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Abstract—The detection of malignant lesions in dermoscopic
images by using automatic diagnostic tools can help in re-
ducing mortality from melanoma. In this paper, we describe
a fully-automatic algorithm for skin lesion segmentation in
dermoscopic images. The proposed approach is highly accurate
when dealing with benign lesions, while the detection accuracy
significantly decreases when melanoma images are segmented.
This particular behavior lead us to consider geometrical and
color features extracted from the output of our algorithm for
classifying melanoma images, achieving promising results.

Keywords-Melanoma detection ; Dermoscopy images ; Auto-
matic segmentation ; Border detection

I. INTRODUCTION

Melanoma is an aggressive tumor and it can be lethal,
if not diagnosed in time [1]. Early diagnosis is today the
main way to prevent mortality from melanoma. Indeed,
malignant melanoma has a cure rate of more than 95%
if detected at an early stage [2]. Thus, in order to reduce
the number of deaths from melanoma, it is fundamental to
develop innovative strategies to help dermatologists making
early diagnosis. Furthermore, the development of reliable
computer-aided diagnosis (CAD) tools can help in reduc-
ing the number of presumptive diagnoses that have to be
confirmed histologically on skin biopsy.

The analysis of dermoscopic images is a key process in the
early diagnosis of melanoma. Dermoscopic images are gen-
erated by combining optical magnification with either cross-
polarized lighting or liquid immersion, with a low angle-
of-incidence lighting. Analysing the dermoscopic image it
is possible to extract information about the principal char-
acteristics of the lesion, including symmetry, edges, color
variety, size, presence and distribution of visual features
(e.g., mesh of the net, black points, globules and striae),
that are essential for a correct presumptive diagnosis.

In this paper, we describe a fully-automatic lesion seg-
mentation method, which can be used to generate a binary
mask of the lesion area (see Fig. 1). The proposed method
is designed to be sensitive with respect to images con-
taining irregular borders, multiple shades of pigmentation,
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Figure 1. Skin lesion segmentation. a) Dermoscopic image in input. b)
Binary mask in output. ¢) The border of the mask overlaid on the image.
Images a and b are from the PH? database [3].

and varying texture. This is demonstrated by quantitative
experimental results, carried out on the publicly available
PH? database [3]. In particular, we show that the accuracy
of the segmentation is extremely high when dealing with
benign lesions (common and atypical nevi), while the preci-
sion of the segmentation results significantly decreases when
malignant lesions (melanoma) are processed. This behavior
lead us to consider the use of the binary masks generated by
our algorithm as input for a classification stage. Preliminary
results are promising and allow for considering the described
method as a suitable tool for the development of CAD
support systems for melanoma detection.

The remainder of the paper is organized as follows.
Related work is discussed in Section II, while our skin lesion
segmentation method is presented in Section III. Experimen-
tal results are shown in Section IV. Finally, conclusions are
drawn in Section V.

II. RELATED WORK

Existing approaches in the literature dealing with the
problem of segmenting skin lesion images can be classified
according to the three following main categories [4].

Thresholding methods. Approaches in this category aims
at comparing visual feature values for single or group of
pixels in the dermoscopic image with threshold values. For
example, a pixel can be classified as a lesion point if it
is darker than a given color threshold. The thresholding
process produces a binary image as output, which can be
further processed by using morphological operators to filter



Figure 2.

out outliers, to fill small holes, or to select the largest con-
nected component. Different local (per-pixel and per-region)
and global (per frame) thresholding methods have been
proposed: adaptive thresholding [5], histogram thresholding
[6], and clustering [7]. The main drawback of thresholding
methods is that they can achieve good results only if there is
a high contrast between the lesion area and the surrounding
skin region, which is not always the case.

Edge and contour-based methods. Algorithms belonging
to this class rely on the identification of the discontinuities
(i.e., the edges) in the dermoscopic images to detect the
lesion borders. For example, an active contour method
based on gradient vector flow (GVF) snakes for contour
extraction is described in [8], while in [9] two contour based
methods, i.e., adaptive snake and active contour by level set,
are applied to skin lesion images. Edge and contour-based
methods usually fail if the transition between the lesion and
the surrounding skin is smooth and also in presence of hair.

