
Title Improving navigation in critique graphs

Authors Genc, Begum;O'Sullivan, Barry

Publication date 2016-11

Original Citation Genc, B. and O'Sullivan, B. (2016) 'Improving navigation in critique
graphs', 2016 IEEE 28th International Conference on Tools with
Artificial Intelligence (ICTAI), San Jose, CA, USA, 6-8 November.
doi:10.1109/ICTAI.2016.0030

Type of publication Conference item

Link to publisher's
version

10.1109/ICTAI.2016.0030

Rights © 2016, IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date 2024-04-26 07:25:12

Item downloaded
from

https://hdl.handle.net/10468/5691

https://hdl.handle.net/10468/5691

Improving Navigation in Critique Graphs

Begum Genc
Insight Centre for Data Analytics
Department of Computer Science
University College Cork, Ireland

Email: begum.genc@insight-centre.org

Barry O’Sullivan
Insight Centre for Data Analytics
Department of Computer Science
University College Cork, Ireland

Email: barry.osullivan@insight-centre.org

Abstract—Critique graphs were introduced as a device for
analysing the behaviour of conversational recommender systems.
A conversational recommender allows a user to critique a
recommended product with statements such as “I’d like a similar
product to this one, but cheaper”. A critique graph is a directed
multigraph in which the nodes represent products, and a directed
edge between a pair of products represents how a user can move
from one product to another by tweaking a particular product
feature. It has been shown that critique graphs are not symmetric:
if a user critiques a product pi and is presented with product pj ,
critiquing product pj in the opposite manner does not necessarily
return product pi. Furthermore, it might not be possible to reach
all products in a catalogue starting from a given product, or as
a consequence of a particular critique some products become
unreachable. This latter point is quite unsatisfactory since a user
would assume that it is possible to explore the full catalogue by
critiquing alone. A number of approaches to over-coming this
problem have been proposed in the literature. In this paper we
propose a novel approach that exploits the critique graph directly.
Specifically, the unreachability is a consequence of a critique
graph having more than one strongly connected components.
We show how the critique graph can be modified in a minor
way, thereby modifying the semantics of critiquing for a given
catalogue, so that all products are always reachable.

Keywords—Recommender Systems; Critique Graphs; Strongly
Connected Components

I. INTRODUCTION

As on-line shopping has become an important part of daily
life, customers need the help of recommender systems to find
their desired products amongst huge catalogues of possibilities.
A recent study that analyses shopping behaviour of on-line
customers reveal that they are more likely to buy what the
system recommends them [14]. Therefore, designing systems
that make good recommendations is essential.

There are two types of users: the first type knows exactly
what to buy or which features to look for. However, the second
type has only a few criteria in mind and needs to explore
and learn about the available products before making a final
decision. In this paper, our main target is the second type of
users. In order to provide an interactive and educational experi-
ence to the user, we make use of conversational recommender
systems. Conversational recommender systems engage users
in the decision process to produce output that meets with user
feedback and requirements [1].

Critique-based conversational recommender systems allow
users to interact with the system iteratively to enhance the

recommendation process. The user initiates the search by
passing some criteria to the system. The system interprets the
requirements of the user and finds the best set of products
(or a single product). Then, the user can either accept one of
the proposed examples or continue the search by critiquing
current option(s) until satisfied with the suggestion. There
has been extensive research on critique-based conversational
recommender systems [3], [9], [12], [13], [11], [16], [10]. A
detailed survey of the topic is also available [5]. There are
currently three main procedures that have been proposed: user-
motivated critiquing, system-proposed critiquing and natural
language dialogue based critiquing support. The users can
either apply a unit critique i.e., requesting an alternative value
for a single feature of an item, or compound critique by
requesting modifications on multiple features at a time.

The concept of critique graphs was introduced in 2008 as
a device for analysing the critiquing process, as well as under-
standing the consequences of a given semantics for critiques in
the context of a given catalogue [7]. Critique graphs provide a
navigational structure that captures information about closest
product pairs in the catalogue, by compiling all products into
a large directed multi-graph. In the original paper, the authors
introduced the notion of critique graphs and how they can be
used to analyse conversational recommenders, as well as offer
advice on an ideal set of entry products to present to the user at
the outset. However, critique graphs also offer the promise of
assisting the designers of conversational recommender systems
to design a suitable semantics for critiques that could be well
suited to particular catalogues.

