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Abstract—Many planning techniques have been developed to
allow autonomous systems to act and make decisions based on
their perceptions of the environment. Among these techniques,
HTN (Hierarchical Task Network) planning is one of the most used
in practice. Unlike classical approaches of planning. HTN oper-
ates by decomposing task into sub-tasks until each of these sub-
tasks can be achieved an action. This hierarchical representation
provide a richer representation of planning problems and allows
to better guide the plan search and provides more knowledge
to the underlying algorithms. In this paper, we propose a
new approach of HTN planning in which, as in conventional
planning, we instantiate all planning operators before starting
the search process. This approach has proven its effectiveness
in classical planning and is necessary for the development of
effective heuristics and encoding planning problems in other
formalism such as CSP or SAT. The instantiation is actually used
by most modern planners but has never been applied in an HTN
based planning framework. We present in this article a generic
instantiation algorithm which implements many simplification
techniques to reduce the process complexity inspired from those
used in classical planning. Finally we present some results
obtained from an experimentation on a range of problems used in
the international planning competitions with a modified version
of SHOP planner using fully instantiated problems.

I. INTRODUCTION

Act and make rational decisions based on perceptions of the
environment is a central issue in intelligent and autonomous
systems. Many techniques were developed to handle this issue
by trying to make the decision process computable. Among
these techniques, HTN (Hierarchical Task Network) planning
is one of the most used in practice [1]-[3]. HTN planners
are more used in industrial applications for efficiency reasons
and also for the expressiveness of HTN languages that allow
to specify in the planning domains some experts knowledge
that can be used to improve the performance of planning
algorithms. Unlike conventional planning [4] where the goal is
defined as a set of propositions to achieve. In HTN planning,
the goal is expressed as a task or a set of tasks to achieve called
Goal Tasks and to which it is possible to associate constraints.
A couple (constraints, tasks) is called a Task Network. The
search for a solution plan consists in decomposing the goal
tasks complying with their defined constraints to sub-tasks
until reaching a set of primitive sub-tasks that can be executed
by actions in the classical sense of planning. This recursive
decomposition is performed by applying rules defined in

hierarchical planning operators named Methods. Each method
defines a possible decomposition of a task into a set of sub-
tasks with their associated constraints. The decomposition ends
when the decomposition process results in a task network
containing only primitive tasks achievable by actions and
whose all associated constraints are verified.

HTN planners can be divided into two categories [5].
This division is based on the nature of the research space
used by these algorithms: Plan space based and state space
algorithms. In the first category, the search space consists
in several task networks representing partial plans in which
planners do not maintain state during the research. At each
stage of the search process the task network obtained after a
decomposition is considered as a partial plan with constraints
that must be satisfied in the following decomposition. The plan
based representation of search space allows to get partial order
plans. There is many plan based planners, like NOAH (Nets
Of Action Hierarchies) [6], [7], Nonlin (Non-Linear Planner)
[8], [9] , O-Plan [10] and O-Plan2 [11], SIPE (System for
Interactive Planning and Execution) [12] and SIPE-2 [13].In
1994, the algorithm UMCP (Universal Method Composition
Planner) [14] was the first algorithm whose correctness and
completeness were proved. In the second category, planners
maintain states during search process. Each task network
contains a representation of the state in addition to the tasks
and the constraints which are most of the time only precon-
ditions. decomposition process consists of choosing the tasks
to decompose following the execution order, then apply the
decomposition method in which the preconditions are verified
in the task network state. Can be cited chronologically as
planner in this category, SHOP [15], SHOP2 [16] and SIADEX
[17].

Alongside the development of HTN planning, many efficient
planning algorithms without a hierarchical representation were
developed, like Fast Forward [18] or Fast Downward [19],
[20]. These algorithms perform a preprocessing step that con-
sists in enumerating and instantiating all the possible actions
from the operators defined in the planning problem. This step
is crucial for these algorithms for several reasons. First of all,
this enumeration or instantiation step reduces the number of
actions in the problem through different simplification mecha-
nisms. This has the consequence of reducing the branching



