linear criterion– minimizes the average

delay over all vehicles, but some vehicles may incur very long

delays. The second formula seeks to minimize the worst delay

over all vehicles, but may lead to a very bad average delay.

That is why we introduce the third formula –a quadratic form–

, which is a compromise between equations (3) and (4) using

the Root Mean Square of the delay. In all these cases we

attempt to have a global behavior that allows sharing delay

between agents.

IV. PROPOSED COORDINATION BEHAVIORS

We propose two strategies relying on reactive coordination

rules executed by the vehicles at the front of the waiting

queues.

A. Alternating

V1

Lane A

Lane B

Obstacle

Sink A

Sink B

V2 V3 V4

V6 V5

Fig. 5. First approach : Alternating vehicles

The first behavior is inspired from the civic behavior of

drivers when they have to share a one lane road. In case of

conflict, vehicles pass alternately, i.e., one at a time, from

each side of the conflict edge, as in Fig. 5, with four cars

(V1, V2, V3 and V4) from lane A and two cars (V5 and V6)

from lane B. The resulting passing order is (from left to right)

V5 V1 V6 V2 V3 V4 or V1 V5 V2 V6 V3 V4, depending on who

goes first between V1 and V5.

Alternating is a simple process that does not require high

level communications since the order is automatic (regardless

of the delays). Only the perception of vehicles on the conflict

edge and at its entrance is required. Nevertheless, we must treat

the particular case of the simultaneous arrival of a vehicle on

both sides of the conflict edge when this edge does not contain

any vehicle. In this situation, each vehicle transmits a release

signal after a (very short) random delay. As soon as a vehicle

receives such a signal, and if it does not emit at the same time,

it sets out on the road. If both transmit simultaneously, they

restart this process.

Algorithm 1 gives the essential part of an agent’s behavior

by focusing on the rules for changing arc. It considers only the

decision to be taken by an agent located at the entrance of the

conflict edge. The first two tests correspond to (i) if the edge

is already occupied by a vehicle in the opposite direction, then

it waits, or (ii) if there is no agent on the opposite entrance,

then it can move forward. The third test is the nominal case. It

concerns a vehicle that moves forward after a vehicle coming

from the opposite direction has left the conflict edge. The

special case remains of two agents on the two entrances of the

conflict edge, when there was no agent traversing it (line 8).

In this case the perception of the release signal can solve the

situation, otherwise each one emits the signal after a random

time. The last case (line 14) is when the agent has to wait

because the conflict edge is already occupied and an agent is

waiting at the opposite entrance.

Algorithm 1: Passage rules for alternating

input : agent at an entrance of the conflict edge1

if there is currently an agent on the conflict edge2

in opposite dir then
DoNothing()3

else if no agent on the opposite entry then4

ChangeArc()5

else if there was previously an agent on the conflict edge6

in opposite dir then
ChangeArc()7

else if there was no previous agent on the conflict edge8

then
break-tie()9

if winner then10

ChangeArc()11

else12

DoNothing()13

else14

DoNothing()15



Lane A

Lane B

Obstacle

Sink A

Sink B

V 6
β (

-4
0)

V2 V3 V4 α
 (
-2

0)

V 8 V 7
Fig. 6. Second approach : Highest delay first strategy

B. Local Greedy Optimization (LGO)

The second behavior that we propose tries to optimize the

transition by promoting vehicles that are more delayed than

others. Delay comparisons are done using the communication

between the two agents which want to cross the conflict edge

simultaneously. Let us denote α and β the leading vehicles

of the queues A and B respectively (assumed nonempty). For

decisions to be local, as in the first approach, only the two

leaders of the waiting queues can communicate together.

For example, consider Fig. 6, where we noted in parentheses

the delay of the two leaders assuming each of them goes

first (e.g., vehicle α has 20 seconds of delay). Intuitively,

they will go in this order: β then α. But if, as in Fig. 6,

there are vehicles in the middle like V7 and V8, or the

ordering of delays is complicated, choosing the order of

passage is not trivial. If α passes first, β will wait an extra time

ǫ1 = 40s+α crossing time. Else if β passes first, α will wait

an extra time ǫ2 = 20s+V7 crossing time+β crossing time.

To make this decision, we use the optimization criteria

presented in Sec. III-C. Having chosen to consider only these

two vehicles, we restrict the evaluation of the selected criterion

to them, and only have to compare two orderings: (1) α before

β (α → β), and (2) β before α (β → α).

