
Compiling Domain Consequences
Alexandre Papadopoulos and Barry O’Sullivan

Cork Constraint Computation Centre
University College Cork, Ireland

Email: {a.papadopoulos|b.osullivan}@4c.ucc.ie

Abstract—This paper presents a method for computing all
the domain consequences of a constraint problem. Domain
consequences are a generalisation of prime implicates to multi-
valued constraint problems. We define ordered automata to
encode a large, potentially exponential, number of domain
consequences. We design a range of algorithms that directly
operate on this compact representation, with a complexity that
depends on its size and not the size of the encoded set. This
allows us to generate the domain consequences of a problem
even for problems that have an exponential number of domain
consequences. Furthermore, a simple empirical study illustrates
the effectiveness of the method in compiling a large number of
domain consequences, and the compactness of this representation.

I. INTRODUCTION

Many problems in Artificial Intelligence can be seen as
instances of consequence finding. Consequence finding cor-
responds to the problem of deriving specific knowledge that
is intensionally contained in a knowledge base, by finding
certain consequences of the knowledge base. Techniques for
consequence finding and its applications have been extensively
surveyed by Marquis [1]. Prime implicates play an important
role in consequence finding, and many consequence finding
tasks consist in computing the prime implicates of a propo-
sitional base, or restricted sets of prime implicates. In their
experimental study, Chatalic and Simon [2] show for the first
time that consequence finding algorithms can scale up to
problems of practical significance.

Existing work in consequence finding has concentrated
on propositional logic. In this paper, we decide to tackle
multivalued constraint problems. Prime implicates have many
uses in AI, such as for diagnosis [3], [2], the ATMS [4], [5],
abduction and explanations [2], amongst others. Consequently,
a generalisation of consequence finding methods to constraint
problems has a potential for many applications too. For
example, we suggested in previous work [6] that precise and
extensive information about conflicts is key for determining
explanations. We proposed to compute in advance all possible
conflicts, as a compilation step, where a possible conflict refers
to incompatibilities between values of the variables of the
problem. This idea, or more precisely the complementary idea,
is formalised by the concept of domain consequence, which
generalise prime implicates to multivalued constraint prob-
lems. Of course, the number of consequences a problem entails
can be intractably high. Therefore, the actual set of domain
consequences has to be, in turn, compactly represented, in
order to obtain an efficient compilation technique.

Zero-suppressed Binary Decision Diagrams (ZBDDs) have
been shown to be an efficient data structure for represent-
ing a collection of subsets of a universe, by representing
the characteristic function of each subset contained in the
collection [7]. This property has been successfully exploited
by Chatalic and Simon [8] to represent sets of clauses, with
an efficient compression power (see Figure 1). Exploiting
this particular semantics, Chatalic and Simon define some
additional specific operators that allow them to implement and
use the original Davis and Putnam resolution procedure. This
approach is the first (and, to our knowledge, single) approach
of a consequence finding algorithm that scales up to problems
of practical significance.

Example 1. Consider the ZBDD in Figure 1. Each node is labelled
by a literal, and has two outgoings arcs: a 1-labelled arc (plain line),
meaning the literal is present, a 0-labelled arc (dashed line), meaning
the literal is omitted. Paths from the root node to a terminal node,
those labelled by 0 or 1, correspond to sets of literals, only those of
which end at node 1 being kept.

z

¬x

1 0

x

y

Fig. 1. An example ZBDD encoding a collection of two sets of literals
{xy,¬xz}.

We propose to adapt this approach for our context. At first
glance, one could think that this can be straightforwardly ap-
plied to represent sets of domain consequences, since a domain
consequence too can be represented as a subset of a universe.
However, this approach needs to be extended to take into ac-
count the particular semantics of domain consequences, which
is different to the semantics of clauses. More specifically,
trivial sets (sets including {x,¬x}) generalise differently to
domain consequences, whether they are tautologies (including
x∨¬x) or contraditions (including x∧¬x). This does not affect
the representation; however, it affects the interpretation of the
representation by the procedures that use it. This is actually a
fundamental difference and makes this extension not trivial.

Furthermore, for presentation purposes, we choose to define
and use a restricted class of automata instead of ZBDDs
(although they are conceptually equivalent [9]), as they allow
for a more succinct and legible presentation. However, note



that in the rest of the paper, it sometimes helps presentation
to first discuss the clausal case. Since existing work on the
clausal case relies on ZBDDs, we will, for consistency with
the existing literature, present the clausal case using ZBDDs.

The main contribution of this paper is a procedure that,
based on an automaton representation of domain conse-
quences, computes all the domain consequences of a problem.

II. PRIME IMPLICATES AND DOMAIN CONSEQUENCES

It is useful to recall the concept of domain consequence, as
defined in [6], which is a generalisation of prime implicates.

Let Φ be a finite set of clauses in Conjunctive Normal
Form (CNF) (or any NNF for the purposes of the following
definitions), and let C be a disjunction of literals (a clause).