One of the main problems in critiquing systems is the
diminishing choices problem [10]. A user may want to ex-
plore the product base first, learn about all possibilities and
then choose one of them. Therefore the systems should not
eliminate the previously suggested products while making a
new suggestion. Another major problem is the unreachability
problem, where a number of products in the product base can
never be reached from a set of products under any critiquing
combinations that might be performed [10], [7].

There exists some recovery mechanisms from failures such
as allowing previous recommendations if there does not exist
any other recommendations [10]. However, this operation
requires keeping a list of recommendations and brings along
with some cost to evaluate. There are no approaches to
resolving unreachability in the literature apart from variations
on remembering the history of products presented to the user.
Our intention is to pre-process the data so that there remains
as little calculations as possible for the recommendation phase.

The novel contribution of this paper is that it uses the
graph-theoretic properties of critique graphs to modify the
semantics of critiquing to address the navigational maladies in
conversational recommender systems. Specifically, unreacha-
bility, whereby there does not exist a set of critiques that can
move the user from one product to another, is a consequence
of a critique graph having more than one strongly connected
components. We propose a polynomial-time approach to aug-
menting a critique graph with a small number of additional
edges that can be seen as minor modifications to the semantics
of the critiquing process that ensure that all products remain
reachable at all times.

The remainder of this paper is organised as follows. In
Section II we review the definition and properties of critique
graphs. Section III we discuss the reachability problem in more
detail and propose our polynomial-time approach to modifying
the semantics of critiques for a specific catalogue that ensures
all products remain reachable while not compromising on
the similarity between products. Section IV presents a set
of experimental results that demonstrates that our approach
performs extremely well, adding close to optimal numbers of
edges, as compared with a well-known graph augmentation
method. Finally, in Section V we summarise the contributions
of the paper.

II. PRELIMINARIES

We recall the basics of critique-based recommenders and
critique graphs [7].

A. Catalogues and Similarity

A catalogue defines a set of products, Π. Each product
pi ∈ Π is defined by a tuple of n attributes A = 〈a1, . . . , an〉.

We assume a distance metric, d(pi, pj), between products
is defined, which enables us to reason about inexact matches
between products and user-stated queries for ideal products.
We assume that this distance measure satisfies the standard
properties of a metric:

1) Non-negativity: d(x, y) ≥ 0;
2) Identity of indiscernibles: d(x, y) = 0 iff x = y;
3) Symmetry: d(x, y) = d(y, x);
4) Subadditivity: d(x, y) + d(y, z) ≥ d(x, z).

We also assume the distance metric is a weighted sum that is
decomposed across the attributes of the product. Specifically,
given a pair of products pi and pj ∈ Π, we define the distance
between them as:

d(pi, pj) =
∑
ak∈A

wk × dak
(pi[ak], pj [ak])

where dak
is a measure of distance on the ak-th attribute of the

catalogue, and the notation pi[ak] refers to the value of attribute
ak of product pi. The quantity wk is the (non-negative) weight
of attribute ak. We assume distances and weights to be in [0, 1],
so the maximum distance between products is in [0, n].

We define the similarity between two products in an
analogous manner, as the complement of distance. Specifically,
we define the similarity σ(pi, pj) as:

σ(pi, pj) =
∑
ak∈A

wk × (1− dak
(pi[ak], pj [ak])).

B. Critique-based Navigation

In many applications of recommender systems, the interac-
tion is based on an iterative process during which the system
proposes one or more products, and the user provides feedback
about his preferences through critiques. For example, given a
recommendation of a restaurant, a user might critique it by
indicating that she would prefer an alternative that is like this
but less expensive. The two most common forms of critique are
directional and replacement [2]. Directional critiques specify
either an increase or decrease in the value of attributes that
are either numerical or naturally ordered; a typical directional
critique affects an attribute such as price, size, weight, etc.
Replacement critiques, on the other hand, specify an alternative
value for an attribute taking its values from a finite set; a typical
replacement critique would affect a location, a colour, a brand,
etc.

Given a product pi and one of its attributes ak, we
can identify all possible critiques available on that attribute.
Directional critiques allow two possibilities: more is better, or
less is better. Replacement critiques allow for the substitution
of all possible values for attribute ak other than its current
value in pi, namely pi[ak].

The formal semantics of critiquing that we use in this paper
is given a product pi and a critique on attribute ak, the system
responds with the product pj that is most similar to pi, but
satisfies the critique on attribute ak; if there are more than
one equally most similar products, we consider these also. For
example, given a recommendation of a restaurant and a like
this but cheaper critique, we seek an alternative product that
has a lower cost, but is otherwise most similar to the original
recommendation. The notion of the set of all possible critiques
on an attribute generalizes to all possible critiques over all
product attributes, which we will use to define notion of a
critique graph.