1) Each vehicle first calculates its two possible delays:

Dv
α→β and Dv

β→α, where v is α or β, then transmits

them to the other vehicle.

2) Each agent compares, based on its own estimates and

those received, the two possible passing orders using

the optimization criterion at hand. For example, if the

criterion used is Formula 4, the passing order will be

α then β if f
α→β
Max = (Dβ

α→β +Dα
α→β) is greater than

f
β→α
Max = (Dβ

β→α+Dα
β→α), else β then α in the opposite

case.

Algorithm 2 gives the essential behavior of vehicle β where

f
β→α
∗ (respectively f

α→β
∗ ) is the value of one of the 3 criteria

if β passes before α (resp. if α passes before β).

V. EXPERIMENTAL RESULTS

A. Simulation

We developed a prototype simulator on the JADE2 platform

(Java Agent Development Framework), which offers a Java

2http://JADE.tilab.com

Algorithm 2: Passage rules for LGO of the vehicle β

if (agent waiting on the other side) then1

Send/receive delays2

if (fβ→α
∗ > fα→β

∗ ) then3

if4

(agent on the conflict edge in opposite direction)
then

wait for release of conflict edge5

ChangeArc()6

else DoNothing()7

else8

if (agent on the conflict edge in opposite direction)9

then
DoNothing()10

else ChangeArc()11

middle-ware to develop agent-based applications. In our work,

the actions and decisions are the same for all agents.

We reproduce the network as shown in Figures 2 and 4:

• the speed of each vehicle is 10 meters per second

(36km/h), thus l = 10;

• the length of each arc is 300 meters (30 · l);
• at each entrance of the network, we have installed a

source that generates vehicles.

Each source injects vehicles following a Bernoulli process

with a parameter λ such that:

λ =
1

T
, (6)

where T is the average time, in seconds, between two consec-

utive vehicles. This process is equivalent to flipping a coin at

each time step.

In all our simulations, we verified that we do not meet the

pathological case where a single queue passes, at the expense

of the other queue (which is blocked). In the remainder of

this paper, we will call Alt the Alternating strategy, and

Sum, Max and Sum2 three variants of the LGO strategy

corresponding to the criteria presented in Formulae 3, 4, and 5.

B. Release of the Two Lanes

The particularity of this scenario is that we start with the

Alternating strategy, then, after 50 vehicles have been injected

in the network, either we continue with the same strategy

(Alt − Alt) or we choose the second strategy (LGO) with

one of the 3 criteria. After the injection of 100 vehicles,

we stop injections and wait for the network to empty. We

used high injection frequencies—thus, dense traffic—with

parameter T = 10s for the Bernoulli process of each queue.

Fig. 7 shows the simulation results of the Alternating

strategy and the 3 variants of the LGO strategy. The curves

plotted in Fig. 7 are averages over 100 simulations. The X

axis represents the time in seconds, and the Y axis represents

the number of vehicles in the network at time t.

We notice that the Alt−Alt strategy is not good and takes

a lot of time –on average, 600 seconds– before releasing the
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Fig. 7. Observation of the release of 100 vehicles

network. We also note that, when switching to any version

of the LGO strategy, the number of vehicles for strategies

Alt − Sum2, Alt − Max, and Alt − Sum progressively

decreases until both paths are finally empty. The fastest

evacuation is given by the curve Alt − Sum2. We observe

the existence of two stages for the Alt − Sum criterion.

Upon the outbreak of the strategy, the curve makes a plateau,

followed by a steeper slope than on any other curve. This is

due to the Sum criterion avoiding to switch queues (as we will

see in the next sub-section). When there are injections, while

one of the queues is running, the other saturates (generations

are then forbidden, and therefore the Bernoulli process is

not respected). This saturation is a way to limit the increase

of the number of vehicles (hence the plateau), and further

delays the moment when the total of 100 injected vehicles is

reached. Once the injections have stopped, Alt−Sum releases

its queues faster by avoiding the wasted time associated to

switching queues. We see that Alt −Max and Alt − Sum2

have a slightly higher maximum number of vehicles than

Alt− Sum, but no such plateau.

C. Regulation of a Continuous Traffic

In the second scenario, we do not stop the injections of

vehicles as in the previous simulations, but record the traversal

time of the first 100 vehicles leaving the network.

