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Abstract—Multi-task learning (MTL) is a supervised learning
paradigm in which the prediction models for several related tasks
are learned jointly to achieve better generalization performance.
When there are only a few training examples per task, MTL
considerably outperforms the traditional Single task learning
(STL) in terms of prediction accuracy. In this work we develop an
MTL based approach for classifying documents that are archived
within dual concept hierarchies, namely, DMOZ and Wikipedia.
We solve the multi-class classification problem by defining one-
versus-rest binary classification tasks for each of the different
classes across the two hierarchical datasets. Instead of learning a
linear discriminant for each of the different tasks independently,
we use a MTL approach with relationships between the different
tasks across the datasets established using the non-parametric,
lazy, nearest neighbor approach. We also develop and evaluate
a transfer learning (TL) approach and compare the MTL
(and TL) methods against the standard single task learning
and semi-supervised learning approaches. Our empirical results
demonstrate the strength of our developed methods that show an
improvement especially when there are fewer number of training
examples per classification task.

Keywords-multi-task learning, text classification, transfer
learning, semi-supervised learning

I. INTRODUCTION

Several websites like Wikipedia, DMOZ and Yahoo archive
documents (text data) into hierarchies with large number of
classes. Several classification methods have been developed to
automatically classify text documents into different classes. In
this work we seek to leverage the often implicit relationships
that exists between multiple archival datasets to classify doc-
uments within them in a combined manner. Further, datasets
have several classes with very few samples which make it
harder to learn good classification models.

Specifically, we develop a Multi-Task Learning (MTL)
based approach to learn the model vectors associated with
several linear classifiers (one per class) in a joint fashion.
Using the nearest-neighbor algorithm we identify the hidden
relationships between the different document datasets and use
that within the MTL framework. MTL approaches are known
to achieve superior performance on unseen test examples,
especially when the number of training examples is small.
MTL has been successfully applied in varied applications
such as medical informatics [1], structural classification [2],
sequence analysis [3], web image and video search [4].

In this paper our key contributions include development of
a document classification method using MTL that leverages
information present across dual hierarchical datasets. We fo-
cused on classifying documents within classes as categorized
by Wikipedia and DMOZ dataset. In text classification, for
each of the class labels we define a binary one-versus-rest
classification task. We then find the related tasks corresponding
to each task using k-nearest neighbor, which is then learned
together to find the best suited model vector (or parameters)
corresponding to each task. Based on how information from
related tasks was integrated with the original classification
task we developed two class of approaches: (i) Neighborhood
Pooling Approach and (ii) Individual Neighborhood Approach.
We evaluated the performance of our MTL approach for doc-
ument classification with dual hierarchical datasets against a
transfer learning approach, semi-supervised learning approach
and a single task learning approach. Our empirical evaluation
demonstrated merits of the MTL approach in terms of the
classification performance.

The rest of the paper is organized as follows. Section II
provides background related to MTL and TL. Section III
discusses our developed methods. Section IV provides the
experimental protocols. Section V discusses the experimental
results. Finally, Section VI draws conclusion and provides
several future directions.

II. BACKGROUND

A. Multi-Task Learning

Multi-Task Learning (MTL) [5] is a rapidly growing ma-
chine learning paradigm that involves the simultaneous train-
ing of multiple, related prediction tasks. This differs from
the traditional single-task learning (STL), where for each task
the model is learned independently. MTL-based models have
the following advantages: (i) they leverage the training signal
across related tasks, which leads to better generalization ability
for the different tasks and (ii) empirically they have been
shown to outperform STL models, especially when there are
few examples per task and the tasks are related [5][6][7][8].
The past few years has seen an tremendous growth in the
development and application of MTL-based approaches. A
concise review of all these approaches can be found in the
survey by Zhou et. al. [9].
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For STL, we are given a training set with n examples.
Given an input domain (X ) and output domain (Y), the i-
th training example is represented by a pair (xi, yi) where
xi ∈ X and yi ∈ Y . Within classical machine learning, we
seek to learn a mapping function f : X ∈ Rd → Y , where
d denotes the dimensionality of the input space. Assuming
that f(x) is a linear discriminant function, it is defined
as f(x) = sign(〈θ, x〉 + c), where θ ∈ Rd denotes the
weight vector or model parameters. f(x) allows us to make
predictions for new and unseen examples within the X domain.
This model parameter θ are learned by minimizing a loss
function across all the training examples, while restricting the
model to have low complexity using a regularization penalty.
As such, the STL objective can be shown as:

min
θ

n∑
i=1

L(θ, xi, yi)︸ ︷︷ ︸
Loss

+λ R(θ)︸︷︷︸
Regularization

(1)

where L(·) represents the loss function being minimized,
R(·) represents the regularizer (e.g., l1-norm) and λ is a
parameter that balances the trade-off between the loss function
and regularization penalty. The regularization term safeguards
against model over-fitting and allows the model to generalize
to the examples not encountered in the training set.

Within MTL, we are given T tasks with training examples
per task. For the t-th task, there are nt number of training
examples that are represented by {(xit, yit);∀i = 1 . . . nt}.
We seek to learn T linear discriminant functions, each rep-
resented by weight vector θt. We denote the combination of
all task-related weight vectors as a matrix that stacks all the
weight vectors as columns, Θ = [θ1, . . . , θT ] of dimensions
d× T , where d is the number of input dimensions. The MTL
objective is given by

min
Θ

T∑
t=1

nt∑
i=1

L(θt, xit, yit)︸ ︷︷ ︸
loss

+λ R(Θ)︸ ︷︷ ︸
Regularization

(2)

The regularization term R(Θ) captures the relationships be-
tween the different tasks. Different MTL approaches vary in
the way the combined regularization is performed but most
methods seek to leverage the “task relationships” and enforce
the constraint that the model parameters (weight vectors) for
related tasks are similar.

