1309.7001v2 [cs.NA] 27 Sep 2013

arXiv

KACZMARZ ALGORITHM WITH SOFT CONSTRAINTS FOR USER INTERFACE LAYOUT

NOREEN JAMIL, DEANNA NEEDELL, JOHANNES MULLER, CHRISTOF LUTTEROTH, GERALD WEBER

ABSTRACT. The Kaczmarz method is an iterative method for solving large systems of equations that projects iterates or-
thogonally onto the solution space of each equation. In contrast to direct methods such as Gaussian elimination or QR-
factorization, this algorithm is efficient for problems with sparse matrices, as they appear in constraint-based user interface
(UI) layout specifications. However, the Kaczmarz method as described in the literature has its limitations: it considers only
equality constraints and does not support soft constraints, which makes it inapplicable to the UI layout problem.

In this paper we extend the Kaczmarz method for solving specifications containing soft constraints, using the prioritized
IIS detection algorithm. Furthermore, the performance and convergence of the proposed algorithms are evaluated empirically
using randomly generated UI layout specifications of various sizes. The results show that these methods offer improvements
in performance over standard methods like Matlab’s LINPROG, a well-known efficient linear programming solver.

1. INTRODUCTION

Linear problems are encountered in a variety of fields such as engineering, mathematics and computer science. To
solve these problems, various numerical methods have been proposed. These methods can be classified into direct
and indirect methods, the latter also known as iterative. Direct methods intend to calculate an exact solution in a
finite number of steps, whereas iterative methods start with an initial approximation and usually produce improved
approximations in a theoretically infinite sequence whose limit is the exact solution [[1].

Many linear problems are sparse, i.e. most linear coefficients in the corresponding coefficient matrix are zero so
that the number of non-zero coefficients is O(n) with n being the number of variables [2]]. Sparse problems frequently
occur in the domain of user interface (UI) layout, the main focus of this paper (we discuss this domain in detail in
Section[2.T). Since it is useful to have efficient solving methods specifically for sparse linear systems, much attention
has been paid to iterative methods, which are often preferable for such cases [3]. The advantage is that iterative
methods spend minimal processing time on coefficients that are zero. Direct methods, on the other hand, usually lead
to fill-in, i.e. coefficients change from an initial zero to a non-zero value during the execution of the algorithm. In these
methods we therefore lose the sparsity property and have to deal with a lot more coefficients, which makes processing
slower. Although there are some techniques to minimize fill-in effects, iterative methods are often faster than direct
methods for large, sparse problems [4].

A common iterative method used to solve sparse linear systems is the Kaczmarz algorithm [5]. Starting with an
initial guess, it selects a row index of the matrix and projects the current iterate onto the solution space of that equation,
refining the solution until a sufficient precision is reached. In our previous work [[6] we proposed extensions to the
linear relaxation method to deal with over-determination. The original linear relaxation method could not be used in
such cases as it requires the problem matrix to be square. However, the Kaczmarz method does not have this limitation,
and hence seems an obvious choice for problems with non-square matrices as they occur in UI layout.

Despite its efficiency for sparse systems, the Kaczmarz method is currently not used for UI layout. The reasons for
this are two-fold. First, the UI layout contains linear equality and inequality constraints for specifying relationships
among objects such as “inside”, “above”, “below”, “left-of”, “right-of”” and “overlap”. Although the Kaczmarz algo-
rithm and its variants are not designed to handle inequality constraints, preliminary work on the Kaczmarz method for
inequality constraints suggests the natural adaptation, which ignores inequality constraints if they are already satisfied
and otherwise treats them as equations [7]. We also adapt this heuristic approach for the UI problem.

The second issue that we face in UI layout and many other problems is that the system may contain conflicting
constraints. This may happen by over-constraining, i.e. by adding too many constraints, making the system infeasible.
If a specification contains conflicting constraints, the basic Kaczmarz method will not converge. To resolve conflicts,
the notion of soft constraints can be introduced. In contrast to the usual hard constraints, which cannot be violated,
soft constraints may be violated as much as necessary if no other solution can be found. Soft constraints can be
prioritized so that in a conflict between two soft constraints only the soft constraint with the lower priority is violated.

1

This leads naturally to the notion of constraint hierarchies, where all constraints are essentially soft constraints, and
the constraints that are considered “hard” simply have the highest priorities [8[]. Using only soft constraints has the
advantage that a problem is always solvable, which cannot be guaranteed if hard constraints are used.

We propose a conflict resolution algorithm for solving systems of prioritized linear constraints with the Kaczmarz
method. In the algorithm, non-conflicting constraints are successively added in descending order of priority. This
algorithm yields conflict-free subproblems to a given problem. There are already algorithms for finding feasible
subsystems, but they differ from our approaches as they do not take into account prioritized constraints [9].