Region-based methods. This category includes methods
that exploit multi-scale region growing, multi-resolution
Markov random fields, and statistical region merging. The
basic assumption is that the image in input contains two
different regions: lesion and skin. A method called JSEG
[10], based on color quantization and spatial segmentation,
has been applied to skin lesion images in [11] and [12].
The method uses J-images, corresponding to measurements
of local homogeneities at different scales, to find potential
boundary locations. The final segmentation is obtained by
growing regions from seed areas of the J-images. Statistical
region merging (SRM) is used in [13]. SRM treats the image
as an observed instance of an unknown theoretical image,
whose statistical regions are to be reconstructed. Region-
based algorithms suffer from the possibility of generating
over-segmentation results. In particular, when the skin or
the lesion region are textured or the interior of the lesion
exhibit multi-colored areas, region-based methods can pro-
duce inaccurate results.

In this paper, we present a region-based, fully-automatic

algorithm for skin lesion segmentation. As a difference with
previous work, we compute two parallel processes of skin

The four steps in our method.

detection and lesion segmentation and then merge the results,
thus obtaining an accurate binary mask containing the lesion
area. The details of our algorithm are given in the next
section.

III. SKIN LESION SEGMENTATION

The great variety of lesion shapes, size and colors, the
different skin types and textures, as well as the possible
presence of hair and air/oil bubbles make segmentation a
hard task. In order to deal with such difficulties, we propose
an approach for skin lesion image segmentation structured in
four steps (see Fig. 2). In step 1, noise removal is performed
by morphological closing. Then, two segmentation processes
(steps 2 and 3) are carried out in parallel, yielding two
different segmented images. Step 2, i.e., skin detection,
aims at determining the lesion area by first detecting the
skin region and then filtering it out. In step 3, i.e., lesion
segmentation, the lesion area is extracted by using Edge
detection and Delaunay Triangulation. In step 4, the results
obtained in steps 2 and 3 are merged, in order to obtain the
final detected lesion area.

Referring to Fig. 2, the artifact removal and image equal-
ization process produces an image F, which is a filtered
(possible hair are removed) and equalized version of the der-
moscopic image I in input. E represents the input for both
the skin detection and the lesion segmentation functions. The
former generates a so-called skin image S by using a color
thresholding mechanism, while the latter exploits a set of
adaptive parameters to compute the so-called lesion image
L, that contains the different color regions in E. During
the merging step, S and L are analysed for possibly fusing
adjacent regions, finally obtaining the binary image B.

A. Artifact Removal and Image Equalization

The RGB dermoscopic image I in input is processed in
order to remove hair. [ is filtered through a morphological
transformation, thus obtaining a new RGB image F' (filtered
image). In particular, F' is the result of a closing operation
with an 11x11 kernel having each element e;; = 1. The
morphological transformation aims at removing the outlier
pixels that can be introduced in the image acquisition phase,
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Figure 3. Noise removal: original input image and filtered one.

Figure 4. Image equalization process. a) Input image and the corresponding
luminance spectrum before equalization. b) Equalized Image: the luminance
spectrum is modified.

while maintaining the properties of the lesion region (see
Fig. 3 for an example of hair removal).

The filtered image F', coming from the artifact removal
phase, is processed to get an equalized image FE. The
equalization step, performed applying the OpenCV function
equalizeHist on the Y channel, helps in highlighting the
lesion borders and in obtaining a more accurate output,
since the color difference between the lesion area and the
surrounding skin are stressed (see Fig. 4). The image E
is used as input for both the parallel processes of Skin
Detection and Lesion Segmentation.

B. Skin Detection

After equalization, the subsequent step consists in iden-
tifying the pixels in the image belonging to the skin. A
number of methods for skin segmentation in color images
are available in the literature. The simplest methods define
boundaries in the chosen color space for identifying skin
clusters. The main advantage of such methods is that they
do not require a training phase. However, it is difficult to
define the boundaries that give good results by considering

a single color space [14]. For such a reason, we adopt a
combination of multiple color spaces.

The main steps in the skin detection process are shown
in Fig. 5. E is converted into the YCrCb color space and
the skin region is detected by using a thresholding on the
luminance and chrominance values, producing an image 7'.

Then, T is converted into the HSV color space and
normalized. The resulting normalized image N is further
filtered by applying a second thresholding, this time on the
HSV values, thus obtaining an image .S, that contains the
lesion area only, with the skin region filtered out.

C. Lesion Segmentation

The process of extracting the contours of the lesion area
is derived from the algorithm proposed in [15] and it is
arranged in two phases: Edge Detection and Delaunay Trian-
gulation. The former is used for splitting the image into local
coherent regions, the latter for aggregating homogeneous
regions in a global fashion at image level.