Definition 1 (Implicate). Let C and C ′ be two clauses.
• C is an implicate of Φ if Φ |= C.
• C subsumes C ′ iff C ⊆ C ′ iff C |= C ′.

Usually we only consider non-trivial implicates, i.e. implicates
that are not a tautology. A prime implicate is then defined as
follows.

Definition 2 (Prime Implicate). C is a prime implicate of Φ
iff:
• C is an implicate of Φ and
• ∀C ′ which is an implicate of Φ, C ′ |= C ⇒ C |= C ′.
• Equivalently, ∀C ′ ⊂ C, Φ 6|= C ′.

Definition 3 (Prime Implicants). An implicant is a conjunction
of literals C such that C |= Φ. Prime implicants are thus
defined in a converse way.

We can now generalise those definitions to multivalued
constraint problems. Suppose we have a problem defined on
a set of variables X1, . . . , Xn, taking their values from the
domains D(X1), . . . , D(Xn).

Definition 4 (Domain Conflict). The notion of domain conflict
is defined as follows:
• A domain conflict for given problem is given by the

sequence of domains C = 〈D1, . . . , Dn〉, such that
imposing Xi ∈ Di for each Xi is inconsistent. Such a
conflict can be seen as a conjunction of unary constraints,
which is inconsistent.

• Given two domain conflicts C1 = 〈D1, . . . , Dn〉 and
C2 = 〈D′1, . . . , D′n〉, we note that C1 ⊆ C2 if ∀Xi,
Di ⊆ D′i.

• A maximal domain conflict is a domain conflict C such
that no domain conflict C ′ 6= C exists with C ⊆ C ′. In
other words, every component Di of C is maximal.

We can observe that the notion of maximal domain conflict
recovers the classic one of minimal conflict, in the sense that
for a given i, having Di = D(Xi) is equivalent to having no
constraint at all on Xi. Thus, the more values that are in the
Di sets, the fewer constraints there are on the corresponding
Xi variables.

With that definition in mind, we can define the consequence
of a given problem, thus generalising the concept of prime
implicate.

Definition 5 (Domain Consequence). A domain consequence
is defined as follows:
• A domain consequence of a problem is given by P =
〈D1, . . . , Dn〉 such that 〈D1, . . . , Dn〉 is a domain con-
flict, with Di = D(Xi) \Di.

• Given two domain consequences P and P ′, whose corre-
sponding domain conflicts are C and C ′, we have P ⊆ P ′
if C ′ ⊆ C. To reuse the classic terminology, we may say
that P subsumes P ′.

• A domain consequence P is minimal if its corresponding
domain conflict is maximal. In other words, no domain
consequence P ′ 6= P exists such that P ′ ⊆ P .

A given consequence of the problem is read as a disjunction.
In other words, for any solution of the problem, it must be true
that X1 ∈ D1 or X2 ∈ D2 or... and so on.

Definition 6 (Set of domain consequences). Let Π be a
problem. Cons(Π) is the set of all the minimal domain conse-
quences of Π, that is if P is a domain consequence of Π, then
∃P ′ ∈ Cons(Π) such that P ′ ⊆ P , and ∀P, P ′ ∈ Cons(Π),
P ⊆ P ′ ⇒ P = P ′.

A set of domain consequences must be seen as a conjunc-
tion, and so Cons(Π) ≡ Π. The strategy will thus be, given a
problem, to compute all of its consequences, as efficiently as
possible, and represent them as compactly as possible.

III. ORDERED AUTOMATA FOR COLLECTIONS OF SUBSETS

A. General Definition

We propose to use regular automata to represent a collection
of subsets, with an added property that values must be ordered.
Concretely, we impose a total order on the alphabet, and this
order affects how values can be introduced: a recognised word
can be composed only of symbols in strictly increasing order.

Definition 7 (Ordered Automaton). An ordered automaton M
is defined as a 6-tuple 〈Q,Σ,≤, δ, q0, F 〉, with:
• Q a finite set of states,
• Σ a set of symbols (the alphabet),
• ≤ a total order on Σ,
• δ a function Q×Σ→ Q (the ordered transition function),

such that for any string s recognised by M , ∀i < j ≤
|s|, s[i] < s[j],

• q0 ∈ Q the initial state,
• F ⊆ Q the final states.

We additionally impose the usual properties on the automa-
ton, precisely that it should be deterministic, trimmed (remove
transitions that cannot reach final states) and minimal. These
properties will be implicitly assumed.

We introduce some additional notation:
• σ(q) = {a ∈ Σ|δ(q, a) is defined}, the set of labels of

the outgoing transitions of a state;



• δ(q) = {δ(q, a)|a ∈ σ(q)}, the successors of a state;
• δ∗(q) = {q′ ∈ Q|(q′ = q) ∨ (q′ ∈ δ(q′′) ∧ q′′ ∈ δ∗(q))},

the set of states accessible from a state;
• the digraph D = (Q,E), with E = {(q, q′)|q ∈ Q∧ q′ ∈
δ(q)}, is called the underlying digraph of the automaton.