With the presented conflict resolution algorithm, Kaczmarz can be applied to overdetermined linear constraint
problems, for example in the domain of UI layout. This was experimentally evaluated with regard to convergence
and performance, using randomly generated Ul layout specifications. The results show that the proposed algorithm
is optimal and efficient. Furthermore, we observe that our implementation outperforms Matlab’s LINPROG linear
optimization package [10], LP-Solve [[11] and the implementation of QR-decomposition of the Apache Commons
Math Library [12]. LP-Solve is a well-known linear programming solver that has been used for UI layout. The
implementation of QR-decomposition of the Apache Commons Math Library is an example of a direct method.

1.1. Organization. The remainder of the paper is organized as follows. We begin with a short overview of constraint-
based Uls and iterative solution procedures for linear systems in Section[2] We discuss related work in Section[3] In
Section 4| we describe the Kaczmarz method in detail, and explain how support for inequalities and soft constraints
was added. The methodology and the results of the experimental evaluation are presented in Section [5] Section [6]
summarizes conclusions and provides an outlook on future work.

2. BACKGROUND

In [6]] we extended linear relaxation to handle over-determined systems and conflicting constraints for UI layout.
We proposed two pivot assignment algorithms that can be used with any problem matrix, regardless of its shape or
diagonal elements. The first algorithm selects pivot elements pseudo-randomly and the second algorithm selects pivot
elements according to certain criteria. However, computing the pivot assignment for solving non-square matrices can
make linear relaxation slow. To overcome this, we consider the Kaczmarz method, which does not require a pivot
assignment.

2.1. User Interface Layout as a Linear Problem. Constraints are a suitable mechanism for specifying the relation-
ships among objects. They are used in the area of logic programming, artificial intelligence and Ul specification. They
can be used to describe problems that are difficult to solve, conveniently decoupling the description of the problems
from their solution. Due to this property, constraints are a common way of specifying Ul layouts, where the objects are
widgets and the relationships between them are spatial relationships such as alignment and proportions. In addition to
the relationships to other widgets, each widget has its own set of constraints describing properties such as minimum,
maximum and preferred size.

Ul layouts are often specified with linear constraints [[13]]. The positions and sizes of the widgets in a layout translate
to variables. Constraints about alignment and proportions translate to linear equations, and constraints about minimum
and maximum sizes translate to linear inequalities. Many of the constraints are soft because they describe desirable
properties in the layout (e.g. preferred sizes), which cannot be satisfied under all conditions (e.g. all layout sizes).
Furthermore, the resulting systems of linear constraints are sparse. There are constraints for each widget that relate
each of its four boundaries to another part of the layout, or specify boundary values for the widget’s size, as shown
in Figure[I] As a result, the direct interaction between constraints is limited by the topology of a layout, resulting in
sparsity.

Because the UI layout problem contains inequality and soft constraints, existing Ul layout solvers use algorithms
other than Kaczmarz. Some of these solvers will be discussed in the following section.

3. RELATED WORK

Different direct and iterative methods exist which can solve least-squares problems. Examples of direct methods are
QR-factorization [14] and normal equations [15]. Iterative methods that are used to solve linear systems include sim-
plex [16], revised simplex [[17], conjugate gradient [[18]], generalized minimal residual [[19], and others [20]. In order to
solve over-determined systems in a least-squares sense, Herman adds some additional constraints and variables, simi-
lar to slack variables in the simplex approach [21]. The resulting method converges towards the least-squares solution.

2

X4 Xy

Eﬂ M O ‘:l'estl

yi" -
buttonl J: button2

button3

100

%, = 100, y, = 50

Button 1 Hard: x2 - x4 240, y2-yq 220
Soft: x2 -x1=x5/2,y2-y1 =Y,/2

Button 2 Hard: x3-x2 240, y2-y1220
Soft: X3 - X2 = X4/2, y2 - y1 = Y,/2

Button 3 Hard: x3-x1 240, y3-y2220
Soft: X3 -X1=X3, Y3-Y2=VY,/2

X
w

o)
o

E g BN EgE BN EygE N RN
[

FIGURE 1. An example of constraint-based UI layout

Popa analyzed a similar approach for solving least-squares problems [22}23[]. Censor showed that if the relaxation
parameter goes to zero then the Kaczmarz method converges to a weighted least-squares solution for inconsistent
systems [24].

Most of the research related to GUI layout involves various algorithms for solving constraint hierarchies. Research
related to constraint-based Ul layout has provided results in the form of tools [2526] and algorithms [27,128]] for spe-
cific tasks. Our work is concerned with two different aspects. We must find a solution for linear inequality constraints
with iterative methods, while also being able to handle soft constraints. We will discuss related work for both aspects
in turn.