This approach treats individual critiques independently of
any previous critiques a user might have made. However, some
approaches consider sequences of critiques as conjunctions of
constraints. e.g. [10]. It is possible to also use these richer
semantics of critiques here.

C. Critique Graphs

The structure of critique graphs is very suitable for unit
critiquing. In a critique graph-based system, one can not
specify a certain amount of change in the quantity or ask for
a similarity-based search, but instead asks for more, less or
another value. Hence, by definition, critique graphs support
quality-based unit critiquing. Although it has been shown that
dynamic critiquing, which uses compound critiques, has an
advantage over unit critiquing in terms of shorter session
lengths, system-proposed feature pairs have also been criticised
by being too rigid [13], [4].

Given a product catalogue and similarity measures for
each attribute, it is possible to pre-compute all possible ways
in which the user can critique any product that might be
recommended to him. We introduce the notion of a critique
multigraph that encodes which specific critiques enable one to
move from product to product in the catalogue.

Definition 1 (Critique Multigraph): A critique
multigraph, Cm(Π), that is associated with a catalogue of prod-
ucts Π, is a directed multigraph G = (V,E). For each product
p ∈ Π we have an associated vertex v ∈ V . Each directed edge
(vi, vj) ∈ E is associated with a critique of product pi whose
most similar product satisfying the critique includes product
pj ; each edge is labelled with the corresponding critique.

It is sometimes convenient to abstract the critique multi-
graph to a directed critique graph in which all edges between
a pair of vertices are reduced to a single edge with the
appropriate direction. A directed edge (vi, vj) in a critique
graph can be interpreted as stating that there exists a critique
of product pi that leads to product pj .

Definition 2 (Critique Graph): A critique graph,
C(Π) of a critique multigraph is a directed graph on the same
set of vertices as its corresponding multigraph Cm(Π). All
directed edges (vi, vj) in Cm(Π) form a single directed edge
between (vi, vj) in the critique graph C(Π).

An important property of critiquing is that there are situa-
tions where some products cannot be reached by any critique
sequence from a given product. The notion of reachability
between products is an important issue that has been studied
in [10].

Definition 3 (Reachable Products): Given a catalogue Π,
and a pair of products pi, pj ∈ Π, we say that pj is reachable
from pi iff there is path from pi to pj in the critique
(multi)graph C(Π).

The fact that under the standard semantics of critiquing,
which we described above, that some products are unreachable
from others from the outset, or may become unreachable
during navigation, seems a significant problem. The major
contribution of this paper is an approach to overcoming this
issue by minimally modifying the semantics of critiquing such
that all products are reachable.

III. GUARANTEEING REACHABILITY IN
CRITIQUE-BASED NAVIGATION

We seek to guarantee that all products in a catalogue
are reachable through critiquing regardless of which attribute
the user wishes to critique. We, therefore, define the notion
of a decomposed critique graph which considers the critique
multigraph on an attribute by attribute basis.

Definition 4 (Decomposed Critique Graph): Given an
original critique multigraph G = (V,E), the decomposed
critique graph DGi = (V,Ei) is obtained by decomposing
the original critique multigraph into feature based sub-graphs
whereby each sub-graph contains edges that only reflect the
changes on one specific feature i.

Decomposing into sub-graphs does not affect the size of
the critique graph, if the edges of each decomposed graph are
abstracted as different layers on the same set of vertices.

Figure 1 illustrates a complete critique multigraph of a
catalogue that contains 4 products with 4 directional features
on left. This is a randomly created small catalogue to demon-
strate the problem. The smaller graph shows the corresponding
critique graph, where the set of edges that share the same target
and source nodes are grouped together and represented as one

single edge. By looking at the critique graph on right, one
may argue that the graph is connected and all products are
reachable. However, this conclusion is not always correct.

p1:7,5,1,1 p2:3,2,1,6

p2:6,1,6,1 p4:4,3,3,6

p1 p2

p3 p4

Fig. 1. Sample critique multigraph (left) and its corresponding critique graph
(right).