coefficient of the research space. Secondly, generating all
possible actions in a planning problem allows to perform a
priori study on the reachable propositions in the problem.
This study is a necessary prerequisite for the preparation
and the development of efficient heuristics to guide search
process [18], [21]-[25]. Thirdly, This preprocessing step is
a necessary prerequisite for encoding planning problems in
many formalism such as CSP [26], [27] or SAT [28]-[31].
However, To our knowledge, this preprocessing was never
implemented and adapted in an HTN context. For all these
reasons, it would be interesting to perform the instantiation
and the simplification of planning operators, by integrating
the hierarchical dimension, to reduce the number of possible
decomposition and the complexity of the research space.
Basing on the observation that HTN planning is an extension
of classical planning that adds decomposition methods to
define high level knowledge. We propose in this paper an
instantiation and simplification algorithm for HTN problems.
This algorithm instantiate operators using mechanisms devel-
oped for the instantiation of classical planning problems and
extends them for the instantiation and the simplification of
HTN tasks and decomposition methods. We start by defining
the HTN formalism. Thereafter, we introduce the instantiation
problem of HTN planning and make explicit its complexity.
After that, we detail the instantiation and the simplification
mechanisms proposed for HTN planning problems and present
a modified version of the algorithm SHOP that we have named
iSHOP (instantiated SHOP) which takes as input a fully
instantiated problem. Finally, we show how the instantiation
algorithm improves performance of HTN algorithms in terms
of research time by comparing iSHOP with classical SHOP.

II. HTN FORMALISM

Before introducing the instantiation process and its com-
plexity, we begin at first by defining an HTN problem and
presenting the basic concepts defined by the HTN formalism.
All the given examples in this section and the rest of this paper
are based on the rover domain used in the third and the fifth
international planning competition.

Definition 2.1: An HTN problem is a 4-tuple P = (so, T, O,
M) where s is the initial state defined by a set of propositions
characterizing the world, 7 is a set of initial tasks which
defines the goal, O is a set of operators defining the actions
that can be achieved, and M is a set of methods defining the
possible decomposition of a composed task.

Definition 2.2: An operator is a 3-tuple o = (name(o0), pre(o),
eff(o)). name (o) is a syntactic expression of the form #(uy, ...,
uy,) where ¢ is the operator name and u1, ...,uy, its parameters.
Pre(o) and eff{o) are logical expressions defining respectively
the preconditions that must be verified to apply the operator
and the effects that define the properties generated by the
operator. pre™ (o), pre™ (o), eff* (o), eff~ (op) are their positive
and negative subsets.

An action a is a totally instantiated operator that defines a
transition function allowing to pass from a state s to a state s’
as follows: s’ = ((s\ eff ~(a))U eff T(a)). a is applicable in a

state s if pre™(a) C s and pre™ (a)Ns = (). The preconditions
and the effects of an action contains propositions that are fully
instantiated atomic formula.

Definition 2.3: A method is a 3-tuple m = (name (m),
subtasks(m), constr ( m )). name (0) is a syntactic expression
of the form #(uy, ..., ux) where ¢ is the name of the method
and uy,....,ux, are its parameters. Subtasks (m) is a set of
tasks composing #(m) and Constr(m) is a set of constraints
on subtasks(m).

Every constraint represents a condition which must be verified
in all solution plans. Four types of constraints can be defined
in a method:

e Order constraint: An order constraint is an expression of
the form (series t1, 12, ...,tx). It means that in a solution
plan, the task ¢; Must be ordered before the task ¢, to
before t3 so on to t.

e Before constraint : A Before constraint is an expression
of the form (before (p) (t1,...,t;)) where ¢ is a logical
expression, and (¢1,...,tx) is a list of tasks. Before con-
straints are used to verify that the expression ¢ is true
in the state that happens just before the first task in the
group (t1,...,tr).

o After constraint : As Before constraints, After constraints
are expression of the form (after (p) (t1,...,t;)). They
mean that ¢ Must be true in the state resulting from the
execution of the last task in (¢4, ..., tg).

o A Between constraint is an expression of the form (be-
tween (@) (t11, ..., t1x) (ta1, ..., tax)). The logical expres-
sion ¢ must be true in all stats between the last task of
(t117 T tlk) and the first of (t21, ceey tgk).

Definition 2.4: A task is an expression of the form #(u;,
..., Ug), where t is the name of the task and uq,...,u; its
parameters. A method or an operator are considered as relevant
for a task ¢ if #(uy, ..., ug) is equal to name(m) or name(o).
There are two types of tasks: (1) Composed tasks that can be
decomposed into sub-tasks by applying a relevant method, (2)
primitive tasks that are defined by operators and that cannot
be decomposed.