Various algorithms were proposed for solving linear inequality constraints in UI layout. The Indigo algorithm [29]]
uses interval propagation to solve acyclic collections of inequality constraints, however, it does not handle simulta-
neous equality and inequality constraints. This is overcome by the Detail method [30}|31f], which can solve linear
equality and inequality constraints simultaneously.

The Cassowary solver [27] can also handle linear inequalities. It uses the simplex algorithm, and inequalities are
solved by introducing slack variables. QOCA [32] intends to overcome the difficulties in maximizing the efficiency and
facilitating the re-use of the solver in other applications. This solver introduces slack variables to convert inequality
constraints into equality constraints in a similar way to the Cassowary solver. The HiRise constraint solver [26]]
resolves both equality and inequality constraints in combination with quasi-linear optimization.

All constraint solvers for Ul layout must support over-determined systems. The commonly used techniques for deal-
ing with over-determined problems are weighted constraints and constraint hierarchies [33,34]. Weighted constraints
are typically used with some general forms of direct methods, while constraint hierarchies are especially utilized in
linear programming based algorithms. Many UI layout solvers are based on linear programming and support soft
constraints using slack variables in the objective function [[13}/27,28.(32].

3

Most of the direct methods for soft constraint problems are least-squares methods such as LU-decomposition and
QR-decomposition [35]]. The Ul layout solver HiRise [26] is an example of this category. HiRise2 [25] is an extended
version of the HiRise constraint solver which solves hierarchies of linear constraints by applying an LU-decompos-
ition-based simplex method.

Many different local propagation algorithms have been proposed for solving constraint hierarchies in UI layout.
The DeltaBlue [36], SkyBlue [37] and Detail [31]] algorithms are examples of this category.

The problem of finding the largest possible subset of constraints that has a feasible solution given a set of linear
constraints is widely known as the maximum feasible subsystem (MaxFS) problem [9]. The dual problem to this is
the problem of finding the irreducible infeasible subsystem (IIS) [|38]]. If one more constraint is removed from an IIS,
the subsystem will become feasible. For both problems different solving methods are proposed.

There are non-deterministic and deterministic methods to solve the MaxFS problem. Some of these methods use
heuristics [39,40], but only a few methods solve the problem deterministically. The branch and cut method proposed
by Pfetsch [41] is an example of a deterministic method.

Besides methods for MaxFS there are also some methods to solve the IIS problem. These methods are: deletion
filtering, IIS detection and grouping constraints. Deletion filtering [42] removes constraints from the set of constraints
and checks the feasibility of the reduced set. IIS detection [43]] starts with a single constraint and adds constraints
successively. The grouping constraints method [44]] was introduced to speed up the aforementioned algorithms by
adding or removing groups of constraints simultaneously. Even though these methods deal with the problem of finding
a feasible subsystem, it is not possible to apply them directly. The main reason is that they do not consider prioritized
constraints as we do in our approach.

4. KACZMARZ METHOD

The Kaczmarz method is an iterative method used for solving large-scale over-determined linear systems of equa-
tions [5]. Itis also used in tomography, and in that setting is called the “algebraic reconstruction technique” (ART) [45]].
Given a system of m equations and n variables of the form

(1) Axr = b,

the Kaczmarz method projects orthogonally onto the solution hyperplane of each constraint in the system sequentially.
The algorithm can thus be described as follows.

(bi — Q- l’k)ai
l|a:l|?

where xy, is the k-th iterate, « = (¢ mod m) + 1 (for deterministic Kaczmarz), a; is the i-th row of the matrix A, b;
is the i-th component of the right-hand side vector, and ||a|| denotes the Euclidean norm of the vector a. Alternatively,
to randomize the Kaczmarz method, we can choose a random 7 with 1 < ¢ < m for each k.

Starting with an initial estimate xzy, the method projects the current iterate onto the solution space of the next
equation. The algorithm iterates until the relative approximate error is less than a pre-specified tolerance. w is an
optional relaxation parameter that is set to 1 in the original Kaczmarz method.

(2) Tpt1 = Tk +w

4.1. Convergence. The Kaczmarz method is guaranteed to converge if w lies inside the interval (0, 2) [5,46]. In this
section we give the convergence proof using the terminology explained below.

Lemma 1 (Translation invariance). Let the Kaczmarz method for Ax = b converge to T starting with xo. Then the
Kaczmarz method for the homogeneous system Ay = 0 starting with yog = xo — T will have the same convergence
behavior, i.e. yi, = xp, — T for all k.

The proof is by induction. The induction step follows trivially from the linear definition of the iteration step.