In the work of Evgeniou et. al [10] the model for each
task is constrained to be close to the average of all the
tasks. In multi-task feature learning and feature selection
methods [11][12][13][14], sparse learning based on lasso [15],
is performed to select or learn a common set of features across
many related tasks. However, a common assumption made
by these approaches [10][16][17] is that all tasks are equally
related. This assumption does not hold in all cases, especially
when there is no knowledge of task relationships.

Kato et. al [18] and Evgeniou et. al [19] propose formula-
tions which use an externally provided task network or graph
structure. However, these relationships might not be available
and may need to be determined from the data. Clustered

multi-task learning approaches assume that tasks exhibit a
group-wise structure, which is not known a-priori and seeks
to learn the clustering of tasks that are then learned together
[20][21][22]. Another set of approaches, mostly based on
Gaussian Process models, learn the task co-variance structure
[23][24] and are able to take advantage of both positive and
negative correlations between the tasks.

In this paper we have focused on the use of MTL based
models for the purpose of multi-class text classification,
when the documents are categorized by multiple hierarchical
datasets. We use a non-parametric, lazy approach to find the
related tasks within different domain datasets and use these
relationships within the regularized MTL approach.

B. Transfer Learning

Related to MTL are approaches developed for Transfer
Learning (TL). Within the TL paradigm, it is assumed that
there exists one/more target (or parent) tasks along with
previously learned models for related tasks (referred to as
children/source tasks). While learning the model parameters
for the target task, TL approaches seek to transfer information
from the parameters of the source tasks. The key intuition
behind using TL is that the information contained in the source
tasks can help in learning predictive models for the target task
of interest. When transferred parameters from the source task
assist in better learning the predictive models of the target
task then it is referred to as positive transfer. However, in
some cases if source task(s) are not related to the target task,
then the TL approach leads to worse prediction performance.
This type of transfer is known as negative transfer. It has been
shown in the work of Pan et. al [25] that TL improves the
generalization performance of the predictive models, provided
the source tasks are related to the target tasks. One of the
key differences between TL and MTL approaches is that
within the MTL approaches, all the task parameters are learned
simultaneously, whereas in TL approaches, first the parameters
of the source tasks are learned and then they are transferred
during the learning of parameters for the target task. In the
literature, TL has also been referred to as Asymmetric Multi-
Task Learning because of the focus on one/more of the target
tasks.

Given a target task with nt training examples, represented
as {(x1t, y1t), . . . , (xnt, ynt) we seek to learn the parameters
for the target task (θt) using the parameters from the source
tasks given by (Θs). Using a similar notation as used before
the matrix Θs represents all the parameters from the different
source tasks that are learned separately beforehand. We can
write the minimization function for the target task within the
TL framework as:

min
θt

nt∑
i=1

L(θt, xit, yit)︸ ︷︷ ︸
loss

+λ1R(θt) + λ2R(θt,Θs)︸ ︷︷ ︸
Regularization

(3)

where the regularization term R(θt) controls model com-
plexity of the target task t and the term R(θt,Θs) captures
how the parameters from the source tasks will be transferred to



the target task. The exact implementation of the regularization
term is discussed in Section III.

III. METHODS

Given two different datasets that categorize/archive text
documents (e.g., Wikipedia and DMOZ), our primary objective
is to classify new documents into classes within these datasets.
We specifically, use regularized MTL approaches to improve
the document classification performance. First, we assume that
each of the classes within the different datasets is associated
with a binary classification task. For each of the tasks within
one of the datasets we want to determine related tasks within
the other database, and by performing the joint learning using
MTL, we gain improvement in the classification performance.
We compare the MTL approach against the standard STL
approach, the TL approach that assumes the tasks in one of
the datasets to be the target task and tasks from the second
dataset as the source tasks. We also compare our approach to
a semi-supervised learning approach (SSL).

A. Finding Related Tasks

We first discuss our approach to determine task relationships
across the two datasets using the non-parametric, lazy nearest
neighbor approach (kNN) [26]. We use kNN to find similar
classes between the two datasets i.e., Wikipedia and DMOZ.
For determining the nearest neighbor(s), we represent each
of the classes within the DMOZ and Wikipedia datasets by
their centroidal vectors. The centroidal vector per class is
computed by taking the average across all the examples within
a given class. We then use Tanimoto Similarity (Jaccard
index) to compute similarities between the different classes
across the two datasets. Tanimoto similarity is the ratio of the
size of intersection divided by the union. The similarity is
known to work well for large dimensions with a lot of zeros
(sparsity). Using kNN, we find for each class of interest a set
of neighboring classes within the second dataset. Within the
MTL approach we constrain the related classes to learn similar
weight vectors when jointly learning the model parameters. In
TL approach we learn the weight vectors for related classes
and transfer the information over to the target task. We also
use the related classes to supplement the number of positive
examples for each of the classes within a baseline semi-
supervised learning approach (SSL).