The RGB input equalized image E is filtered by a
Gaussian blur filter with a kernel size ¢ = 5. Then, it is
converted to grayscale and the Edge Detection procedure
begins with a Canny edge extraction, that leads to the
creation of a grayscale image C' containing the intensity
edges in E (see Fig. 6). The two parameters min and max
in the Canny algorithm have been set to the values 0.03
and 2.0 respectively, in order to focus on short edges in the
input image. The detected edges are then vectorized into
connected line segments — generated as described in [16] —
and used as input for the Delaunay Triangulation procedure,
which computes a triangular tessellation of the image.

The triangular graph is segmented by using a region
association procedure, which iteratively finds and associates
the two regions with the lowest normalized boundary cost,
by considering a predefined association threshold w. In
particular, each of the triangles in the graph is considered in
turn, by calculating the average HSV color of all the pixels
that lie within its circumcircle: If a pair of triangles have a
similar HSV value, then they are fused into a single triangle
(see the example in Fig. 7).

The C++ source code for the image segmentation
procedure is available at: www.dis.uniromal.it/~pennisi/
FHIS-Image_Segmentation_Library.html

Figure 5.

Skin detection process.

Figure 6. Image Segmentation process.



Figure 7. Delaunay Triangulation. a) Input image from the PH? database
[3]. b) Detail of the Delaunay Triangulation. c) Resulting triangles after
association.

Figure 8. The results of the skin detection and the lesion segmentation
processes are merged to obtain the final binary image B. Images are from
the PH2 database [3].

D. Merging

In the final step, the results generated by the two parallel
processes of Skin Detection and Lesion Segmentation are
merged. The idea is that a correctly extracted lesion blob
from a binary mask can be circumscribed by a circle with
a diameter equal to the major axis of the detected blob.
First, the merging procedure detects if one (or more lesion
areas) is (are) present in each image S and L. To this end, S
and L are converted into binary images (called Sp and Lp,
respectively) by assigning the value 255 to the pixels having
color values different from the HSV value < 0,0,0 >. In
presence of multiple lesion areas, only the biggest one is
considered.

Then, the probabilistic Hough transform is applied to each
one of the two images, in order to obtain the number of
circles that can be inscribed or circumscribed to the skin
lesion area. We adopt the OpenCV function HoughCircles,
with the following experimentally selected parameters: In-
verse ratio of resolution = 1.0; Minimum distance between
detected centers = 90 pixels; Thresholds for the internal
Canny detector equal to 255 and 10.

If the number of the detected circles in Sp and Lp is
greater than zero for both of them, then the final binary
image B is the result of the pixel-wise logical AND of
Sp and Lp, otherwise B is the image where almost one
circle can be detected. Fig. 8 shows three examples for the
merging procedure. The first row of Fig. 8 illustrates an
example where a circle can be detected both in Sp and
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Figure 9. Segmentation results on PH? images IMD046 (common nevus,
first row), IMDO048 (atypical mole, second row) and IMDO058 (melanoma,
third row).

Lp, thus the final image B is the pixel-wise logical AND
of the two images. It can happen that the skin detection
process generates an Sp image where HoughClircles, by
using the predefined parameters, cannot find any circle (see
the second row of Fig. 8). However, since a circle can
be detected in the Lp image, then B = Lp. The third
row of Fig. 8 shows an example where the final image B
corresponds to Sp, since no circles can be detected in Lp
by applying HoughC'ircles. It is worth noting that, for all
the 200 images in the PH? database, it was always possible
to find at least a circle in one of the two images Sp and Lp
by using the above listed parameters.

IV. EXPERIMENTAL RESULTS

A quantitative experimental validation has been conducted
on a publicly available database of dermoscopic images,
containing ground truth annotations.

A. Data Set Description

The PH? database [3] has been realized by the Uni-
versidade do Porto, Tecnico Lisboa in collaboration with
the Hospital Pedro Hispano in Matosinhos, Portugal. The
database is composed of 200 RGB dermoscopic images,
with a resolution of 768 x574 pixels and a magnification of
20x, annotated with ground truth data. The 200 images are
divided into benign lesions (80 common and 80 dysplastic
nevi) and malignant lesions (40 melanomas), with a skin
color that varies from white to cream white.

For each image, the ground truth data include the follow-
ing information:

e A ground truth binary image, manually generated by

expert dermatologists, containing the skin lesion area;

« Clinical and histological diagnosis;

« Dermoscopic criteria.