Lemma 2 (Convergence of homogeneous system). The Kaczmarz method for the homogeneous system Ay = 0 with
nonsingular A converges exponentially for every initial guess 1.

Proof. The Kaczmarz method is a linear method; by definition, the change to the estimate in every iteration step is

a linear function that can be modeled with an iteration matrix K;(A). We show that the spectral radius p fulfills

p(K;(A)) = 1. It suffices to show that all vectors are transformed to vectors of shorter or equal size (if p(K;(A)) > 1

there would be a vector that gets longer). We observe that each solution hyperplane of the homogeneous system goes
4

through the origin. Since the iteration step performs an orthogonal projection, for w = 1 the origin and the points yy,
and yy+1 form a triangle with a right angle at y;. Hence
(3) ksl < Nyl

by Pythagoras. For 0 < w < 2, yx41 is equal in length to a weighted vector sum of y;, and the result for w = 1, so its
length is intermediate and (3) still holds. Hence we have shown that p(K;(A)) < 1. But if the estimate is already a
solution for the constraint, then it does not move, hence giving p(K;(A)) = 1. We now look at the product

“) KA) = [] K4
1<i<m

For any yy we have

We now show for any yo # 0 that ||yo|| > ||ym||- There must be one ¢ so that y;_1 # y;, since A is nonsingular and
hence yo # 0 cannot fulfill all constraints at once. Since in step ¢ we have y;_1 # y;, we also have by Pythagoras
[lyi—1ll > |ly:l|, as explained above. In all other steps the error does not increase, hence we know

(6) K (A)=] < |z

This means, overall we know p(K(A)) = ¢ < 1. Hence the error of the estimate decreases over the course of m
iterations by at least ¢, and overall we get an exponential convergence behavior with base < %/c. (]

The proof can be easily generalized to a singular A by only considering the nonsingular orthogonal subspace. Both
lemmata together clearly give:

Theorem 1. The Kaczmarz method for Ax = b converges for every initial guess x.

The constant c is a characteristic of the problem matrix A, similar to the condition number. Since the convergence
rate of the Kaczmarz method depends on c, it is imaginable that pre-conditioners could be used to reduce ¢ and
enhance the convergence speed. Pre-conditioners are used for other iterative methods such as linear relaxation, e.g.
scaling algorithms [47] and bipartite matching algorithms [48]]. Such algorithms may scale the infinity norm of both
rows and columns in a matrix to 1 or permute large entries to the diagonal of a sparse matrix. We usually have
well-conditioned coefficient matrices for UI layout problems, for which the Kaczmarz method converges quickly.

As described by (@), the convergence rate of the Kaczmarz method may depend on the ordering of the rows of
the matrix A. A problematic ordering can lead to a drastically reduced rate of convergence. To overcome this, a
randomized variant can be used. Strohmer and Vershynin proposed a further variant with weighted probabilities
proportional to the norm of the ¢th row [49]].

In the inconsistent case, it has been shown that the method exhibits the same convergence down to a threshold [50],
and modified methods even converge to the least-squares solution [51H53|]. The convergence rate can further be
improved by selecting blocks of rows at a time for the projection [54-57].

4.2. Inequalities. The Kaczmarz method supports only linear equations, but we extend this algorithm for solving
linear inequalities in a natural way, as in [7]]. In each iteration, the algorithm ignores inequalities if they are satisfied,
and otherwise treats them as if they were equations. This means that inequalities influence the solving process only if
this is necessary.

4.3. Soft Constraints. For many problems, including UI layout, conflicting constraints occur naturally in specifica-
tions, as they express properties of a solution that are desirable but not mandatory. As a result, soft constraints need
to be supported, which are satisfied if possible, but do not render the specification infeasible if they are not. A natural
way to support soft constraints is to treat all constraints as soft constraints, with different priorities. These priorities
can be defined as a total order on all constraints that specifies which one of two constraints should be violated in case
of a conflict.

To define the solution of a system of prioritized soft constraints we first have to define the subset E of constraints
which we call enabled constraints. We consider the characteristic function 1 : Constraints — {0,1} of E, which
expresses whether a constraint is contained in F, to construct an integer in binary representation (¢). According to
their priority, each constraint is represented by a bit of that integer, with constraints of higher priority taking the
more significant bits. Then such subsets can be compared by using the numerical order > of the integers. We are

5

s | E Linear relaxation with prioritized 11S detection
N O Kaczmarz with prioritized 11S detection
L)
B -
@
E
@
IS (=}
= =
=4 ~—
=
o
= _
Lo
o

T T T T T
(o] 500 1000 1500 2000

Constraints

FIGURE 2. Performance comparison of linear relaxation and Kaczmarz.

interested in the subset that is largest in that order and still fulfills the following property: all constraints in the subset
are non-conflicting.