Let us remark that, as an ordered automaton can only recognise
strings of finite length, its underlying digraph must be acyclic.

The semantics that we attach to an ordered automaton M is
defined as follows. Given a collection of subsets of a universe
U , we build a corresponding ordered automaton M such that:
• Σ is in one-to-one correspondence with U ;
• ≤ can be the natural total order holding on U , or any

arbitrarily chosen total order;
• a subset S ⊆ U is uniquely represented by the string

composed of the symbols corresponding to each element
in S, in increasing order;

• a subset S ⊆ U is in the collection iff the corresponding
string is recognised by M .

Let us observe that, with this semantics, an ordered automa-
ton representing a collection of subsets has a single final state
if all the subsets of the collections are incomparable. Indeed,
if an ordered automaton has more than one final state, then at
least one final state must have a successor (two final states with
no successor being equivalent). This state recognises a given
set which is a subset of any set recognised by any successor
of this state.

Some particular cases of this semantics include the empty
collection, and the collection containing the empty set only.
The empty string represents the empty set. An automaton with
only one state that is both initial and final recognises the empty
string only, and thus interprets as {∅}. An automaton that has
no final state does not recognise any string, and thus interprets
as ∅ (if it is minimal, the initial state is the unique state).

B. Domain Sequences

We can use this data structure to represent a collection
of domain sequences. Indeed, if we assume, without loss of
generality, that the domains of each variable do not share
common values, we can notice that a domain sequence is
merely a subset of the universe defined by the union of all
domains. Therefore, we can apply the approach just described.

From a logical point of view, if the considered domain
sequences represent domain consequences, a collection of
domain consequences interprets as a conjunction (of disjunc-
tions). In particular, ∅ interprets as true and {∅} interprets as
false.

In order to encode a collection of domain sequences with
an ordered automaton, we first have to match the values of
the initial domains to unique values for each variable, then
to impose a total order on the resulting universe (which can
result from an existing total order on the original domains).
More formally, given a sequence of variables X1, . . . , Xn,
with domains D(Xi), we define an automaton M as follows:
• ∀a ∈ D(Xi), we create a unique symbol, denoted aXi ,

thus Σ = {aXi |i ≤ n, a ∈ D(Xi)};

• we set an order ≤ such that aXi
≤ bXj

iff i ≤ j or
i = j ∧ a ≤ b.

Then, we can encode a specific domain consequence as a
string over Σ, and a collection of domain consequences as the
automaton recognising the set of the corresponding strings.

Example 2. Let P = {〈ab, ab, a〉, 〈b, bc, a〉, 〈b, ∅, b〉}, on the
variables X,Y, Z (we assume a < b < c). We define Σ =
{aX , bX , cX , aY , bY , cY , aZ , bZ , cZ}, declared in increasing order,
and the ordered automaton encoding P is given in Figure 2. Con-
ceptually, we are basically labelling the transitions of the automaton
with variable assignments.

aX

bX
aZ

bZ

cYbY

bYaYbX

Fig. 2. An automaton representing three domain consequences

IV. OPERATIONS ON ORDERED AUTOMATA

With the given semantics, we can realise operations on sets
of domain consequences as operations on automata. We will
make use of the following notation:

• Given a state q0 belonging to a certain automaton, as a
shortcut notation, we denote by P(q0) the collection of
domain consequences encoded by the automaton whose
initial state is q0.

• Let q∅ be a constant dummy state.
• Let M∅ = 〈{q∅}, ∅, ∅, ∅, q∅, ∅〉. We have here P(q∅) = ∅;
q∅ is not an accepting state.

• Let M{∅} = 〈{q∅}, ∅, ∅, ∅, q∅, {q∅}〉. We have here
P(q∅) = {∅}; q∅ is an accepting state.

In order to simplify presentation, we will assume that,
for a given state q and symbol a, δ(q, a) being undefined
is equivalent to having δ(q, a) = q∅. In particular, we can
express σ(q) as {a ∈ Σ|δ(q, a) 6= q∅}. This allows us, in
the algorithms, not to consider explicitly the case where a
transition for a given symbol is undefined.

Finally, we assume that the considered automata are always
defined with the same alphabet and the same order.

A. Creating States

Every time a state is built, it has to be registered using
the function register-state. After a state has been
registered, it cannot be further modified (transitions cannot
be added or removed, successors cannot be modified). If the
newly built state has no outgoing transition, q∅ is returned;
this ensures that the automaton is trimmed. If a state already
exists that is equivalent to the newly built state, i.e. the same
symbols lead to the same states, that state is returned instead.
Otherwise, the newly built state itself is returned. This way, the
invariant that all states in the register are pairwise inequivalent
is maintained, which ensures minimality.