B. MTL method

Given the two dataset sources S1 and S2, we represent
the total number of classes (and hence the number of binary
classification tasks) within each of them by TS1 and TS2 ,
respectively. The individual parameters per classification task
is represented by θ with model parameters for S1 denoted by
θS1 and parameters for S2 denoted by θS2 . The combined
model parameters for S1 and S2 are denoted by ΘS1 and
ΘS2 , respectively. The MTL minimization objective can then

be given by:

TS1∑
t=1

nt∑
i=1

L(θS1
t , xit, yit) +

TS2∑
t=1

nt∑
i=1

L(θS2
t , xit, yit)+

λ1

TS1∑
t=1

||θS1
t ||22 + λ2

TS2∑
t=1

||θS2
t ||22 + λ3R(ΘS1 ,ΘS2) (4)

where the first two terms are loss computed for each of the
two dataset-specific models. To control the model complexity
we then include a l2-norm (denoted by || · ||2), for each of
the different classification tasks within S1 and S2. Finally,
R(ΘS1 ,ΘS2) controls the relationships between the tasks
found to be related using the kNN approach across the two
databases. Parameters λ1, λ2 and λ3 control the weights
associated with each of the different regularization parameters.
Based on how we constrain the related tasks, we discuss two
approaches:

• Neighborhood Pooling Approach (NPA). In this ap-
proach, for each of the tasks within S1 we find the k-
related neighbors from the other dataset S2. We repeat
this by finding related neighbors in S1 for each class in
S2. Then we pool all the training examples within the
related classes and assume that there exists one pooled
task for each of the original task. We then constrain the
model vectors for each task to be similar to the pooled
model vector. We represent this as

R(ΘS1 ,ΘS2) =

TS1∑
t=1

||θS1
t −θ

S2
NPA(t)||

2
2+

TS2∑
t=1

||θS2
t −θ

S1
NPA(t)||

2
2

(5)
where θNPA(t)S2 represents the pooled related neighbor

model within S2. The weight vectors for the original
tasks and new pooled tasks are learned simultaneously.
We denote this approach as MTL-NPA.

• Individual Neighborhood Approach (INA). In this ap-
proach we consider all the k related neighbors from the
second source as individual tasks. As such we constrain
each task model vector to be similar to each of the k
related task vectors. The regularization term can then be
given by:

R(ΘS1 ,ΘS2) =

TS1∑
t=1

k∑
l=1

||θS1
t −ΘS2

I(l)||
2
2+

TS2∑
t=1

k∑
l=1

||θS2
t −ΘS1

I(l)||
2
2

(6)
where I(·) is an indicator function representing the

identified nearest neighbor task vectors within the second
dataset. We refer to this approach as MTL-INA.

C. Transfer Learning Approach.

The TL method differs from the MTL method in the
learning process. In MTL all the related task model parameters
are learned simultaneously whereas in TL method learned
parameters of the related task are transferred to the main
task to improve model performance. Within our TL method,
we use the parameters from the neighboring tasks within
the regularization term for the main task. Similar to the
MTL models, we implement both the pooling and individual
neighborhood approaches for transfer learning.



1) Neighborhood Pooling Approach (TL-NPA): This
method pools the k neighbors for each of the tasks considered
to be within the primary dataset. After pooling, at first using
STL the parameters for the pooled model are learned. The
pooled parameters for task t from the secondary source
database (S) are represented as θSNPA(t). Assuming S1 to be
the main task dataset we can write the objective function for
each of the t task within S1 as follows:

min
θ
S1
t

nt∑
i=1

L(θS1
t , xit, yit)+λ1||θS1

t ||22+λ2||θt−θS2

NPA(t)||
2
2 (7)

We can similarly write the objective assuming S2 to be the
main/primary dataset.

2) Individual Neighborhood Approach (TL-INA): In this
approach, for each of the k neighborhood tasks, we learn
the parameter vectors individually (using STL). After this, a
transfer of information is performed from each of the related
tasks to the main/parent tasks. We can represent this within
the TL objective as follows:

min
θ
S1
t

nt∑
i=1

L(θS1
t , xit, yit) + λ1||θS1

t ||22 + λ2

k∑
l=1

||θt −ΘS2

I(l)||
2
2

(8)
The last regularization term is similar to the MTL-INA ap-
proach discussed earlier, where I(·) represents an indicator
function to extract the k-related tasks. We can also assume S2

to be the target/parent dataset.

D. Single Task Learning

Single Task Learning (STL) lies within the standard ma-
chine learning paradigm, where each classification task is
treated independently of each other during the training phase.
The learning objective of the regularized STL model is given
by Equation 1. In this paper, logistic regression is used as
the loss function for all the binary classification tasks. One
advantage of using this loss function is that it is smooth and
convex.

Specifically, the STL objective can be rewritten as,

min
θ

n∑
i=1

log
(

1 + exp(−yiθTxi)
)

+
λ

2
||θ||22 (9)

where, y ∈ {±1} is the binary class label for x, θ is the model
vector/parameters. For preventing the model from over-fitting
we have used the l2-norm over the θ and λ is the regularization
parameter.

E. Semi-Supervised Learning Approach.

Semi-Supervised Learning (SSL) involves use of both la-
beled and unlabeled data for learning the parameters of the
classification model. SSL approaches lie between unsupervised
(no labeled training data) and supervised learning (completely
labeled training data) [27]. SSL works on the principle that
more the training examples leads to better generalization.
However, the performance of SSL is largely dependent on how
we treat the unlabeled data with the labeled data.