To add support for soft constraints to the Kaczmarz method, we use the prioritized IIS detection algorithm [6]],
which approximates the maximum characteristic function starting from the most significant bit. This algorithm starts
with an empty set E of enabled constraints. It then adds constraints incrementally in order of descending priority
so that I is conflict-free, until all non-conflicting constraints have been added. Iterating through the constraints, the
algorithm adds each constraint tentatively to £ (“enabling” it), and tries to solve the resulting specification. If a
solution is found, the constraint is kept. Otherwise, the added constraint is removed again, in which case the previous
solution is restored. Finally, the algorithm proceeds to the constraint with the next lower priority, until all constraints
have been considered. This algorithm assumes that the method used for solving the system converges if there is no
conflict, which is the case for Kaczmarz.

5. EXPERIMENTAL EVALUATION

In this section we present an experimental evaluation of the proposed algorithm. We conduct two different experi-
ments to evaluate (i) the convergence behavior, and (ii) the performance in terms of computation time. The experiments
are described in the following.

5.1. Methodology. For all experiments we used the same hardware and test data generator, but instrumentalized the
algorithms differently. We used the following setup: a desktop computer with Intel i5 3.3GHz processor and 64-bit
Windows 7, running an Oracle Java virtual machine. Layout specifications were randomly generated using the test data
generator described in [13]]. For each experiment the same set of test data was used. The specification size was varied
from 4 to 2402 constraints, in increments of 4 constraints (2 new constraints for positioning and 2 new constraint for
the preferred size of a new widget). For each size 10 different layouts were generated, resulting in a total of 6000
different layout specifications. A tolerance of 0.01 was used for solving. For Kaczmarz a relaxation parameter of
1.0 was used; for linear relaxation a slightly smaller relaxation parameter of 0.7 had to be used to avoid problems of
divergence.

In the first experiment we investigated the convergence behavior of the algorithms. We measured for each algorithm
the number of sub-optimal solutions. A solution is sub-optimal if the error of a constraint (the difference between the
right-hand and left-hand side) is bigger than the given tolerance.

In the second experiment we measured the performance in terms of computation time (') in milliseconds (ms),
depending on the problem size measured in number of constraints (c). The proposed algorithm was used to solve
each of the problems of the test data set and the time was measured. As a reference, all the generated specifications
were also solved with an implementation of linear relaxation with prioritized IIS detection [6]], Matlab’s LINPROG
solver [10] and LP-Solve [11]]. We selected these solvers as linear relaxation is another standard iterative method

6

B Linear relaxation with prioritized IS detection
o 08 Kaczmarz with prioritized 1IS detection
S O LINPROG
~ m Lp-—solve
W OR-decomposition oo
[=3
=
— o
) —
E
=
£ s
= -
s g
o

o 500 1000 1500

Constraints

FIGURE 3. Performance comparison of linear relaxation with prioritized IIS detection and ran-
dom pivot assignment, Kaczmarz with prioritized IIS detection, LINPROG, LP-Solve, and QR-

decomposition
Symbol Explanation
Bo Intercept of the regression model
B1—3 Estimated model parameters
Number of constraints
T Measured time in milliseconds
R? Coefficient of determination of the regression models
TABLE 1. Symbol table
Strategy Bo b1 B2 B3 R?
Kaczmarz (prioritized IIS detection) 1.136™" —7.740 - 10103 2.723-10795"" _5.587-10~10"" (0.9994
Linear relaxation (prioritized IIS detection) 1.035" —1.112.10702" 4278 -1079%"" _9.176 - 100" (0.9994
LINPROG 18.29™" 1.591.107% 4.934-1079"" 1.577-10798"" 0.9367
LP-Solve —2.491"" 3.924.10792"" 2.079-107%"" 1.904 - 107%™ 0.9900
QR-Decomposition —37.70"" 0.2802™" —4.009 - 10794 2.850- 10797 0.9989

Significance codes: ~ p < 0.001

TABLE 2. Regression models for the different solving strategies

similar to Kaczmarz, LINPROG is widely known for its speed, and LP-Solve was previously used to solve UI layout
problems [[13]]. Additionally, we wanted to compare our algorithm with a direct method, so we also included the
implementation of QR-decomposition in the Apache Commons Mathematics Library [[12] in the evaluation.

5.2. Results. The first experiment tested the convergence behavior of the algorithms. We found that all algorithms
converge, which is expected since the algorithms were designed to find a solvable subproblem.