Function register-state(q)

if σ(q) = ∅ ∧ ¬isFinal(q) then return q∅1

if ∃q′ in the register such that q is equivalent to q′ then2

return q′

Add q to the register3

return q4

B. Operators

We can now define a number of operators that form the
basic pieces of the compilation procedure. We will not describe
the algorithm implementing each operator, as this would
unnecessarily load this paper. As an example, we provide the
algorithm for one of the operators, and the reader is referred
to [10] for further details.

a) Subsumed Removal.: Let P1 and P2 be two collec-
tions of domain consequences. We define P1 \|= P2 as the set
of all the domain consequences of P1 that are not subsumed
by any domain consequence of P2.

Let M1 and M2 be two ordered automata, with respective
initial state q1

0 and q2
0 . We define the operator q1

0 \|= q2
0 such

that P(q1
0 \|= q2

0) = P(q1
0) \|= P(q2

0).
b) Union.: Let P1,P2 be two collections of domain con-

sequences free from subsumed elements. We define P1 ∪µ P2

as the set µ(P1 ∪ P2), i.e. the union of P1 and P2 where
only non-subsumed elements are kept. From a logical point of
view, P1 ∪µ P2 is the conjunction between P1 and P2.

Let M1 and M2 be two ordered automata free from sub-
sumed elements, with respective initial states q1

0 and q2
0 . We

define the operator q1
0 ∪µ q2

0 in the following function.

Function q1
0 ∪µ q2

0

if q1
0 is final then return q1

01

if q2
0 is final then return q2

02

else3

q0 ← Create new state4

forall a ∈ σ(q1
0) ∪ σ(q2

0) in decreasing order do5

δ(q0, a)← (δ(q1
0 , a) ∪µ δ(q2

0 , a)) \|= q06

return register-state(q0)7

Proposition 1. P(q1
0 ∪µ q2

0) = P(q1
0) ∪µ P(q2

0).

Proof: For a given symbol a, if both states have an
outgoing transition labelled with a, then the union of respective
consequences starting with a must be performed. If only one
state has an outgoing transition with a, then the recursive call
will be performed with q∅ as one of the operands, and so the
other operand will be returned unmodified. At a given iteration
of the forall statement, let P1 = P(δ(q1

0 , a) ∪µ δ(q2
0 , a))

and P2 = P(q0). By induction hypothesis, both are free
from subsumed elements. Any element from P2 subsumed
by an element P of P1 will not be subsumed by P ∪ {a}.
However, if an element from P1 is subsumed by an element

of P2, it will still be after adding a to it. By removing those
subsumed elements, we obtain a subsumption-free automaton
(see Figure 3).

P1

P2
a

q′0

P1 \|= P2

P2
a

q′0

Fig. 3. Adding P1 without introducing subsumed elements

c) Product.: Let P1,P2 be two collections of domain
consequences free from subsumed elements. We define P1 ⊗
P2 = µ{P1 ∪ P2|P1 ∈ P1, P2 ∈ P2 ∧ P1 ∪ P2 is not trivial}.
Intuitively, P1 ⊗ P2 contains all the domain consequences
formed by the union of a domain consequence respectively
from P1 and from P2 that are not trivial and that are not
subsumed by any other such domain consequence. From a
logical point of view, P1 ⊗ P2 is the disjunction between P1

and P2.
Let M1 and M2 be two ordered automata free from

subsumed elements, with respective initial states q1
0 and q2

0 .
We define the operator q1

0 ⊗ q2
0 such that P(q1

0 ⊗ q2
0) =

P(q1
0)⊗ P(q2

0).

V. COMPILING THE DOMAIN CONSEQUENCES OF A
PROBLEM

We now present a procedure that allows us to compute all
the domain consequences of a problem, represented by an
ordered automaton. This constitutes the main contribution of
this paper.

At the core of this compilation procedure is the closure
by resolution. Put simply, given an ordered automaton M
encoding a collection P of domain consequences, we need to
apply an operator that builds an ordered automaton Cons(M)
that encodes Cons(P). We define this operator in this section.

A. The Operator for the Clausal Case1

To simplify presentation, we will first consider the clausal
case. Let us first define the distribution operator as follows.

Definition 8 (Distribution). Let Φ be a collection of sets of
literals. The distribution of Φ, denoted �Φ, is the collection
of sets of literals obtained by keeping one literal from each
set in Φ, and such that non-minimal and trivial sets (i.e. sets
containing a literal in non-negated and negated forms) are
omitted.

Example 3. Let Φ = {xy,¬xz}, �Φ = {xz,¬xy, yz}.

If Φ is a CNF, the operator consists in distributing the
conjunction over the disjunction, and thus converting from a
CNF to an equivalent DNF. Conversely if Φ is a DNF, the
operator distributes the disjunction over the conjunction, thus
converting it to an equivalent CNF. In case a DNF is obtained,

1We would like to thank Hélène Fargier for her very helpful explanations
and for pointing us to a number of relevant papers, which helped us develop
this section.



trivial sets correspond to contradictions (including l ∧ ¬l),
and in the case a CNF is obtained, trivial sets correspond
to tautologies (including l ∨ ¬l). It also follows from this
observation that �� Φ ≡ Φ.