As example, the action (navigate rover waypoint3 way-
point2) from the rover domain is an instantiated version of the
primitive task (navigate ?r ?wl ?wl). Navigate is the name of
the task and (?r ?wl ?w2) its parameters. (rover, waypoint3,
waypoint2) are constants representing the parameters of the
instantiated task. We can cite as example of a composed
task in the Rover domain (get_soil_data ?waypoint) which
can be decomposed into: navigation, soil sampling and data
transmission sub-tasks.

III. INSTANTIATION PROBLEM

The instantiation process consists of replacing all typed
variables by constants of the same type. The instantiation
process generates all possible instances with all possible
combinations of constants. The instantiation problem depends
on the number of parameters in the method or the operator
and also on the domain cardinality of each variable. The
complexity of instantiating one operator with k£ parameters z;



where i €{1, ..., k} having as domain D(z;) with a cardinality
|D(x;)| is equal to:

k
0= H 1D ()|
i=0

With a big number of constants, the number of generated
instances rapidly increases which can lead an explosion of
the instantiation and the search complexity. Let us take as
example the instantiation of the rover domain with the problem
p40 from the IPC-5. The number of instances obtained just
from the instantiation of the operator communicate_soil_data
(?x - rover ?l - lander ?pl - waypoint ?p2 - waypoint ?p3 -
waypoint) is 14 million = (14 x rover) x (1 xlander) x (100 x
waypointl) x (100 x waypoint2) x (100 x waypoint3).

In HTN, the problem of the complexity is particularly
important as it concerns in addition to the operators all the
methods defined in the problem. We know that generally the
methods have a parameter count more important than the
operators, then the complexity of methods instantiation is
bigger than operators one. However, the difference between
the number of methods instances and the count of operators
instances depends on how the planning problem is defined.
In the instantiation of the problem p40 of the rover domain,
the method send_soil_data (?x - rover ?’from - waypoint) has
only two declared parameters. However, it contains two tasks,
namely: (do_navigate ?x ?wl) and (communicate_soil_data
?x 21 ?from ?wl ?w2) which introduces three additional
parameters. In this example, the number of generated instances
is 14 millions instances which is equal to the instances
of the operator communicate_soil_data. But we can easily
imagine other tasks and additional parameters leading to more
instances.

IV. INSTANTIATION ALGORITHM FOR HTN PROBLEMS

To deal with the complexity of instantiating, the instan-
tiation process is realized through several enumeration and
simplification steps that allow to only generate the actions,
methods and propositions that are relevant in the problem. We
rely on the work done in [32] and on the notion of inertia
introduced by [33]. In this section, we are going to explain
the instantiation process of an HTN problem in its two phases:
(1) Operators instantiation phase and (2) methods instantiation
phase.

A. Operators Instantiation and Simplification Process

The instantiation process does not just generate all possible
operator instances. It preforms also many simplifications to
reduce the complexity of the instantiated problem. The process
of operators instantiation passes through four stages: A logical
expressions normalization step, An operators instantiation step,
a logical expressions simplification step and finally a step of
simplification and reduction of operators.

1) Normalization of logical expression: In this step, all
logical expressions containing implications and quantifiers
are reformulated into a conjunctive or disjunctive normal
form which is a prerequisite of any manipulation of logical

expressions. All the logical formulas contained in the operators
are affected by this rewriting.

2) Instantiation of operators: Instantiating an operator con-
sists of replacing every declared variable by the corresponding
constants. For every combination of values, a new action is
created. The example 4.1 shows an instance of the operator
navigate from the rover domain where the variable ?x was
replaced by the constant roverl, the variable ?p1 by waypoint3
and the variable ?p2 by waypoint2. The instantiation uses the
variables types to find corresponding constants. However in
some cases, the problems are not typed. It is thus necessary
to deduce the types of variables from the unary predicates
before instantiating the operators. The inference process of
the operators variables types is presented in detail in [33].

Example 4.1:

(:action navigate
:parameters (roverl waypoint3 waypoint2)
:precondition
(and
(available roverl) (at roverl waypoint3)
(can_traverse roverl waypoint3 waypoint2)
(visible waypoint3 waypoint2))
reffect

(and (not(at roverl waypoint3))
(at roverl waypoint2)))

3) Simplification of atomic formula: The simplification
phase needs to be done as early as possible during the
instantiation to optimize the process and reduce its cost.
The simplification consists of evaluating the atomic formula
contained in the operators to true or false using the concept
of inertia.