In the second experiment we investigated the performance behavior of the algorithms. To identify the performance
trend of the algorithms over ¢, we defined some regression models (linear, quadratic, log, cubic). We found that the

best-fitting model is the polynomial model

T(c) = Bo + Bic+ Bac® + Bsc” + e,
7

which gave us a good fit for the performance data. Table[I]explains the symbols used. Key parameters of the models
are depicted in Table |2} a graphical representation of the models can be found in Figures 2] and

Figure[2illustrates the performance of Kaczmarz with prioritized IIS detection and linear relaxation with prioritized
IIS detection. As the graphs show, Kaczmarz with prioritized IIS detection exhibits a better performance than linear
relaxation with prioritized IIS detection. Figure [3] compares the two aforementioned algorithms to LINPROG, LP-
Solve and QR-decomposition. Kaczmarz with prioritized IIS detection performs significantly better than LINPROG,
LP-Solve and QR-decomposition, especially for bigger problems.

5.3. Discussion. The performance results show that the Kaczmarz method with prioritized IIS detection is the fastest,
and the direct method, QR-decomposition, is the slowest for UI layout problems. The purely iterative algorithms,
Kaczmarz and linear relaxation, are both faster than QR-decomposition, LP-Solve and LINPROG. A plausible reason
why LINPROG and LP-Solve are slower is that they use the simplex algorithm with one direct method solving step
per iteration. As described earlier, direct methods suffer from fill-in effects when solving sparse systems, which is
generally a disadvantage compared to iterative methods in this case.

The Kaczmarz algorithm with prioritized IIS detection exhibits a better performance than linear relaxation with
prioritized IIS detection. A likely factor contributing to this is that for Kaczmarz a slightly larger relaxation parameter
than for linear relaxation can be used. Smaller relaxation parameters may slow down the convergence of iterative
methods, potentially requiring more iterations to converge. However, it was not possible to increase the relaxation
parameter of linear relaxation as this would cause divergence for some of the problems.

The runtime of the two linear programming solvers exhibits a much larger variance compared to the purely iterative
solvers. One possible reason for this is that for some cases the direct methods used in the linear programming solvers
are particularly inefficient, e.g. due to fill-in effects. A smaller variance and hence more predictable runtime is partic-
ularly beneficial for the UI layout domain because large changes in runtime can affect the user experience, e.g. when
resizing a GUI window interactively.

6. CONCLUSION

We have proposed a new algorithm for using Kaczmarz for solving constraint-based Ul layout problems. In partic-
ular, we presented the following contributions:

e Extensions of Kaczmarz for solving linear inequality and prioritized soft constraints.

e An experimental evaluation demonstrating the feasibility of using Kaczmarz for UI layout.

o Experimental data indicating that Kaczmarz outperforms modern linear programming solvers, linear relax-
ation and a recent implementation of QR-decomposition.

With the contributions mentioned above, we have demonstrated that the Kaczmarz method can be used efficiently
in solvers for constraint-based Uls. As a future work, we will investigate the effect of the relaxation parameter w on
the convergence behavior for Ul layout problems. Furthermore, we will investigate the use of pre-conditioners.

REFERENCES

[1]1 A.B. Saeed and A. B. Naeem, Numerical Analysis. Shahryar, 2008.
[2] S. Kunis and H. Rauhut, “Random sampling of sparse trigonometric polynomials, ii. orthogonal matching pursuit versus basis pursuit,” Journal
Foundations of Computational Mathematics, vol. 8, no. 6, pp. 737-763, 2008.
[3] H. M. Anita, Numerical Methods for Scientist and Engineers. Birkhauser, 2002.
[4] M. Benzi, “Preconditioning techniques for large linear systems: A survey,” Journal of Computational Physics, vol. 182, pp. 418-477,2002.
[5] S. Kaczmarz, “Angenéherte Auflosung von Systemen linearer Gleichungen,” Bulletin International de I’Académie Polonaise des Sciences et
des Lettres. Classe des Sciences Mathématiques et Naturelles. Série A, Sciences Mathématiques, pp. 355-357, 1937.
[6] N. Jamil, J. Miiller, C. Lutteroth, and G. Weber, “Extending linear relaxation for user interface layout,” Proceedings of 24th International
Conference on Tools with Artificial Intelligence (ICTAI), pp. 1-8, 2012.
[7]1 D. Leventhal and A. S. Lewis, “Randomized methods for linear constraints: convergence rates and conditioning,” Mathematics of Operations
Research, vol. 35, no. 3, pp. 641-654, 2010.
[8] A. Borning, B. Freeman-Benson, and M. Wilson, “Constraint hierarchies,” Lisp and Symbolic Computation, vol. 5, no. 3, pp. 223-270, 1992.
[9] J. W. Chinneck, “Fast heuristics for the maximum feasible subsystem problem,” Informs Journal of Computation, pp. 210-223, 2001.
[10] J. Stuart, “Linprog: http://www.mathworks.com/,”
[11] M. Berkelaar, P. Notebaert, and K. Eikland, “A (mixed integer) linear programming problem solver: http://lpsolve.sourceforge.net/,” 2007.
[12] Apache Software Foundation, “Commons math, release 2.1; http://commons.apache.org/math,” 2012.
[13] C. Lutteroth, R. Strandh, and G. Weber, “Domain specific high-level constraints for user interface layout,” Constraints, vol. 13, no. 3, pp.
307-342, 2008.
[14] B. N. Datta, Numerical Linear Algebra And Applications. Cole Publishing, 1995.