Example 4. Consider Example 3. If we interpret Φ as the DNF
formula (x∧y)∨ (¬x∧z), we can interpret �Φ as the CNF formula
(x ∨ z) ∧ (¬x ∨ y) ∧ (y ∨ z), which is equivalent to the DNF Φ.

Let us now make some observations. Let Φ be a CNF, Φ′

be the DNF defined as Φ′ =
∨
C such that C|=Φ C, and Φ′′ the

CNF defined as Φ′′ =
∧
C′ such that Φ′|=C′ C ′, where both Φ′

and Φ′′ are free from tautologies, contradictions and subsumed
elements. We have:

• Φ ≡ Φ′ ≡ Φ′′;
• ∀C ∈ Φ′, C is a prime implicant of Φ;
• ∀C ′ ∈ Φ′′, C ′ is a prime implicate of Φ.

Theorem 2. Φ′ = �Φ and Φ′′ = �Φ′.

Proof: Let us simply observe the following:

• A (minimal) hitting set of the sets in Φ that is not a
contradiction is a (prime) implicant of Φ: indeed, if every
clause in Φ is satisfied, then Φ is satisfied too.

• Conversely a (minimal) hitting set of the sets in Φ′ that
is not a tautology is a (prime) implicate of Φ′, and thus
of Φ too.

In summary, this discussion tells us that converting a CNF
to a DNF and then back to a CNF produces all the prime
implicates of the initial CNF. Consequently, applying twice
the � operator computes all prime implicates of a formula.

Example 5. Consider again Example 3, with Φ = {xy,¬xz}. We
have �Φ = {xz,¬xy, yz}, and � � Φ = {xy,¬xz, yz}. The new
clause y ∨ z is a prime implicate of (x ∧ y) ∨ (¬x ∧ z).

The last and most important step in our approach is to
implement this operator on ZBDDs encoding collections of
sets of literals. Let Φ be a collection of sets of literals,
and suppose we interpret it as a DNF formula. Let l be a
literal involved in Φ. By factorisation of l, Φ is equivalent to
(l∧fl)∨ f̄l, where fl is a DNF formula containing all the sets
in Φ involving l, from which l has been removed, and f̄l is a
DNF containing all the sets in Φ that do not involve l. Then
�Φ is equivalent to (l∨�f̄l)∧ (�f̄l∨�fl). This formula can
then be formulated in CNF by considering the results of the
recursive calls �f̄l and �fl, which are in CNF by induction
hypothesis, and by distributing l over �f̄l and �f̄l over �fl,
thus reformulating both members of the conjunction in CNF.
Finally, �Φ is obtained by removing non-minimal and trivial
clauses from this result. Obviously, if we interpret Φ as a CNF
formula the corresponding reasoning applies too.

This allows us to represent �Φ as a ZBDD as shown in
Figure 4. Note that this ZBDD will be free from subsumed
elements, but might contain trivial sets (if �f̄l contains sets
containing the literal ¬l), but we omit this last aspect in the
figure in order to keep it simpler.

l

fl f̄l

l

�fl ⊗�f̄l�f̄l
\|=(�fl ⊗�f̄l)

�

Fig. 4. Implementing the � operator with clauses

B. Generalisation to Domain Consequences

The operator for the clausal case can be generalised in a
straightforward way to domain consequences. Most of the pre-
vious discussion holds irrespective of the size of the domains.
The only point of attention arises from the definition of trivial
sets.

Let P be a set of domain sequences. So far, we inter-
preted P as a set of domain consequences. In that case,
we can say that P is interpreted in conjunctive form, i.e.
that ∀P = 〈D1, . . . , Dn〉 ∈ P , P is interpreted as the
disjunction X1 ∈ D1 ∨ . . . ∨Xn ∈ Dn, and P is interpreted
as the conjunction

∧
P∈P P of its domain consequences.

Conversely, we say that P is interpreted in disjunctive form
when ∀P = 〈D1, . . . , Dn〉 ∈ P , P is interpreted as the
conjunction ∀i ≤ n, ∀a ∈ Di, Xi = a, and P is interpreted as
the disjunction

∨
P∈P P . In particular, if P = ∅, it interprets

as true in conjunctive form and false in disjunctive form, and
if P = {∅}, it interprets as false in conjunctive form and true
in disjunctive form.

For a given P ∈ P , where P is interpreted in conjunctive
form, P = 〈D1, . . . , Dn〉 is a tautology if ∃i such that
Di = D(Xi), i.e. all possible values are allowed for Xi.
For a given P ∈ P , where P is interpreted in disjunctive
form, P = 〈D1, . . . , Dn〉 is a contradiction if ∃i such that
|Di| > 1, i.e. Xi must have two distinct values at the same
time. Note that the definitions of tautologies and contradictions
are equivalent in the case of domains of size 2. This implies
that the � operator could be defined simply on collections
of sets of literals, irrespective of whether they interpret as
CNF or DNF. When generalising to domains of arbitrary size,
two distinct operators must be defined, taking into account the
interpretation of P: one for the conversion from conjunctive to
disjunctive form, denoted �∨, and another for the conversion
back to conjunctive form, denoted �∧. At the end of this
double conversion, we obtain that �∧ �∨ P = Cons(P).