Our SSL approach works the same way as the STL method
with only difference in the increase in number of labeled ex-
amples from the related classes found using the kNN approach.
Within the SSL approach, for each classification task we treat
training examples from related classes as positive examples
for the class under consideration. We implemented the SSL
approach along with STL approach as baseline to compare
against the developed MTL and TL approaches.

IV. EXPERIMENTAL EVALUATIONS

A. Dataset

To evaluate our methods, we used DMOZ and Wikipedia
datasets from ECML/PKDD 2012 Large Scale Hierarchical
Text Classification Challenge (LSHTC) (Track 2) 1. The chal-
lenge is closed for new submission and the labels of the test set
are not publicly available. We used the original training set for
training, validation and testing by splitting it into 3:1:1 ratios,
respectively and reporting the average of five runs. To assess
the performance of our method with respect to the class size,
in terms of the number of training examples, we categorized
the classes into Low Distribution (LD), with 25 examples per
class and High Distribution (HD), with 250 examples per class.
This resulted in DMOZ dataset having 75 classes within LD
and 53 classes within HD. For the Wikipedia dataset we had
84 classes within LD and 62 classes within HD. More details
about the dataset can be found in the Naik et. al. thesis [28].

B. Implementation

For learning the weight vectors across all the models,
we implemented gradient descent algorithm. Implementation
was done in MATLAB and all runs were performed on a
server workstation with a dual-core Intel Xeon CPU 2.40GHz
processor and 4GB RAM.

C. Metrics

We used three metrics for evaluating the classification
performance that take into account True Positives (TP ), False
Positives (FP ), True Negatives (TN ) and False Negatives
(FN ) for each of the classes.

1) Micro-Averaged F1: Micro-Averaged F1 (µAF1) is
a conventional metric for evaluating classifiers in category
assignment[29][30]. To compute this metric we sum up the
category specific True Positives (TPc), False Positives (FPc),
True Negatives (TNc) and False Negatives (FNc) across all
the categories, c ∈ C ≡ {c1, c2, . . . , cNc

} and compute the
averaged F1 score. It is defined as follows,

GlobalPrecision P =

∑Nc

c=1 TPc∑Nc

c=1(TPc + FPc)
(10)

GlobalRecall R =

∑Nc

c=1 TPc∑Nc

c=1(TPc + FNc)
(11)

µAF1 =
2PR

P +R
(12)

1http://lshtc.iit.demokritos.gr/LSHTC3 DATASETS



where, Nc is the number of categories/classes.

2) Macro-Averaged Precision, Recall and F1: The Macro-
Averaged Precision (MAP), Recall (MAR) and F1 (MAF1)
are computed by calculating the respective Precision, Recall
and F1 scores for each individual category and then averaging
them across all the categories[31]. In computing these metrics
all the categories are given equal weight so that the score is
not skewed in favor of the larger categories,

Category − specific Precision Pc =
TPc

TPc + FPc
(13)

Category − specific Recall Rc =
TPc

TPc + FNc
(14)

MAP =
1

Nc

Nc∑
c=1

TPc
TPc + FPc

(15)

MAR =
1

Nc

Nc∑
c=1

TPc
TPc + FNc

(16)

MAF1 =
1

Nc

Nc∑
c=1

2PcRc
Pc +Rc

(17)

3) Averaged Matthews Correlation Coefficient score:
Matthews Correlation Coefficient (MCC) score [32] is a bal-
anced measure for binary classification which quantifies the
correlation between the actual and predicted values. It returns
a value between -1 and +1, where +1 indicates a perfect
prediction, a score of 0 signifies no correlation and -1 indicate
a perfect negative correlation between the actual and predicted
values. The category specific MCC and averaged MCC are
defined as,

MCCc =

(TPc ∗ TNc)− (FPc ∗ FNc)√
(TPc + FPc)(TPc + FNc)(TNc + FPc)(TNc + FNc)

(18)

Avg. MCC (AMCC) =
1

Nc

Nc∑
c=1

MCCc (19)

V. RESULTS

We have implemented different models described in Section
III using DMOZ and Wikipedia as the two source datasets.
Figure 1 outlines the different models that were evaluated. We
varied k (number of nearest neighbor) from 2 to 6.

Figure 1: Summary of Evaluated Models. Wikipedia/DMOZ
are inter-changeable in the protocol.

A. Accuracy Comparison

1) Low distribution sample: Tables I and II show the av-
erage performance across five runs for DMOZ and Wikipedia
Low Distribution (LD) classes. The following observations can
be made from the results.

• STL v/s SSL v/s TL v/s MTL: For both the datasets we
see that the MTL methods outperforms all the other meth-
ods across all the metrics, exception being in case of LD
DMOZ dataset MAP metric. Reason for such exception
is high relatedness between the main task and its corre-
sponding neighboring task(s). We also note that among
the MTL approaches the Neighborhood Pooling Ap-
proach (MTL-NPA) outperformed the Individual Neigh-
borhood Approach (MTL-INA) (statistically significant).
Semi-Supervised Learning (SSL) method marginally out-
performed both Single Task Learning (STL) as well as
Transfer Learning (TL) methods. TL did not seem to have
any benefit over STL.

• k = 2 v/s k = 3 v/s k = 4 v/s k = 5 v/s k = 6: In
general, lower value of k gave better models compared
to higher values of k. We conjecture that as the value
of k increases, similarity between the main task and
the surrogate tasks decreases, which in turn affects the
performance negatively.