8

http://www.mathworks.com/
http://lpsolve.sourceforge.net/
http://commons.apache.org/math

[15] M. T. Heath, Scientific Computing, An Introductory Survey. McGraw-Hill, 1997.

[16] G. B. Dantzig, Linear Programming and Extensions, 11th ed. Princeton Uni. Press, 1998.

[17] H. A. Taha, Operations Research: An Introduction. Macmillan, 1992.

[18] M. R. Hestenes and E. Stiefel, “Methods of Conjugate Gradients for Solving Linear Systems,” Journal of Research of the National Bureau of
Standards, vol. 49, pp. 409-436, 1952.

[19] Y. Saad and M. H. Schultz, “Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM Journal on
Scientific and Statistical Computing, vol. 7, no. 3, pp. 856-869, 1986.

[20] O. Axelsson, Iterative Solution Methods. Cambridge Uni. Press, 1996.

[21] P. P. B. Eggermont, G. T. Herman, and A. Lent, “Iterative algorithms for large partitioned linear systems, with applications to image recon-
struction,” Linear Algebra and Its Applications, pp. 37-67, 1981.

[22] C. Popa, “Least squares solution of overdetermined inconsistent linear systems using kaczmarz’s relaxation,” Internat. J. Comput. Math, pp.
86-102, 1995.

[23] C.Popaand R. Zdunek, “Kaczmarz extended algorithm for tomographic image reconstruction from limited-data,” Mathematics and Computers
in Simulation, vol. 65, pp. 579-598, 2004.

[24] Y. Censor, P. P. B. Eggermont, and D. Gordon, “Strong underrelaxation in Kaczmarz’s method for inconsistent systems,” Numerische Mathe-
matik, pp. 83-92, 1983.

[25] H. Hosobe, “A simplex-based scalable linear constraint solver for user interface applications,” in Proceedings of the 23rd IEEE International
Conference on Tools with Artificial Intelligence (ICTAI), 2011, pp. 793-798.

[26] ——, “A scalable linear constraint solver for user interface construction,” in Proceedings of the 6th International Conference on Principles
and Practice of Constraint Programming. Springer, 2000, pp. 218-232.

[27] G.J. Badros, A. Borning, and P. J. Stuckey, “The cassowary linear arithmetic constraint solving algorithm,” ACM Transactions on Computer-
Human Interaction, vol. 8, no. 4, pp. 267-306, 2001.

[28] A. Borning, K. Marriott, P. Stuckey, and Y. Xiao, “Solving linear arithmetic constraints for user interface applications,” in Proceedings of the
10" annual ACM symposium on User interface software and technology (UIST). ACM, 1997, pp. 87-96.

[29] A. Borning, R.J. Anderson, and B. N. Freeman-Benson, “Indigo: A local propagation algorithm for inequality constraints,” ACM Symposium
on User Interface Software and Technology (UIST), pp. 129-136, 1996.

[30] H. Hosobe, S. Matsuoka, and A. Yonezawa, “Generalized local propagation: A framework for solving constraint hierarchies,” Proceedings of
the Second International Conference on Principles and Practice of Constraint Programming, 1996.

[31] H. Hosobe, K. Miyashita, S. Takahashi, S. Matsuoka, and A. Yonezawa, “Locally simultaneous constraint satisfaction,” in Proceedings of the
Second International Workshop on Principles and Practice of Constraint Programming. Springer, 1994, pp. 51-62.

[32] K. Marriott, S. C. Chok, and A. Finlay, “A tableau based constraint solving toolkit for interactive graphical applications,” in Proceedings of
the 4th International Conference on Principles and Practice of Constraint Programming. Springer, 1998, pp. 340-354.

[33] P. Meseguer, N. Bouhmala, T. Bouzoubaa, M. Irgens, and M. Sanchez, “Current approaches for solving over-constrained problems,” Con-
straints, vol. 8, no. 1, pp. 9-39, 2003.

[34] H. Hosobe and S. Matsuoka, “A foundation of solution methods for constraint hierarchies,” Constraints, vol. 8, no. 1, pp. 41-59, 2003.