In Figure 2, the sample critique multigraph in Figure 1 has
been decomposed. The figure shows one decomposed graph
for each feature: in each case the relevant feature is marked as
bold letter. The edges between products demonstrate the link
between two products.

p1: 7,5,1,1

p3: 6,1,6,1 p4: 4,3,3,6

p2: 3,2,1,6 p1: 7,5,1,1

p3: 6,1,6,1 p4: 4,3,3,6

p2: 3,2,1,6

p1: 7,5,1,1

p3: 6,1,6,1 p4: 4,3,3,6

p2: 3,2,1,6 p1: 7,5,1,1

p3: 6,1,6,1 p4: 4,3,3,6

p2: 3,2,1,6

S L

S

L

L S

L S

S

L

S

L

S L

L

S

L S

SL

L

L S

L

S
S L

L

S

Fig. 2. Feature-based decomposed version of the critique multigraph given
in Figure 1. Decomposed graphs belong to: first (top-left), second (top-right),
third (bottom-left), and fourth (bottom-right) features, respectively.

In a decomposed graph, an edge {px, py} with the label
S indicates that py is the most similar product to px in the
catalogue, when a smaller value of the relevant feature has
been requested and L indicates the larger value, respectively.
This detailed view reveals more information about how some
products are unreachable. For instance, by looking at the
decomposed graphs, we clearly see that the customer can
reach all products by making critiques on the first and second
features. However, there are some unreachable products if she
only uses the third or the fourth features.

To be more specific, let’s say the system recommended p2
to the customer. She requested for more of the third feature and
the system proposed her p4. However, she wanted even more
for that feature and critiqued for more again. The system then
recommended her p3. However, she thought that the previous

f1 f2 f3 f4 f5 f6 f7 f8 f9
A Olympus 7.1 3 22 3 0.8 0.3 Olympus Stylus 730 399.99
B Fujifilm 5.1 3 10 2.5 0.8 0.3 Fujifilm FinePix Z3 279.99
C Fujifilm 9 10.7 16 1.8 5.1 1.3 Fujifilm FinePix S9000 9MP 675.99
D Fujifilm 5.1 3.4 16 3 0.9 0.4 Fujifilm FinePix V10 299.99
E Kodak 6.1 3 32 2.5 0.9 0.3 Kodak Easyshare V603 299.95

S-6

L-9

L-6

L-6

S-7

A-7

L-7

L-7

S-6

A

B

C

E

D

S-6

L-7

L-6

A-7

L-6

L-9

S-8

L-9

L-8

S-7

A-7

L-8

S-6

A

B

E

D

C

DG1 DG2 DG4

S-6L-6

S-8

A-6

L-7

S-7

S-7

L-7

S-9

A

B

C

E

D

DG5

F-6

K-7

O-6

A-7

K-6

O-9

K-9

O-8

A-7

K-8

O-7

F-6

A

B

E

D

C

Fig. 3. A 5-product case base and its four decomposed graphs. L and S on the solid edges indicate larger-smaller, and remaining letters represent the initials
of the categorical features for readability (i.e., F represents Fujifilm, K for Kodak and O for Olympus) and the numbers indicate the distance. Dashed lines
represent some additional edges required for a graph to be fully reachable.

recommendations were better and she critiqued the system
for less of feature 3. Unfortunately, the system recommended
her p1, which is something completely different than what
she might have expected. Furthermore, the customer is now
stuck in a loop between p1 and p3 and she can never go
back to the previous recommendations p2 and p4, which she
may have liked more. We discuss scenarios in more detail in
Section III-A.

A. Demonstrating Unreachability

Conversational recommenders are used as tools to educate
users about the products in the catalogue. We assume that the
user has some criteria in mind but is not fully aware of her
needs. We consider two unreachability use-cases on a simple
5-product camera case base. Figure 3 illustrates 4 out of 9
decomposed graphs of our case base. In order to demonstrate
the problem, we will assume that the additional edges are not
present in the graph.

1) Structural Unreachability: The user wants a Fujifilm
camera and high value for f4. By looking at the products, we
may infer that C or D are two possible options she is going
to be satisfied with.

Assume that the recommendation process starts with prod-
uct A. The user asks for Fujifilm and B is recommended by
the system. The user asks for more of f4. By looking at DG4,
we see that only products satisfying this critique are A and E,
where both of them are not Fujifilm. If the user critiques A or
E by Fujifilm, the system will recommend B again, resulting
in a loop. Therefore, the user may think that there are no other
products in the catalogue that satisfy her needs. The only way

she will be recommended C is by knowing more about other
features. In this case, for instance, she is not going to be able
to see D, if she is not recommended C first. Hence, no matter
what she critiques on features 1 and 4, she may never reach
C or D due to the structure of the graph.

2) Diminishing Choices: We now demonstrate the dimin-
ishing choices problem, where the user finds the product she
likes, but she wants to learn if she can find anything better
and continues critiquing. However, at some point she realizes
that there are no better alternatives and she tries to trace her
critiques back to see a previously recommended product. Due
to lack of symmetry in critiquing, there might not exist a path
from that product to the one she likes by applying either the
reverse critiques or any other combinations.