2) High distribution sample: Table III and IV show the av-
erage performance across five runs for DMOZ and Wikipedia
High Distribution (HD) classes. We make the following ob-
servations based on the results.

• STL v/s SSL v/s TL v/s MTL: In this case we see that
the MTL methods perform only slightly better than other
models, the differences are not statistically significant.
This supports our intuition that with sufficient number of
examples for learning the SSL, TL and MTL methods do
not provide any distinct advantage and the simple STL
model is competitive.

• k = 2 v/s k = 3 v/s k = 4 v/s k = 5 v/s k = 6: As with
the case of Low Distribution classes, we noticed a slight
degradation of performance as the number of neighbors
is increased.



Model µAF1 MAP MAR MAF1 AMCC
STL 0.5758 (0.0121) 0.7914 (0.0267) 0.6167 (0.0115) 0.6486 (0.0060) 0.6732 (0.0074)

SSL

(k = 2) 0.6178 (0.0160) 0.8064 (0.0413) 0.6649 (0.0125) 0.6789 (0.0231) 0.7048 (0.0263)
(k = 3) 0.6316 (0.0216) 0.8059 (0.0218) 0.6782 (0.0230) 0.6808 (0.0195) 0.7092 (0.0185)
(k = 4) 0.6581 (0.0392) 0.8090 (0.0292) 0.6888 (0.0329) 0.6974 (0.0284) 0.7208 (0.0492)
(k = 5) 0.6719 (0.0540) 0.8091 (0.0406) 0.7093 (0.0314) 0.7045 (0.0152) 0.7359 (0.0064)
(k = 6) 0.6624 (0.0356) 0.8011 (0.0216) 0.7089 (0.0387) 0.6919 (0.0284) 0.7175 (0.0182)

TL-NPA

(k = 2) 0.5739 (0.0044) 0.7987 (0.0278) 0.6247 (0.0091) 0.6481 (0.0062) 0.6732 (0.0074)
(k = 3) 0.5728 (0.0103) 0.7893 (0.0128) 0.6250 (0.0126) 0.6480 (0.0081) 0.6737 (0.0171)
(k = 4) 0.5732 (0.0124) 0.7981 (0.0221) 0.6232 (0.0753) 0.6483 (0.0375) 0.6738 (0.0128)
(k = 5) 0.5755 (0.0030) 0.8027 (0.0314) 0.6262 (0.0077) 0.6504 (0.0083) 0.6757 (0.0097)
(k = 6) 0.5738 (0.0462) 0.7413 (0.0593) 0.6096 (0.0522) 0.6248 (0.0563) 0.6631 (0.0387)

TL-INA

(k = 2) 0.5736 (0.0038) 0.7967 (0.0262) 0.6246 (0.0184) 0.6478 (0.0040) 0.6728 (0.0054)
(k = 3) 0.5810 (0.0731) 0.7918 (0.0137) 0.6182 (0.0126) 0.6488 (0.0031) 0.6794 (0.0138)
(k = 4) 0.5771 (0.0192) 0.7939 (0.0191) 0.6173 (0.0188) 0.6394 (0.0113) 0.6748 (0.0312)
(k = 5) 0.5712 (0.0034) 0.8024 (0.0226) 0.6212 (0.0091) 0.6467 (0.0034) 0.6724 (0.0047)
(k = 6) 0.5700 (0.0144) 0.7853 (0.0268) 0.6132 (0.0164) 0.6298 (0.0372) 0.6489 (0.0189)

MTL-NPA

(k = 2) 0.7442 (0.0201) 0.7819 (0.0356) 0.7840 (0.0169) 0.7373 (0.0349) 0.7527 (0.0335)
(k = 3) 0.7438 (0.0192) 0.7901 (0.0461) 0.7782 (0.0329) 0.7350 (0.0247) 0.7515 (0.0282)
(k = 4) 0.7403 (0.0431) 0.7884 (0.0453) 0.7891 (0.0212) 0.7346 (0.0221) 0.7501 (0.0101)
(k = 5) 0.7394 (0.0219) 0.7720 (0.0421) 0.7814 (0.0140) 0.7293 (0.0318) 0.7488 (0.0298)
(k = 6) 0.7120 (0.0128) 0.7104 (0.0144) 0.7581 (0.0213) 0.6866 (0.0422) 0.7061 (0.0431)

MTL-INA

(k = 2) 0.7208 (0.0180) 0.7583 (0.0503) 0.7664 (0.0211) 0.7052 (0.0520) 0.7326 (0.0367)
(k = 3) 0.7294 (0.0213) 0.7592 (0.0101) 0.7616 (0.0473) 0.7070 (0.0211) 0.7313 (0.0312)
(k = 4) 0.7000 (0.0431) 0.7281 (0.0213) 0.7502 (0.0131) 0.6899 (0.0432) 0.7024 (0.0293)
(k = 5) 0.7079 (0.0136) 0.7352 (0.0306) 0.7508 (0.0085) 0.6949 (0.0255) 0.7147 (0.0243)
(k = 6) 0.6992 (0.0721) 0.7271 (0.0721) 0.7321 (0.0632) 0.6797 (0.0413) 0.7024 (0.0339)

Table shows mean across five runs and (standard deviation) in bracket, standard error for best model: MTL-NPA (k = 2) = 0.0054

Table I: Classification Performance for LD Sample shown for DMOZ dataset.