[35] Y. Yoshioka, H. Masuda, and Y. Furukawa, “A constrained least squares approach to interactive mesh deformation,” in Proceedings of the
IEEE International Conference on Shape Modeling and Applications 2006, 2006, pp. 23-23.

[36] J. M. Freeman-Benson and A. Borning, “An incremental constraint solver,” Communications of the ACM, vol. 33, no. 1, pp. 54-63, 1990.

[37] M. Sannella, “Skyblue: a multi-way local propagation constraint solver for user interface construction,” in Proceedings of the 7" annual ACM
symposium on User interface software and technology (UIST). ACM, 1994, pp. 137-146.

[38] E. Amaldi, “From finding maximum feasible subsystems of linear systems to feed-forward neural network design,” PhD thesis no. 1282,
Département de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, Switzerland, 1994.

[39] E. Amaldi, M. Bruglieri, and G. Casale, “A two-phase relaxation-based heuristic for the maximum feasible subsystem problem,” Computers
and Operations Research, pp. 1465-1482, 2008.

[40] O. Mangasarian, “Misclassification minimization,” Journal of Global Optimization, pp. 309-323, 1994.

[41] M. Pfetsch, “Branch and cut for the maximum feasible subsystemproblem,” SIAM Journal on Optimization, pp. 21-38, 2008.

[42] J. W. Chinneck and E. Dravnieks, “Locating minimal infeasible constraint sets in linear programs,” ORSA Journal on Computing, pp. 157-168,
1991.

[43] M. Tamiz, S. J. Mardle, and D. F. Jones, “Detecting IIS in infeasible linear programmes using techniques from goal programming,” Computers
and Operations Research, pp. 113119, 1996.

[44] O. Guieu and J. W. Chinneck, “Analyzing infeasible mixed-integer and integer linear programs,” INFORMS Journal on Computing, pp. 63-77,
1999.

[45] R. Gordon, R. Bender, and G. T. Herman, “Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray
photography,” J. Theoret. Biol., vol. 29, pp. 471-481, 1970.

[46] F. Natterer, The Mathematics of Computerized Tomography. Wiley, 1986.

[47] D. Ruiz, “A scaling algorithm to equilibrate both rows and columns norms in matrices,” Technical Report, Rutherford Appleton Laboratory,
Oxon, UK and ENSEEIHT-IRIT, Toulouse, France, 2001.

[48] 1. S. Duff and J. Koster, “On algorithms for permuting large entries to the diagonal of a sparse matrix,” Technical Report, Rutherford Appleton
Laboratory, Oxon, UK and ENSEEIHT-IRIT, Toulouse, France, 1999.

[49] T. Strohmer and R. Vershynin, “A randomized Kaczmarz algorithm with exponential convergence,” The Journal of Fourier Analysis and
Applications, vol. 15, no. 2, pp. 262-278, 2009.

[50] D. Needell, “Randomized Kaczmarz solver for noisy linear systems,” BIT. Numerical Mathematics, vol. 50, no. 2, pp. 395-403, 2010.

[51] Y. Censor, “Row-action methods for huge and sparse systems and their applications,” SIAM review, vol. 23, no. 4, pp. 444-466, 1981.

[52] A. Galantai, Projectors and projection methods. ~Springer, 2003, vol. 6.

[53] A. Zouzias and N. M. Freris, “Randomized extended Kaczmarz for solving least-squares,” SIAM J. Matrix Anal. A., 2012, to appear.

[54] T. Elfving, “Block-iterative methods for consistent and inconsistent linear equations,” Numerische Mathematik, vol. 35, no. 1, pp. 1-12, 1980.

[55] P. P. B. Eggermont, G. T. Herman, and A. Lent, “Iterative algorithms for large partitioned linear systems, with applications to image recon-
struction,” Linear Algebra and its Applications, vol. 40, pp. 37-67, 1981.

[56] D. Needell and R. Ward, “Two-subspace projection method for coherent overdetermined linear systems,” J. Fourier Anal. Appl., vol. 19, no. 2,
pp. 256-269, 2013.

[57] D. Needell and J. A. Tropp, “Paved with good intentions: Analysis of a randomized block kaczmarz method,” Linear Algebra Appl., 2013, to
appear.

10

	1. Introduction
	1.1. Organization

	2. Background
	2.1. User Interface Layout as a Linear Problem

	3. Related Work
	4. Kaczmarz Method
	4.1. Convergence
	4.2. Inequalities
	4.3. Soft Constraints

	5. Experimental Evaluation
	5.1. Methodology
	5.2. Results
	5.3. Discussion

	6. Conclusion
	References