C. The Algorithm

Let M be an ordered automaton free from subsumed
elements, with initial state q0. The two operators �∨ and �∧
can be described in a general fashion as follows, where either
operator is simply denoted by �q0.

In order to deal with trivial elements, we need to introduce
the following notation.

d) Tautologies.: For each Xi, 1 ≤ i ≤ n, we define
the domain sequence PXi

= 〈Di
1, . . . , D

i
n〉, with Di

i =
D(Xi) \ {minD(Xi)}, and Di

j = ∅ otherwise if j 6= i. For
each Xi, 1 ≤ i ≤ n, we define the state q∧Xi

as the initial state
of the ordered automaton recognising {PXi}. For example,



suppose n = 3, i = 2 and D(X2) = {abc}, with a < b < c.
We have P(q∧X2

) = {〈∅, {bc}, ∅〉}.
e) Contradictions.: For each Xi, 1 ≤ i ≤ n, we de-

fine, for each a ∈ D(Xi), the domain sequence P aXi
=

〈Di
1, . . . , D

i
n〉, with Di

i = {a}, and Di
j = ∅ if i 6= j. For

each Xi, 1 ≤ i ≤ n, we define the state q∨Xi
as the initial state

of the ordered automaton recognising {P aXi
|a > minD(Xi)}.

For example, suppose n = 3, i = 2 and D(X2) = {abc}, with
a < b < c. We have P(q∨X2

) = {〈∅, {b}, ∅〉, 〈∅, {c}, ∅〉}.

Function �q0

if q0 is final then return q∅1

else2

q′0 ← Create new state3

isFinal(q′0)← true4

q′0 ← register-state(q′0)5

forall a ∈ σ(q0) in decreasing order do6

q′′0 ←Duplicate q′0 ⊗�δ(q0, a)7

Let Xi be the variable to which a belongs8

if Operator implemented is �∨ then9

q′0 ← q′0 \|= qX∨
i

10

if Operator implemented is �∧ then11

if a = minD(Xi) then12

q′0 ← q′0 \|= qX∧
i

13

δ(q′′0 , a)← (q′0 \|= q′′0 )14

q′0 ← register-state(q′′0 )15

return q′016

Proposition 3. P(�∨q0) = �∨P(q0) and P(�∧q0) =
�∧P(q0).

Proof: Consider first the terminal cases.
If P(q0) = {∅}, q0 is accepting, and q∅ is returned, and

thus P(�q0) = ∅.
If P(q0) = ∅, q0 = q∅. In that case, the forall loop is not

executed, and q′0 is returned as such, in which case P(�q0) =
{∅}.

Consider now the general case, without taking into account
trivial element filtering. Figure 5 shows how the operator
can be recursively represented by an ordered-automaton, very
similarly to the ZBDD representation previously discussed.
The invariant that is maintained in the forall loop is that
q′0 = �P2 (with P2 referring to the notation used in Figure 5).
It is indeed the case at the first iteration, as P2 = ∅. During
an iteration, q′′0 is built according to the method depicted in
Figure 5, and at the end of the iteration, the result is assigned
to q′0.

Consider the filtering of trivial elements, which is what
differentiates the two actual operators. q′0 is the state that will
be reached by value a. Initially, it is set to �P2. In the case
of the distribution to disjunctive form, all elements in �P2

that contain at least one value (but never more than one, by
induction hypothesis) belonging to the domain of the same

variable Xi must be removed from �P2. This is achieved by
applying q′0 \|= q∨Xi

, as any such element will be subsumed
by one of the elements in P(q∨Xi

). On the other hand, in the
case of the distribution to conjunctive form, all elements in
�P2 that contain all the values but a from of the domain of
the same variable Xi must be removed from �P2. This is
achieved by applying q′0 \|= q∧Xi

, as any such element will be
subsumed by the unique element in P(q∧Xi

). Note that we also
have to assume that the automaton returned by �P1⊗�P2, to
which q′′0 points in the algorithm, is free from trivial elements.
This is the case when the �∧ operator is considered, as the
product operator, as it has been defined, excludes tautologies,
but in the case of the �∨ operator, the product operator has
to be adapted to exclude contradictions.

�

P1

P2
a

q0

�P1 ⊗�P2
a

q0

�P2

\|=(�P1 ⊗�P2)

Fig. 5. The general form of the distribution operator on ordered automata

It follows that these operators allow us to compute the
closure by resolution of a set of domain consequences encoded
by an ordered automaton.

Corollary. P(�∧ �∨ q0) = Cons(P(q0)).

Concerning the complexity, note that computing the closure
by resolution does not have a complexity that is polynomial
in the size of the input and output. Indeed, the size of the
intermediate automaton in disjunctive form is unrelated to
that of the initial and final automaton (and can obviously be
exponential in the size of the input). But this is not surprising
and cannot be overcome. Indeed, if one could generate all the
domain consequences of a problem in a time polynomial in the
number of the domain consequences, then this would provide
a method to generate all conflicts of a problem in a time
polynomial in the number of conflicts. But this contradicts
a complexity result in [10], stating that generating all the
minimal conflicts or all the maximal relaxations of a problem
can only be achieved by incurring the cost related to the
number of both (unless P = NP).