Model µAF1 MAP MAR MAF1 AMCC
STL 0.5236 (0.0989) 0.6415 (0.0741) 0.5213 (0.0998) 0.5318 (0.0625) 0.5837 (0.0782)

SSL

(k = 2) 0.5182 (0.0321) 0.6392 (0.0932) 0.5348 (0.0631) 0.5264 (0.0674) 0.5748 (0.0183)
(k = 3) 0.5234 (0.0723) 0.6334 (0.0673) 0.5354 (0.0300) 0.5670 (0.0641) 0.5739 (0.0629)
(k = 4) 0.5329 (0.0631) 0.6312 (0.0681) 0.5360 (0.0810) 0.5698 (0.0524) 0.5802 (0.0285)
(k = 5) 0.5102 (0.0642) 0.6124 (0.0773) 0.5279 (0.0273) 0.5490 (0.0831) 0.5772 (0.0641)
(k = 6) 0.5043 (0.0731) 0.6042 (0.0204) 0.5186 (0.0942) 0.5468 (0.0632) 0.5547 (0.0228)

TL-NPA

(k = 2) 0.5418 (0.0182) 0.6682 (0.0136) 0.5633 (0.0362) 0.5823 (0.0317) 0.6930 (0.0831)
(k = 3) 0.5512 (0.0521) 0.6620 (0.0317) 0.5784 (0.0674) 0.5982 (0.0742) 0.6894 (0.0674)
(k = 4) 0.5332 (0.0153) 0.6581 (0.0239) 0.5616 (0.0083) 0.5813 (0.0873) 0.6740 (0.0543)
(k = 5) 0.5295 (0.0743) 0.6327 (0.0854) 0.5610 (0.0674) 0.5704 (0.0029) 0.6649 (0.0895)
(k = 6) 0.5238 (0.0235) 0.6136 (0.0487) 0.5427 (0.0500) 0.5684 (0.0748) 0.6386 (0.0856)

TL-INA

(k = 2) 0.5368 (0.0573) 0.6734 (0.0198) 0.5464 (0.0563) 0.5982 (0.0130) 0.6946 (0.0846)
(k = 3) 0.5408 (0.0464) 0.6648 (0.0895) 0.5696 (0.0187) 0.5928 (0.0481) 0.6994 (0.0101)
(k = 4) 0.5319 (0.0042) 0.6598 (0.0452) 0.5573 (0.0526) 0.5810 (0.0736) 0.6848 (0.0654)
(k = 5) 0.5278 (0.0674) 0.6394 (0.0895) 0.5210 (0.0183) 0.5624 (0.0901) 0.6740 (0.0538)
(k = 6) 0.5101 (0.0587) 0.6153 (0.0519) 0.5052 (0.0456) 0.5248 (0.0831) 0.6382 (0.0873)

MTL-NPA

(k = 2) 0.6389 (0.0648) 0.6635 (0.0782) 0.6615 (0.0637) 0.6626 (0.0682) 0.6582 (0.0738)
(k = 3) 0.6390 (0.0723) 0.6832 (0.0672) 0.6650 (0.0421) 0.6724 (0.0432) 0.6628 (0.0764)
(k = 4) 0.6283 (0.0748) 0.6624 (0.0613) 0.6593 (0.0382) 0.6602 (0.0936) 0.6585 (0.0631)
(k = 5) 0.6128 (0.0784) 0.6626 (0.0632) 0.6429 (0.0823) 0.6593 (0.0529) 0.6497 (0.0874)
(k = 6) 0.6003 (0.0524) 0.6498 (0.0874) 0.6193 (0.0623) 0.6282 (0.0817) 0.6046 (0.0734)

MTL-INA

(k = 2) 0.6120 (0.0629) 0.6448 (0.0325) 0.6428 (0.0618) 0.6432 (0.0663) 0.6420 (0.0728)
(k = 3) 0.6194 (0.0437) 0.6328 (0.0224) 0.6480 (0.0642) 0.6406 (0.0910) 0.6394 (0.0429)
(k = 4) 0.6036 (0.0421) 0.6262 (0.0639) 0.6338 (0.0632) 0.6324 (0.0138) 0.6310 (0.0309)
(k = 5) 0.6040 (0.0101) 0.6160 (0.0819) 0.6282 (0.0192) 0.6202 (0.0328) 0.6290 (0.0456)
(k = 6) 0.5842 (0.0457) 0.5820 (0.0282) 0.5926 (0.0478) 0.5846 (0.0885) 0.6082 (0.0402)

Table shows mean across five runs and (standard deviation) in bracket, standard error for best model: MTL-NPA (k = 3) = 0.0087

Table II: Classification Performance for LD sample shown for Wikipedia dataset.



Model µAF1 MAP MAR MAF1 AMCC
STL 0.7592 (0.0120) 0.7947 (0.0068) 0.7618 (0.0056) 0.7567 (0.0085) 0.7626 (0.0075)

SSL

(k = 2) 0.7535 (0.0040) 0.7938 (0.0065) 0.7601 (0.0011) 0.7547 (0.0052) 0.7609 (0.0048)
(k = 3) 0.7542 (0.0127) 0.7998 (0.0032) 0.7624 (0.0102) 0.7657 (0.0020) 0.7646 (0.0091)
(k = 4) 0.7512 (0.0031) 0.7972 (0.0084) 0.7618 (0.0090) 0.7592 (0.0029) 0.7628 (0.0075)
(k = 5) 0.7545 (0.0027) 0.7948 (0.0060) 0.7610 (0.0018) 0.7559 (0.0039) 0.7619 (0.0034)
(k = 6) 0.7491 (0.0042) 0.7778 (0.0143) 0.7482 (0.0042) 0.7437 (0.0092) 0.7542 (0.0086)