« A positive inertia is a proposition that never appears in
the positive effects of an operator, therefore it is never
produced by an action of the problem. If a proposition is
a positive inertia and it is not in the initial state, it will
never be in any state of the problem.

« A negative inertia is a proposition that never appears in
the negative effects of an operator, therefore it is never
consumed by an action of the problem. Consequently, if
the propositions considered as negative inertia are in the
initial state, they will be true in all states of the problem.

The computing of inertia sets is done in one single pass on the
set of operators. The predicates that are not in the inertia set
are called "fluent” and may appear or disappear from one state
to another. If p is a totally instantiated proposition and I the
initial state, the simplification of operators atomic formulas is
made following these rules:
o If p is a positive inertia and p ¢ I then p is simplified
to false.
o If p is a negative inertia and p € I then p is simplified
to true.
o Else p cannot be simplified.

All the simplified propositions can be deleted from the prob-
lem and all those which are not simplified are considered as
relevant. In the example 4.2, the preconditions of the action
navigate are simplified to false if the proposition (can_traverse



roverl waypoint3 waypoint2) is in the set of positive inertia
and is not in the initial state.
Example 4.2:
:precondition
(and
(available roverl) (at roverl waypoint3)
(can_traverse roverl waypoint3 waypoint2)
(visible waypoint3 waypoint2))
:precondition false

4) Simplification of actions: The goal is to find and remove
actions that can never be applied in the problem basing on
the atomic simplifications presented before. As mentioned,
the atomic expressions can be simplified to true or false
what allows to simplify the preconditions and the effects by
applying logical transformation rules. If these simplifications
allow to reduce to true or false all the logical expression
contained in the preconditions or the effects of an action, it
can be simplified as follows:

« If the precondition or the effect of an action is replaced by
false, the action is deleted from the planning problem. If
the precondition is false, the action can never be applied.
In the case where the effect is simplified to false, the
application of the action produces an inconsistent state.

o If all the action effects are evaluated to ¢rue, the action
can be removed from the problem because it does not
produce any change.

B. Methods Instantiation and Simplification Process

The methods instantiation has five stages: a step of normal-
ization performed on the logical expressions, a step of types
inference, a step of methods instantiation, a step of logical
expressions simplifications, and finally, a step of simplification
and reduction of the instantiated methods.

1) Normalization of Logical expressions: In HTN, the
normalization of logical expressions transforms all logical
formula contained in methods constraints into a conjunctive
normal form for future manipulations.

2) Inference of variable types: In methods definition, vari-
ables can be used in sub-tasks and constraints without being
declared in the methods parameters. These variables have
no defined type, what requires to infer their types before
being able to perform the methods instantiation. The inference
process for each undeclared variable is done in two stages:

a) Inferring types from sub-tasks:

o Get T the set of sub-tasks containing in their parameters

the undeclared variable.
o for each sub-task ¢ € T, get the operator op, or the
methods m,. relevant for t.

o for each sub-task ¢ € T, get the declared types in the
parameters of op, or m,.. If the result is two types A and
B, where B is a sub-type of A, keep the type B.

« If several types having no inheritance link are recovered,

then an error must be reported.

b) Inferring types from constraints:

o Get P the set of propositions used in the constraints and
containing the undeclared variable in their parameters.

« For each proposition p € P, get the undeclared variable
types from the relevant atomic formula.

« If several types that have no inheritance link are obtained,
then an error must be reported. Otherwise, if the types
have an inheritance link, keep the type with no sub-type.

Finally, if several types are obtained from the various inference
stages ,it is necessary to keep the type with no sub-types. If
there are still several types, it signifies an error.

3) Instantiation of methods: Like in operators instantiation,
the instantiation of a method consists of replacing its variables
by all corresponding constants. Every new method instance
corresponds to a combination of constants affected to declared
and undeclared variables.

Example 4.3:

(:method do_navigate
:parameters (roverl waypoint3 waypoint0)
:expansion
((tag tl (navigate roverl waypoint3 waypointl))
(tag t2 (visit waypointl))
(tag t3 (do_navigate roverl waypointl waypoint0))
(tag t4 (unvisit waypointl)))
:constraints
(and
(series tl1 t2 t3
(before (and
(not(can_traverse roverl
waypoint0))
(not(visited waypointl))
(between (visited waypointl) t2 t4)))

t4)

waypoint3

The example 4.3 shows an instance of the method do_navigate
from the rover domain with the following combination: ?x
= roverl, ?from = waypoint3, ’to = waypoint0, ?mid =
waypointl. the value affected to ?mid corresponds to the type
waypoint, basing on the inference of types.