In particular, in the provided ground truth binary image,
the pixels with value 1 belong to the segmented lesion,
while pixels with value O correspond to the background.



Dermoscopic criteria include asymmetry, colors, pigment
network, dots/globules, streaks, regression areas, and blue-
whitish veil.

B. Segmentation Results

All the 200 images in the PH? database have been
segmented using the same parameters. Three examples of
application for our algorithm are shown in Fig. 9: in the
first row a common nevus is shown, in the second row an
atypical mole, and in the third row a melanoma. It is worth
noting that, for the images in the first and second rows of
Fig. 9, the binary images obtained are:

1) In very good accordance with respect to the corre-
sponding ground truth images in PH?;
2) The results are not affected by the presence of hair.

A situation where our method provides a binary image
containing an under-estimated lesion area is shown in the
third row of Fig. 9: This is an interesting behavior of the
algorithm when dealing with melanoma images, which is
discussed in the rest of this section. The complete set of
the 200 binary images can be downloaded at: www.dis.
uniromal.it/~pennisi/skin_lesion_segmentation/results.zip

Four different metrics have been selected to calculate the
segmentation results: Sensitivity, Specificity, Accuracy, and
F-measure. The definitions for the used metrics are given
in the following equations, where T'P is the number of true
positive pixels, F'P is the number of false positive pixels,
TN is the number of true negative pixels, and F'N is the
number of false negative pixels. The chosen metrics are
widely used in the literature to measure the performance
of skin lesion segmentation methods [17].

Sensitivity = _rr (D
TP+ FN

Specificity =1 — % 2

Aceuracy = 5 lzﬁ i ?If ¥ FP ©)
1w~ _Prec; x Rec;

F-measure = - ; 2m )

where n is the total number of images and:

Rec; (P) =TPF;/ (TP, + FN;)
Prec; (P) =TP;/ (TP, + FF,)
Rec; (N) =TN;/(TN; + FP;)
Prec; (N) =TN;/(TN; + FN;)
Rec; = (Rec; (P) + Rec; (N)) /2
Prec; = (Prec; (P) 4+ Prec; (N)) /2
Table I shows the segmentation results obtained by consid-

ering the complete PH? data set and three different subsets of
the images. Indeed, since the dermoscopic images in PH? are

Table I
SKIN LESION SEGMENTATION RESULTS

Input I o

Images Sensitivity Specificity Accuracy F-measure
All 0.8024 0.9722 0.8966 0.8257
Common 0.8717 0.9760 0.9477 0.8690
nevi Only

Atypical

Moles Only 0.8640 0.9733 0.9271 0.8689
Melanomas 0.5404 0.9597 0.6615 0.6524
Only

labeled according to their medical diagnosis, it is possible
to carry out a finer analysis, by considering separately the
three diagnostic classes: common nevi, atypical moles, and
melanomas.

It can be noted from Table I that, when processing the 80
images of common nevi only, the sensitivity of our method
increases from 0.8024 to 0.8717, the accuracy raises from
0.8966 to 0.9477, and the F-measure becomes 0.8690 from
0.8257. This means that very good results are achieved in
segmenting images of common nevi. The same behavior can
be observed by considering the segmentation performance
on the 80 images of atypical moles only. In particular, the
sensitivity increases from 0.8024 to 0.8640, the accuracy
raises from 0.8966 to 0.9271, and the F-measure achieves
0.8689 from 0.8257. Thus, even in the case of dysplasic nevi
(i.e., atypical moles), that are benign lesions, our algorithm
obtains very good segmentation results.

On the other hand, a strong decrease in the quality of the
segmentation results can be observed, on the totality of the
used metrics, when only images containing melanomas are
processed (see the last row in Table I). In particular, our
algorithm presents a large decrease in the average accuracy,
that becomes rather low (i.e., 0.6615) when compared to the
accuracy obtained on all the PH? images (i.e., 0.8024).

Summarizing, a very high accuracy can be obtained
when dealing with benign lesions, i.e., common nevi and
atypical moles, while less accurate results are generated
when melanoma images are processed.

C. Classification Results

The analysis of the segmentation results generated by
evaluating the three classes of nevi separately leads to the
following considerations:

1) For benign lesions (i.e., common and atypical nevi),
the average accuracy is rather high (0.9477 and
0.9271, respectively);

2) For malignant lesions (i.e., melanoma images), the
accuracy significantly decreases (0.6615).