TL-NPA

(k = 2) 0.7536 (0.0042) 0.7936 (0.0054) 0.7588 (0.0015) 0.7546 (0.0048) 0.7610 (0.0043)
(k = 3) 0.7538 (0.0053) 0.7941 (0.0027) 0.7590 (0.0061) 0.7551 (0.0024) 0.7595 (0.0063)
(k = 4) 0.7532 (0.0028) 0.7940 (0.0037) 0.7585 (0.0072) 0.7544 (0.0053) 0.7623 (0.0022)
(k = 5) 0.7533 (0.0038) 0.7937 (0.0063) 0.7584 (0.0024) 0.7542 (0.0052) 0.7605 (0.0046)
(k = 6) 0.7406 (0.0064) 0.7888 (0.0022) 0.7414 (0.0072) 0.7389 (0.0041) 0.7594 (0.0027)

TL-INA

(k = 2) 0.7529 (0.0040) 0.7958 (0.0054) 0.7591 (0.0011) 0.7540 (0.0048) 0.7603 (0.0043)
(k = 3) 0.7631 (0.0074) 0.7964 (0.0010) 0.7612 (0.0027) 0.7548 (0.0029) 0.7696 (0.0072)
(k = 4) 0.7530 (0.0091) 0.7968 (0.0020) 0.7606 (0.0013) 0.7542 (0.0017) 0.7596 (0.0062)
(k = 5) 0.7527 (0.0038) 0.7957 (0.0046) 0.7590 (0.0010) 0.7538 (0.0036) 0.7602 (0.0042)
(k = 6) 0.7432 (0.0015) 0.7849 (0.0034) 0.7442 (0.0051) 0.7414 (0.0053) 0.7591 (0.0068)

MTL-NPA

(k = 2) 0.7572 (0.0080) 0.7961 (0.0063) 0.7637 (0.0058) 0.7587 (0.0087) 0.7644 (0.0076)
(k = 3) 0.7598 (0.0072) 0.7978 (0.0089) 0.7644 (0.0062) 0.7649 (0.0074) 0.7701 (0.0086)
(k = 4) 0.7571 (0.0035) 0.7964 (0.0076) 0.7632 (0.0093) 0.7584 (0.0102) 0.7640 (0.0054)
(k = 5) 0.7569 (0.0043) 0.7969 (0.0058) 0.7627 (0.0012) 0.7581 (0.0053) 0.7639 (0.0048)
(k = 6) 0.7482 (0.0087) 0.7712 (0.0081) 0.7512 (0.0014) 0.7392 (0.0076) 0.7436 (0.0030)

MTL-INA

(k = 2) 0.7579 (0.0103) 0.7978 (0.0076) 0.7644 (0.0079) 0.7599 (0.0111) 0.7657 (0.0099)
(k = 3) 0.7680 (0.0097) 0.8020 (0.0047) 0.7790 (0.0089) 0.7728 (0.0092) 0.7728 (0.0121)
(k = 4) 0.7662 (0.0087) 0.8012 (0.0026) 0.7742 (0.0085) 0.7696 (0.0129) 0.7719 (0.0105)
(k = 5) 0.7657 (0.0067) 0.8017 (0.0073) 0.7717 (0.0037) 0.7678 (0.0081) 0.7726 (0.0072)
(k = 6) 0.7526 (0.0089) 0.7818 (0.0129) 0.7664 (0.0051) 0.7529 (0.0066) 0.7648 (0.0059)

Table shows mean across five runs and (standard deviation) in bracket, standard error for best model: MTL-INA (k = 3) = 0.0038

Table III: Classification Performance for HD sample shown for DMOZ dataset.

Model µAF1 MAP MAR MAF1 AMCC
STL 0.6648 (0.0628) 0.6841 (0.0630) 0.6429 (0.0089) 0.6748 (0.0172) 0.6881 (0.0120)

SSL

(k = 2) 0.6584 (0.0067) 0.6848 (0.0178) 0.6492 (0.0238) 0.6780 (0.0324) 0.6782 (0.0182)
(k = 3) 0.6528 (0.0262) 0.6804 (0.0572) 0.6498 (0.0546) 0.6680 (0.0821) 0.6778 (0.0239)
(k = 4) 0.6530 (0.0287) 0.6768 (0.0231) 0.6400 (0.0262) 0.6612 (0.0387) 0.6704 (0.0263)
(k = 5) 0.6428 (0.0624) 0.6706 (0.0189) 0.6364 (0.0423) 0.6596 (0.0346) 0.6686 (0.0456)
(k = 6) 0.6320 (0.0822) 0.6700 (0.0037) 0.6342 (0.0892) 0.6502 (0.0521) 0.6648 (0.0190)

TL-NPA

(k = 2) 0.6628 (0.0636) 0.6820 (0.0976) 0.6528 (0.0174) 0.6792 (0.0733) 0.6840 (0.0785)
(k = 3) 0.6614 (0.0463) 0.6838 (0.0842) 0.6510 (0.0597) 0.6797 (0.0471) 0.6888 (0.0823)
(k = 4) 0.6528 (0.0367) 0.6735 (0.0963) 0.6482 (0.0871) 0.6626 (0.0913) 0.6710 (0.0731)
(k = 5) 0.6500 (0.0689) 0.6629 (0.0729) 0.6285 (0.0463) 0.6389 (0.0582) 0.6618 (0.0838)
(k = 6) 0.6450 (0.0893) 0.6482 (0.0572) 0.6021 (0.0578) 0.6124 (0.0527) 0.6484 (0.0657)