Fig. 8 gives the average traversal time of each strategy for

injections with T = 10s. The Y axis gives the traversal time in

seconds, and the X axis gives the number of vehicles having

left the network. The plotted curves are averages over 100

simulations.

The Alt strategy is the worst one again. The Sum criterion

is significantly worse than Sum2 and Max. It does not favor

any lane switches (as we will see below) and accumulates

vehicles on one of the sides. We observe that the best criteria

are Sum2 and Max with the lowest averages, noting that the

minimum traversal time is 87 seconds. Max, besides caring

about the worst delay, reduces the standard deviation, while

Sum2 works more on reducing the average of the traversal

time between vehicles.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  10  20  30  40  50  60  70  80  90  100

T
ra

v
e
rs

a
l 
T

im
e
 (

s
e
c
o
n
d
s
)

Number of vehicles having left the network

Max
Sum

Sum2
Alt

Fig. 8. Comparison of averages and standard deviations of traversal time
(T=10–10)

TABLE I
SUMMARY OF AVERAGES AND STANDARD DEVIATIONS

Average Alt Sum Max Sum2

10− 10 1260± 86 142±94 127±22 115±28

30− 30 782±173 104±28 105±19 102±19

Table I gives a summary of the measured traversal times

with standard deviations for each strategy and for injections

of vehicle flow T = 10s and T = 30s. With less frequent

injections we find that Sum2 is the best criterion and that

the 3 variants of the LGO strategy have close averages and

standard deviations.

To better understand the LGO strategy, Fig. 9 presents the

result of a simulation chosen randomly for each criterion with

injections on average every T = 10s. Each curve represents

the sequence of 100 vehicles in their output order, with the

date of injections on the X axis, and the traversal time on the

Y axis.

The first thing that questions us is that the Sum criterion

takes a lot of time before switching queues, unlike Max

that switches very often. According to the figures, the Sum2

criterion appears as a compromise between the two others.

Switching queue often wastes a lot of time, but not switching

queues leads to accumulating delays of waiting vehicles.

Overall, all the measurements show that an approach focused

on local coordination rules proves to be efficient to regulate

traffic around the conflicts generated by the space sharing

problem. We demonstrate that a multi-agent approach, based

on the exchange of information between the top vehicles

from each queue, allows to implement an efficient regulation

resulting from global delay optimization criteria.

VI. DISCUSSION

The problem treated in this paper is to solve space sharing

conflicts in a multi-agent system. Only the two vehicles at the

front of each waiting queue communicate together in order to

know which one goes first. The advantage of our approach is
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Fig. 9. Observation of one simulation of each criterion, Input time and Traversal time of vehicles (T=10–10)

the complete decentralization of the model. Especially, there

is no centralized mechanism that manages the intersection

(e.g., to receive the delays, to organize an auction...) which

is different from the multi-agent approaches to control inter-

sections [16]. Actually, if we consider an exhaustive approach

(centralized), and if n and m are the number of vehicles in

each queue, the number of vehicle orderings to consider –

and thus the algorithm complexity– is the number of ways

to interleave the vehicles from both queues (without changing

the order within each queue)
(

n+m

n

)

=
(n+m)!

n! m!
,

which have to be considered at each time step t in order

to know the best crossing order. The worst case for a fixed

number of vehicles is when m = n, whose asymptotic

behavior can be derived from Stirling’s approximation as:
(

2n

n

)

∼ 4n√
πn

as n → ∞.

The complexity of our approach is significantly lower. It

consists in the number of messages sent, i.e., at most two

messages in each negotiation.

VII. CONCLUSION

In this article we addressed the resolution of space sharing

conflicts between queues of vehicles, or more generally be-

tween mobile agents (e.g., robots). For this, we explored multi-

agent approaches based on reactive coordination behaviors.

We first proposed an approach using only local perceptions

(alternating), and then one integrating communications be-

tween vehicles at the top of the queues. The experimental

study has shown the ability to regulate conflicts (congestions)

of these behaviors, generated in different traffic scenarios.

Congestion phenomena, which are undesirable emergent phe-

nomena, are treated here locally, thus independently of any

external planning system, and in real time. The introduction

of simple communications of delays significantly improves on

the Alternating strategy commonly used by drivers.

We plan to continue this study by generalizing the ap-

proaches to any number of queues, but also by proposing to

take into account delays of more vehicles present in the queues

to further improve traffic management (searching how many

vehicles to consider so as to best trade off between complexity

and quality).
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