This means that only in the case of malignant lesions
our algorithm gives less accurate results. A possible mo-
tivation for such a behavior can be found in the studies
described in [18] and in [19]. In those studies emerge that,
the presence of light brown structureless areas in atypical



Ground Truth results

- 1%

IMD284 {g

IMD405

IMD419

IMD424

IMD425

4

Figure 10.  Segmentation results on PH? melanoma images IMDO088
(streaks, regression areas, blue-whitish veil), IMD284 (blue-whitish veil,
second row), IMD405 (blue-whitish veil), IMD419 (blue-whitish veil),
IMD424 (streaks, blue-whitish veil), and IMD425 (regression areas, blue-
whitish veil).

melanocytic lesions maybe very useful in differentiating
atypical nevi from melanomas. Homogeneous areas and
light brown structureless regions were the most sensitive
and specific epiluminescence microscopy features for thin
melanomas [19]. According to [18], particular attention is
needed to melanocytic lesions that, over time, reveal a loss
of network in favor of structureless areas and exhibit new
colors such as dark brown, black, gray, blue, red, and white.

Since the proposed algorithm is based on a color region
merging procedure for computing the segmentation results, it
is strongly sensitive to structureless areas and homogeneous
regions with a color different from the surrounding one.
From the above considerations, it follows that our method
tends to under-segment malignant lesions. Multiple exam-
ples of under-segmentation results in case of melanoma
images are shown in Fig. 10, where images containing
streaks, regression areas, and blue-whitish veil are processed.

The particular behavior of under-segmenting the lesion
area when dealing with melanoma images, has been ana-
lyzed in order to understand if the binary masks can be used
as input for a binary classifier. To this end, three features
have been considered to represent the geometric properties
of the detected lesion region:

o Convex Area: Scalar that specifies the number of pixel
of the convex hull that contains the binary image;
e Filled Area: Scalar specifying the number of lesion

pixels in the binary image with all holes filled in.

o Solidity: Scalar specifying the proportion of the pixels
in the convex hull that are also in the region. It is
computed as Area/ConverArea.

In addition to the three above described geometrical
features, three color histograms for each dermoscopic image
are computed. The first histogram of 255 bins represents
the normalized hue (H) values extracted from the original
dermoscopic image I by using the binary image B as a
mask. The second and the third histograms contain the
values for V' and S, respectively, calculated in the same
way of the H values.

For classifying the binary masks, we decided to compare
four different well-known classifiers:

o Adaboost,

e Naive Bayes;

o K-Nearest Neighbors (KNN);
e Random Trees (RT).

The classifiers have been trained by taking into account
a feature set made of the three above listed geometrical
properties and the histograms related to the H, S, and V
values. We selected the above listed classifiers since they
are preferred when the number of images in each class
varies, adopting the implementation provided by Weka (http:
/I'www.cs.waikato.ac.nz/ml/weka/index.html), a collection of
machine learning algorithm developed by the University of
Waikato, New Zealand.

We tested the proposed classification method by using a
leave-one-out approach, as described in [20]. The classifiers
are trained by using all the images except one, which is
used for testing. Then, the process is repeated by changing
the test image. The metrics selected for calculating the
goodness of the classification process have been: Sensitivity,
Specificity, F-measure, and Precision. The first three metrics
have been computed as described above, while Precision,
that represents the fraction of retrieved instances that are
relevant, has been calculated as follows:

TP
Precision —
recision TPLFP 5

Classification results are reported in Tables II, IV, VI,
and VIII. The results show that by analysing the binary
masks generated by the proposed segmentation approach it
is possible to classify the instances in the PH? database by
reaching good results in terms of sensitivity and specificity.

The Adaboost classifier is able to obtain a sensitivity
of about 93.5% and a specificity of about 85.2%, thanks
to the characteristic of combining rough and moderately
inaccurate rules of thumb. In fact, the classifier is based on
the observation that finding many rough rules of thumb can
be easier than finding a single one, thus obtaining a highly
accurate classifier. For such a reason, the classifier is able
to recognize 154 over 160 nevi and 33 over 40 melanoma
images (see Table III).



.
4 alp - a -
a Ly - Y a & -
L aatata el e b S W i
#on & a A T I - A*}. *

Filled Area

& b & k L
solidity

Figure 11. Filled Area plotted against Solidity. Melanoma images are
represented as red circles and benign lesion images (common and atypical
nevi) as blue triangles.