TL-INA

(k = 2) 0.6531 (0.0462) 0.6623 (0.0572) 0.6482 (0.0863) 0.6504 (0.0427) 0.6731 (0.0865)
(k = 3) 0.6512 (0.0845) 0.6547 (0.0864) 0.6273 (0.0974) 0.6397 (0.0645) 0.6682 (0.0472)
(k = 4) 0.6510 (0.0467) 0.6524 (0.0246) 0.6244 (0.0755) 0.6326 (0.0624) 0.6539 (0.0573)
(k = 5) 0.6427 (0.0533) 0.6510 (0.0217) 0.6218 (0.0381) 0.6304 (0.0256) 0.6512 (0.0972)
(k = 6) 0.6308 (0.0572) 0.6404 (0.0384) 0.6036 (0.0330) 0.6198 (0.0472) 0.6380 (0.0753)

MTL-NPA

(k = 2) 0.6620 (0.0672) 0.6824 (0.0317) 0.6428 (0.0871) 0.6704 (0.0174) 0.6868 (0.0623)
(k = 3) 0.6702 (0.0053) 0.6826 (0.0183) 0.6440 (0.0542) 0.6748 (0.0831) 0.6880 (0.0542)
(k = 4) 0.6634 (0.0184) 0.6782 (0.0172) 0.6210 (0.0281) 0.6529 (0.0600) 0.6693 (0.0622)
(k = 5) 0.6608 (0.0731) 0.6616 (0.0722) 0.6201 (0.0193) 0.6500 (0.0783) 0.6524 (0.0734)
(k = 6) 0.6529 (0.0620) 0.6583 (0.0318) 0.6183 (0.0731) 0.6472 (0.0561) 0.6510 (0.0582)

MTL-INA

(k = 2) 0.6720 (0.0134) 0.6898 (0.0531) 0.6548 (0.0146) 0.6784 (0.0142) 0.6898 (0.0712)
(k = 3) 0.6717 (0.0108) 0.6864 (0.0142) 0.6550 (0.0398) 0.6772 (0.0152) 0.6720 (0.0256)
(k = 4) 0.6683 (0.0040) 0.6747 (0.0051) 0.6484 (0.0193) 0.6696 (0.0641) 0.6704 (0.0138)
(k = 5) 0.6601 (0.0839) 0.6630 (0.0931) 0.6418 (0.0322) 0.6642 (0.0412) 0.6652 (0.0313)
(k = 6) 0.6539 (0.0713) 0.6565 (0.0172) 0.6402 (0.0742) 0.6598 (0.0193) 0.6584 (0.0105)

Table shows mean across five runs and (standard deviation) in bracket, standard error for best model: MTL-INA (k = 2) = 0.0068

Table IV: Classification Performance for HD sample shown for Wikipedia dataset.



DMOZ Wiki
Model LD HD LD HD
STL 2.72 44.7 2.84 46.7

SSL
(k = 2) 4.58 62.4 8.64 68.3
(k = 4) 5.57 62.7 9.73 70.5
(k = 6) 6.48 64.3 10.6 73.0

TL-NPA
(k = 2) 4.65 48.6 10.2 70.7
(k = 4) 6.3 52.6 13.6 74.6
(k = 6) 7.5 56.1 15.5 78.8

TL-INA
(k = 2) 4.54 48.4 12.6 72.6
(k = 4) 6.40 50.3 14.6 76.8
(k = 6) 7.98 54.7 15.6 80.7

MTL-NPA
(k = 2) 5.51 49.5 12.6 69.6
(k = 4) 7.53 54.2 14.5 70.3
(k = 6) 8.75 58.1 15.8 72.4

MTL-INA
(k = 2) 9.84 56.8 17.8 78.7
(k = 4) 15.6 78.7 19.3 84.7
(k = 6) 18.8 82.8 22.3 92.4

Table V: Run time (in sec.) comparison (Reported per class
across five runs)

B. Run time Comparison

Table V shows the average training time (in sec.) per
class required to learn the models for the different LD and
HD categories. The STL approach has the lowest training
times because there is no overhead of incorporating additional
constraints is involved. SSL models takes more time than the
corresponding STL models because of the increased number of
training examples. For TL models as well, run time increases
because it requires learning the models for the neighbors.
Finally, MTL method takes the longest time, since it requires
the joint learning of the model parameters that are updated for
each class and related neighbors.

VI. CONCLUSION AND FUTURE WORK

In this paper we developed Multi-task Learning models
for text document classification. Performance of the MTL
methods was compared with Single Task Learning, Semi-
supervised Learning and Transfer Learning approaches. We
compared the methods in terms of accuracy and run-times.
MTL methods outperformed the other methods, especially for
the Low Distribution classes, where the number of positive
training examples was small. For the High Distribution classes
with sufficient number of positive training examples, the
performance improvement was not noticeable.

Datasets organize information as hierarchies. We plan to ex-
tract the parent-child relationships existing within the DMOZ
and Wikipedia hierarchies to improve the classification perfor-
mance. We also plan to use the accelerated/proximal gradient
descent approach to improve the learning rates. Finally, we
also seek to improve run-time performance by implementing
our approaches using data parallelism, seen in GPUs.
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