D. Initialising the Compilation

We initialise the procedure by first representing each con-
straint as an ordered automaton encoding its set of domain
consequences, and then combining each of them into a single
one. This creates an ordered automaton encoding a set of
domain consequences that is equivalent to the problem. Then,
the closure by resolution can be applied to infer all domain
consequences.

More precisely, the set of valid tuples of each constraint can
be represented by a classic automaton, regardless of the form
of the constraint [11], [10]. Then, we can remark that a classic
automaton corresponds to an ordered automaton in disjunctive



form, up to a value mapping. For example, the tuple 000 on
variables X1, X2, X3, with domain D(Xi) = {012} will be
mapped to 036. Finally, we apply the �∧ to the resulting
automaton to obtain an ordered automaton representing all
the domain consequences of the constraint. Combining the
different constraints is simply a matter of using the ∪µ
operator. The closure by resolution can finally be applied to
infer all domain consequences.

VI. AN EMPIRICAL STUDY

Although we decided to define ordered automata to rep-
resent sets of domain consequences, and to present our al-
gorithms on ordered automata, we chose to implement the
procedures using ZBDDs. In fact, ordered automata and ZB-
DDs are conceptually equivalent, and ordered automata can
be implemented in a straightforward way with ZBDDs (both
encode collections of sets). This decision allows us to use a
mature BDD package, instead of implementing ordered au-
tomata manipulation routines on our own. We used JDD [12],
a mature and efficient pure Java implementation of BDDs and
ZBDDs, based on the well-established BuDDy [13] package.

The objective of the experiments are two-fold. First, to act as
a demonstration of our JDD-based implementation in order to
show the magnitude of improvement in compilation time over
our initial work in this area. Second, to study the behaviour
of the compiled structure in terms of the size of the compiled
form, the number of domain consequences it encodes, and the
compression that is achieved. Therefore, we ran our procedure
with the same experimental setup as used in [6], allowing for
direct comparison. We generated random uniform constraint
networks of binary constraints, with 10 variables, with 10
values, 10 constraints. However, we have to note that, although
generated with the same random seed, the random problems
were generated on a different machine and architecture. As a
result, some instances are different, and are in fact harder for
the previous procedure in [6].

We set a cut-off time of one hour, which allowed us to test
problems where the tightness of each constraint varied from 1
to 24 allowed tuples, then from 92 to 99. Concerning running
times, our new procedure allows us to compute the set of
domain consequences of a problem phenomenally faster. For
example, the problem with 95 allowed tuples per constraint
was the hardest for the procedure in [6], which took 21
hours to complete. Our new prodecure takes merely 166s to
compute the same result. With such a substantial difference,
we do not see the need to report more detailed times. For
further comparison, our previous method only managed to
terminate on problems with 1 to 19 allowed tuples, and 95
to 99 allowed tuples, without any time limit. Furthermore,
the highest number of domain consequences generated was
251550 for the problem with 95 tuples per constraint with
our previous method, against 727195 for the problem with 92
tuples per constraint for the current method.

Some of the generated instances are unsatisfiable (1 to 14
and 22 allowed tuples per constraint). From a compilation
point of view, unsatisfiable instances obviously do not present

any interest, and quite clearly, our method cannot be as
efficient as state-of-the-art methods for proving unsatisfiability.
However, we do not necessarily know in advance whether a
problem is satisfiable or not, and it is important therefore that
our method be robust in this regard. We observe indeed that
the performance of our new procedure is mostly affected by
the size of the final structure, regardless of the satisfiability of
the problem. In contrast, the algorithm in [6] could suffer from
the high number of intermediate steps even for unsatisfiable
problems, which only have one domain consequence.

Figure 6 and Figure 7 illustrate the compactness of the
representation. Figure 6 shows, for each instance, the size
of the final ordered automaton (in terms of the number of
nodes of the ZBDD encoding it), and the number of domain
consequences it encodes. Unsatisfiable instances (1 to 14
and 22 allowed tuples) have only one domain consequence.
For most – but not all – instances, the size of the ordered
automaton is significantly lower than the number of domain
consequences it encodes (note the log scale on the y axis).
However, we reach quite a high number of nodes for problems
with a high number of domain consequences, which is the real
bottleneck for our procedure (as opposed to the problem size).