4) Simplification of atomic formula: The simplification
aims to evaluate the atomic formula contained in the methods
constraints to true or false using the concept of inertia. The
example 4.4 shows the simplification of the atomic formula
contained in the constraint before defined in the method
do_navigate. Knowing that the proposition (can_traverse
roverl waypoint3 waypoint0) is a negative inertia, if it is
declared in the initial state, it will be simplified to true and
all the logical expression will be simplified to false.

Example 4.4:

(before (and (not(can_traverse
waypoint0))

(not(visited waypointl)))
(before (false) tl))

roverl waypoint3

tl)

We can clearly see that the atomic formula simplification pro-
cess decreases considerably the complexity of the constraints
and consequently reduces the complexity of the processing
done in the methods simplification step.

5) Simplification of methods: The methods simplification
aims to identify and delete the methods containing constraints
that can never be verified in the problem. Two kinds of
simplification are realized on one single pass on the methods
set:



a) Constraints based simplification: The simplification
based on the constraints relies on the evaluations of their
logical expressions which can be simplified in true or false
in the previous step. The simplification is done basing on the
following rules:

« If the logical expression is simplified as true, the con-
straint is removed from the method, as it is always
verified.

o If the logical formula of a constraint is simplified to
false, the whole method is deleted. In this case, this
constraint can never be verified in the problem, which
means that this method will never lead to a solution plan.

b) Tasks based simplification: The simplification based
on the tasks aims to delete methods containing primitive tasks
that cannot be applied. Assuming that the operators simpli-
fication is made before the methods one, the simplification
procedure is performed as follows:

1) Get T, the set of primitive tasks defined in the method
to be simplified,

2) For every task t € T, check if the relevant action for ¢
was deleted during the operators simplification phase.
If it is the case, then the whole method is deleted.
Otherwise, it is preserved.

Another simplification of methods based on composed tasks
could be performed. In this simplification, a method is re-
moved if it contains a composed task that has no relevant
method. This happens if all the relevant methods for a task
are removed by the simplification process performed before.
The composed task based simplification would require many
iterations because each method simplification could simplify
all the relevant methods for a task and involves a new iteration.
The process continues until the stabilization of the methods
set. This technique is under development and was not included
in the performed experimentation.

V. TESTS AND RESULTS

In the previous section, we formally defined the instantiation
and simplification algorithm for HTN problems. the goal of
the next section is to show if reducing the number of methods
and operators using instantiation improves the performance of
HTN algorithms. To answer to this question, we implemented
a simplified version of SHOP algorithm named iSHOP (instan-
ciated SHOP) which takes as input a fully instantiated HTN
problem. After that, we compared the two algorithms basing
on processing time and plans lengths.

A. iSHOP algorithm

iSHOP algorithm is coded in JAVA using the PDDL4J
planning library [34]. This library includes required modules
for classical planning lexical and syntactical analysis. We
developed and included in it the HTN lexical and syntactical
analysis module and the HTN instantiation and simplification
tool.

Algorithm 1 presents an iISHOP generic process that takes
as input the problem (S,7,0,M,P) where S is a state, T =

Algorithm 1 iSHOP(S, T, O, M, P)

1: if T = () then

2 return empty plan
3: end if

4: t < The first task in T°
5:U«+T—t
6
7
8
9

. if ¢ is primitive then
a <« the relevant action for ¢
if precond(a) € S then
P < iSHOP(a(S),U, O, M, P)

10: return P

11: else

12: return failure

13: end if

14: else

15:  active < {m € M and m is relevant for ¢}
16:  if active # () then

17: Nondeterministically choose m € active
18: if precond(m) € S then

19: T’ + U U tasks(m)

20: iSHOP(S, T, 0, M, P)

21: else

22: return failure

23: end if

24: else

25: return failure

26: end if

27: end if

(t1,t9,...,t,) is a task list, O the set of actions, M the instan-

tiated methods and P the propositions defined in the problem.
The algorithm starts by checking the set of tasks 7 and returns
an empty plan if T is empty. Else, the relevant action or
methods are tested and applied depending on if the first task
is primitive or composed. The process is repeated until all the
tasks in the node are processed. The resulting plan is made
of all applied actions in the node during the process. Unlike
SHOP, no instantiation constraint is used and preconditions
checking is performed with a simple inclusion test on bit sets
representing the problem state. The representation of state in
the form of bit sets is only possible through the instantiation
process that enumerate all propositions, the operators and the
methods in the problem.