The Bayesian classification assumes that no dependencies
exist among features and the training of such a classifier is
based on the following main assumption: given a set of class
variables, the value of a particular feature is independent
of the value of any other feature. Therefore, a Bayesian
classifier considers the contribution of each feature as being
independent of the correlation probability between the single
feature and the rest of the considered features. The Naive
Bayes classifier is also preferred when the number of images
in each class varies. Such reasons make the Naive Bayes
classifier suitable for classification in our case: Indeed,
the classifier can correctly classify 36 over 40 images of
malignant lesions (see Table V), obtaining a sensitivity of
89.0% and a specificity of 89.7% (see Table IV).

The KNN and the RT classifiers obtain comparable results
(see Table VI and Table VIII). However, both of them are
based on the majority vote approach, which is influenced
by the distribution of the features and thus, if the features
are not well distributed as in our case — see for example
Fig. 11, where filled area values are plotted against solidity
values — then the classification cannot reach good results.
Tables VII and IX show the confusion matrices related to
the KNN and RT classifiers.

These preliminary classification results, obtained by con-
sidering only three geometrical features (i.e., convex area,
filled area, and solidity) and three color histograms, are
promising and allow to consider the use of our approach
as a suitable tool for the development of CAD support
systems for melanoma detection. Indeed, the classification
results are rather accurate for all the four different considered
classifiers.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, an automatic skin lesion image segmentation
method, designed to deal with multiple types of lesion
shapes, size and colors, and the presence of hair and air/oil
bubbles, has been presented.

Table II

ADABOOST CLASSIFICATION RESULTS

Type Sensitivity Specificity Precision F-Measure
Nevus 0.963 0.825 0.963 0.960
Melanoma 0.825 0.962 0.846 0.835
Weighted Avg. 0.935 0.852 0.934 0.935
Table III
ADABOOST CONFUSION MATRIX
Nevus | Melanoma
[ Nevus 154 6
| Melanoma 7 33
Table IV
NAIVE BAYES CLASSIFICATION RESULTS
Type Sensitivity Specificity Precision F-Measure
Nevus 0.888 0.900 0.973 0.928
Melanoma 0.900 0.887 0.667 0.766
Weighted Avg. 0.890 0.897 0911 0.896
Table V
NAIVE BAYES CONFUSION MATRIX
Nevus | Melanoma
[ Nevus 142 18
| Melanoma 4 36
Table VI
KNN CLASSIFICATION RESULTS
Type Sensitivity Specificity Precision F-Measure
Nevus 0.938 0.650 0915 0.926
Melanoma 0.650 0.937 0.722 0.684
Weighted Avg. 0.880 0.707 0.876 0.878
Table VII
KNN CONFUSION MATRIX
Nevus | Melanoma
[ Nevus 150 10
[ Mel 14 26
Table VIII
RANDOM TREE CLASSIFICATION RESULTS
Type Sensitivity Specificity Precision F-Measure
Nevus 0.913 0.675 0.918 0.915
Melanoma 0.675 0.912 0.659 0.667
Weighted Avg. 0.865 0.722 0.866 0.866
Table IX
RANDOM TREE CONFUSION MATRIX
Nevus | Melanoma
[ Nevus 146 14
| Melanoma 13 27

An experimental evaluation has been carried out on

a

publicly available database of dermoscopic images, in order
to allow quantitative results on four different quality metrics.

The results demonstrate that the proposed method seg-
ments the lesion area in very good accordance with ground
truth data only when images of benign lesions, i.e., common
and dysplastic nevi, are considered, while the segmentation
accuracy decreases considerably when the method is applied



to images of malignant lesions (i.e., melanomas). This
behavior can be explained by the the presence in malignant
lesion images of streaks, regression areas, and blue-whitish
veil. Indeed, our algorithm is highly sensitive to structureless
areas and homogeneous regions with a color different from
the surrounding one and it generates a binary mask that
presents a lesion area that is smaller than the actual one.

We exploited this particular sensitivity to images contain-
ing irregular borders (which is often the case of reticular
pattern and atypical network in melanoma images) by con-
sidering geometrical features of the binary masks generated
by our approach as input for four different binary clas-
sifiers, obtaining promising results. Although non suitable
for diagnostic applications, the obtained classification results
represent, in our opinion, a relevant starting point to further
develop an automated analysis.

As future work, since the segmentation errors on
melanoma images can easily be visually detected, we intend
to study the possibility of integrating the described method
into a computer-aided diagnosis (CAD) system.
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