 1

 10

 100

 1000

 10000

 100000

0 10 20 90 100

nu
m

be
r o

f e
le

m
en

ts
 (l

og
sc

al
e)

number of tuples per constraint

consequences
nodes

Fig. 6. The final number of consequences and nodes per instance

In order to show in greater detail the compression power of
this representation, we plotted in Figure 7 the ratio between
the final (i.e. at the end of the procedure) and initial (i.e. at
the end of the initialisation) number of consequences, and
similarly for the size of the ordered automaton (referred to
as the growth on the figure). This number is less than 1 for
unsatisfiable instances (as the final number of consequences
and nodes is always 1). In order to better illustrate the
relationship between those two figures, we also plotted the
ratio between those (referred to as compression) in Figure 8.
For example, for the problem with 24 tuples per constraint, at
the end of the procedure, the number of domain consequences
grew almost 50 times more than the size of the ordered
automaton that encodes them. Generally, problems with a high
number of domain consequences are also the ones with a good
compression factor.

It is obvious from those results that the method presented
in this paper is still not mature enough to tackle problems
of practical significance. However, the phenomenal leap in



 0.0001
 0.001

 0.01
 0.1

 1
 10

 100
 1000

 10000

0 10 20 90 100

gr
ow

th
 (l

og
sc

al
e)

number of tuples per constraint

consequences
nodes

Fig. 7. Growth of number of consequences and nodes per instance

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

0 10 20 90 100

co
m

pr
es

si
on

number of tuples per constraint

Fig. 8. Ratio between the two growth factors

performance that we achieve over our previous method, which
opened a new direction in compilation, strengthens our opinion
that we are engaging in a promising research direction.

VII. CONCLUSIONS

We presented a data structure and a series of algorithms
to represent in a compact way a large set of domain conse-
quences, and that enable to compute the domain consequences
of a problem in a more efficient way than with our first
method. There exists, to our knowledge, no similar work in
the literature, and this is an important step towards a practical
way of generating domain consequences. We showed that the
main bottleneck lies in the number of domain consequences a
problem has. We are currently exploring several directions for
fine-tuning our procedures in order to increase the number of
domain consequences they can handle. In their experimental
study of zres [14], Simon and del Val can generate up to
1070 clauses [2]. This gives us hope that there is still a lot of
room for improvement in our setting too.

In parallel, further study needs to be conducted in order
to identify problems that have a low number of domain con-
sequences, and to understand what is their practical interest.
In particular, our procedure is very efficient on unsatisfiable
problems. Although this is out of the initial motivation of
this paper, it could have interesting implications, such as
generating explanations for inconsistency. It would also be

interesting to structurally characterise problems whose domain
consequences are such that they can be more efficiently
compressed.

REFERENCES

[1] P. Marquis, “Consequence finding algorithms,” Handbook of Defeasible
Reasoning and Uncertainty Management Systems, vol. 5, pp. 41–145,
2000.

[2] L. Simon and A. del Val, “Efficient Consequence Finding,” in IJCAI,
B. Nebel, Ed. Morgan Kaufmann, 2001, pp. 359–370.

[3] J. de Kleer, A. K. Mackworth, and R. Reiter, “Characterizing Diagnoses
and Systems,” Artif. Intell., vol. 56, no. 2-3, pp. 197–222, 1992.

[4] R. Reiter and J. de Kleer, “Foundations of Assumption-based Truth
Maintenance Systems: Preliminary Report,” in AAAI, 1987, pp. 183–
189.

[5] B. Selman and H. J. Levesque, “Abductive and Default Reasoning: A
Computational Core,” in AAAI, 1990, pp. 343–348.

[6] A. Papadopoulos and B. O’Sullivan, “Compiling All Possible Conflicts
of a CSP,” in CP, ser. Lecture Notes in Computer Science, I. P. Gent,
Ed., vol. 5732. Springer, 2009, pp. 639–653.

[7] S. ichi Minato, “Zero-Suppressed BDDs for Set Manipulation in Com-
binatorial Problems,” in DAC, 1993, pp. 272–277.

[8] P. Chatalic and L. Simon, “Multi-resolution on compressed sets of
clauses,” in ICTAI. IEEE Computer Society, 2000, pp. 2–10.

[9] T. Hadzic, E. Hansen, and B. O’Sullivan, “On automata, mdds and bdds
in constraint satisfaction,” in Proceedings of the ECAI 2008 Workshop
on Inference Methods based on Graphical Structures of Knowledge.
Citeseer, 2008.

[10] A. Papadopoulos, “Computing explanations for interactive constraint-
based systems,” Ph.D. dissertation, University College Cork, December
2011. [Online]. Available: http://hdl.handle.net/10468/510

[11] J. Amilhastre, H. Fargier, and P. Marquis, “Consistency restoration and
explanations in dynamic CSPs application to configuration.” Artif. Intell.,
vol. 135, no. 1-2, pp. 199–234, 2002.

[12] A. Vahidi, “Jdd,” http://javaddlib.sourceforge.net/jdd/.
[13] J. Lind-Nielsen, “BuDDy: A Binary Decision Diagram library.” http:

//buddy.sourceforge.net.
[14] P. Chatalic and L. Simon, “Zres: The old davis-putman procedure

meets zbdd,” in CADE, ser. Lecture Notes in Computer Science, D. A.
McAllester, Ed., vol. 1831. Springer, 2000, pp. 449–454.