B. Experimental framework

In our comparison between SHOP and iSHOP, we made
a first set of tests where we compared the execution perfor-
mance of both algorithms on three planning domains: rover,
childsnack and satellite. Each domain was tested with at
least 20 problems focusing on the most complex ones. The
first test phase was limited to the three problems mentioned
above, mainly because of the difficulty of defining HTN
methods in two different languages, one for SHOP and one for
iSHOP, while ensuring that the two definitions are as close as
possible in order to not distort the comparison. In addition
to the domains, we rewrote in an HTN representation all
the problems given in the planning competition for the three
domains, allowing us to compare also the two algorithms with
Fast Downward planner [19] which is a classical planning
algorithm which has participated in planning competitions. To
reproduce exactly the same conditions for both algorithms, we
wanted to have both of them coded in the same language. So



we chose to compare iISHOP which is coded in Java with a
planner developed within the team and implementing SHOP in
Java. We did not use JSHOP2 planner available on the internet
as it implements the algorithm SHOP2 and shows runtime
errors on the rover domain.

1) Hardware: All tests were performed on a computer with
a multi-core intel Core i7 clocked at 2.2 GHZ and 16GB
DDR3 RAM with 1600MHZ. The number of CPU cores
does not affect the results because both algorithms does not
implement parallelization techniques and the java process is
executed on one core. The other CPU cores are used by the
JVM only for data compression if the 10GB memory allocated
to the process is exceeded.

2) Comparison criteria: The main purpose of instantiation
is to reduce the complexity of planning problems and search
time. Therefore, we compared the algorithms basing on criteria
used in agile track of the international planning competition.
In this track, each planner gets a score for each problem
based on its own search time compared with other algorithms
best time. For iSHOP we considered total time composed
of pre-processing time and search time. We compared also
the algorithms on plans lengths, but it is strongly related
to domains definitions and not really relevant particularly
between HTN and classical planners.

The figure 1 shows search times obtained during the first set
of test with iSHOP, SHOP and Fast Downward planners. On
the X-axis are represented the three domains planning prob-
lems and on Y-axis is represented (in seconds) the processing
time to find the first solution. If there is no result displayed
for a problems it means that the planner was not able to find
a solution in the allotted time which is equal to 10 minutes.
The figure 2 shows the results of the algorithms in term of
plans lengths which are represented as the number of actions
on the Y-axis.

C. Evaluation and results

All results obtained with an HTN planning algorithms are
relative to the way that the domain was written. Taking into
account this characteristic and trying to be as fair as possible,
we coded very similar HTN domain to test both algorithms.
However, slight differences could not be avoided, this is
mainly due to the specificities of each planner input languages.

Considering search times displayed in figure 1 (a, b, and
¢), we observe that iSHOP takes less time to find a solu-
tion than SHOP. The difference in search time grows with
problems complexity. The difference is very small or nil in
small problems and about several tens of seconds in complex
problems. We can observe also that SHOP is not able to find
a solution within the allotted time from the 19th problem in
rover domain, from the 16th in childsnack and from the 12th in
satellite, where iSHOP finds solutions for all problems without
exceeding the maximum allowed time.

We can notice that the pre-processing time represents more
than 90% of iSHOP’s total processing time in childsnack and
rover, but less that 10% in satellite. This is due to the way that
methods are defined and the inertia present in the problem.
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In rover for example, we followed the domain defined as
benchmark in SHOP but we would have been able to define
the domain in another way, with more constraints, which
would have resulted in more simplifications. In figure 1(d),
the bad performance of iShop compared to Fast Downward
is mainly due to the pre-processing times for the same rea-
sons mentioned above. Without pre-processing time, iSHOP’s
search time is equal to 0.78 seconds with less than 7 844
explored nodes on the most complex problem in rover, versus
8.21 seconds search time and 7 091 explored nodes with Fast
Downward.

The table 1 shows the scores obtained by the three tested
algorithms on the three planning domains relying on the IPC-
8 agile track rules. We notice that on the rover domain Fast
Downward gets a perfect score of 22/22. iSHOP is second
with a score of 18.93/22. So iSHOP is 13.95% less efficient
than Fast Down ward and 16.4% more efficient that SHOP. On
childsnack domain, iSHOP gets the best score with 18.59/20
and is respectively 62.5% and 20.85% more efficient than Fast
Downward and SHOP. On satellite domain, Fast Downward
gets a score of 18.65/20 where iSHOP has only 17.28/20,
so iSHOP is 6.23% less efficient than Fast Downward and
43% more efficient than SHOP. The overall score on the three
domains is 45.5/62 for Fast Downward, 54.81/62 for iSHOP
and 37.57/62 for SHOP. On the three domains, iSHOP is 15%
more efficient than Fast Downward and 27.8% more efficient

TABLE I
SCORES OF THE ALGORITHMS FAST DOWNWARD, ISHOP AND SHOP
rover childsnack satellite
Pb| fdwd iSHOP SHOP| fdwd iSHOP SHOP| fdwd iSHOP SHOP
00| 1 1 1 0 0,88 1 1 1 1
01| 1 1 1 0,49 091 1 1 1 1
02 1 1 1 0,34 094 1 1 1 1
03] 1 1 1 1 0,61 0,61 1 1 1
04| 1 1 1 1 0,64 0,66 1 1 0,33
05| 1 1 1 1 0,70 0,72 1 1 0,39
06| 1 1 1 0 1 0,95 1 1 0,37
07| 1 1 1 0 1 0,95 1 1 0,37
08| 1 1 1 0 1 0,91 1 043 0,32
09 1 0,88 0,63 1 0,88 0,84 1 0,66 0,42
10] 1 0,86 0,79 0 1 0,92 0,86 1 0,76
11] 1 0,96 0,81 0 1 0,93 1 0,61 0,39
12| 1 0,72 0,63 0 1 0,83 091 1 0,42
13] 1 0,77 0,64 0 1 0,81 098 1 0
14| 1 0,81 0,59 0 1 0,83 0,88 1 0
15| 1 0,74 0,62 0 1 0,81 1 090 0
16| 1 0,73 0,54 0 1 0,59 0 1 0
17 1 0,70 0,47 0 1 0 1 048 0
18] 1 0,70 0,54 0 1 0 1 0,69 0
19| 1 0,67 0 0 1 0 1 047 0
20| 1 0,67 0
21| 1 0,67 0
22 18,93 1532 | 4,84 18,59 1442 | 18,65 17,28 7,81

than SHOP. All the presented results show that iShop is more
efficient in terms of processing time than the classical version



of SHOP with a clear advantage on complex problems.

In HTN, the length of plans depends greatly on decompo-
sition methods defined in the problems. The figure 2 (a,b,c)
shows the lengths of plans produced by iSHOP and SHOP.
We see clearly that both algorithms generates plans with very
similar lengths. But in figure 2 (d), The length of the plan
generated by Fast Downward is significantly smaller than that
obtained with iSHOP. This is mainly due to the HTN approach
of iISHOP that defines the goal as a succession of ordered tasks,
while Fast Downward, in addition to very powerful heuristics,
defines the goal as a state, where the order of actions is not
restricted by the definition of the problem.

VI. CONCLUSION

We have presented in this paper a new fully instantiated
approach for HTN planning. The peculiarity of this approach is
that it reuses the instantiation and simplification methods used
in classical planning, and proposes new rules for instantiating
HTN methods. We have used a formalism with a high level
of expressiveness for methods definition allowing to define
domains that can be used by all HTN planners, either by
state based or plan based partial order planers. We aimed
to demonstrate the effectiveness of our approach on three
planning domains through the implementation and the testing
of the iISHOP algorithm. The experimentation results show that
a fully instantiated HTN planning approach allows to obtain
much shorter search times than a classical HTN approach.
The advantage of the instantiated approach does not only
lie in enhancing processing time, since it allows to perform
reachability studies using completely instantiated methods and
allows to implement and use search heuristics. Given the
obtained results during the first phase of testing, we plan to
continue to do more tests on other planning domains, to have
more comparison points and confirm the current results. We
also plan in future works to propose and implement search
heuristics with iSHOP algorithm and another HTN plan based
algorithm which is under development within the team and
test the performance of the instantiated HTN approach with
these heuristic on both types of algorithms.
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