Assume that the user wants a Fujifilm camera and she
is also curious about the range of f2 in the catalogue. The
system is initialized with product E. She starts making critiques
on f2. She asks for smaller value, gets recommended B.
She likes this one but continues the search. Considering that
she can not critique B for a lower value, she knows the
lower bound and starts asking for larger values. The system
recommends A and E. She critiques A for larger and systems
recommends C. At this point, there are no items that have a
larger value in f2 in the catalogue. Therefore, the user now
has the upper bound. She decides that she will track back
to a previous recommendation. She asks for a smaller value
and D is recommended. From this point on, she is stuck in a
loop between C and D in f2. She also knows that the other
camera she liked was Fujifilm, but both C and D are also
Fujifilm cameras. Therefore, she can not critique them for
the same value. Hence, she can not go back to the previous

recommendation, unless she memorizes the other features of
B or makes random critiques to break the loop.

In these scenarios, the unreachability problem arises be-
cause the graphs are not strongly connected. If additional edges
are added to the graphs, each individual graph can be made to
be strongly connected and all products are going to be always
reachable. In the following section, we will explain how to find
these additional edges. However, we leave the interpretation of
how to present the information using additional edges to the
system developer, as this is a user-interface issue. For instance,
a developer may design a system such that the system displays
the set of products satisfying the critique in the main frame.
Then, on a different frame, their neighbours targeted by the
additional edges can be displayed as alternative suggestions.

B. Single Strongly Connected Components

The problem of unreachability is a well known problem
with critique-based navigation and it has received some atten-
tion, e.g. [10] where a memory-based approach is proposed.
However, taking a critique graph-based approach to this allows
us to take a more formal graph theoretic perspective on the
issue. Essentially, the problem of unreachability arises because
each decomposition of the critique multi-graph, DGi, has more
than one strongly connected component.

Our approach to guaranteeing reachability is, therefore, to
add a small number of additional directed edges to each DGi

such that the ‘like this, but satisfying some particular critique’
is relaxed slightly. As we will show below, the modifications to
each DGi are such that we add the most similar edges between
products until the graph has one single connected component.

A strongly connected component is formed by a subset
of the nodes, such that every node in the subset is reachable
from all other nodes. In our approach we find the strongly
connected components of each decomposed graph by per-
forming a Depth-First Search on each graph in turn using
Tarjan’s method [15]. After identifying each component, we
treat each of them as individual nodes. We update edge
connections from node-to-node to component-to-component.
Consequentially, we obtain a Directed Acyclic Graph (DAG)
representation of the strongly connected components. On the
resulting DAG, we want to find the unreachable, blocked
nodes.

Definition 5 (Blocker Nodes and Components): If there is
more than one strongly connected component in a decomposed
graph DGi = (V ′, E′), each node in a strongly connected
component cx becomes a blocker node for the nodes in another
component cy if there exists a path from cy to cx in DAG
DAGi = (V,E ⊂ E′) associated with feature i. We refer to
cx as a blocker component and to cy as the blocked component,
respectively.

Figure 4 demonstrates a sample decomposed critique graph
of a small instance from a real catalogue. In this example, for
instance, product 11 is a blocker node for product 3, which
means that if the customer critiques product 3 and obtains
product 11, she can never reach product 3 again by making cri-
tiques on the same feature. This unreachability can be removed
by adding an additional edge from any nodes contained in the
strongly connected component SCC (composed of products

1, 2, 5, 6, 7, 8, 9, 10) to product 3, thereby ensuring that this
graph contains a single strongly connected component.

3

3
11

11 SCC

4 4

1

10

5

9

7

2 6 8

Fig. 4. A sample decomposed critique graph (left), its strongly connected
components identified (right), where the required edge to ensure that the
component graph contains only one SCC is drawn with dashed lines.

The problem of taking a directed graph with many strongly
connected components and adding a set of edges to ensure it
has a single strongly connected component is the well-known
strong connectivity augmentation problem. In cases where the
edges are unweighted, finding the minimum number of edges
to add can be found in polynomial time [6]. The unweighted
case gives us a lower bound on the number of additional edges
to be added to each DGi to guarantee reachability in the
critique multigraph. However, for weighted graphs, which we
have in this case since the edges have associated measures
of similarity between products, finding the set of edges with
minimum total weight is known to be NP-hard [6]. Therefore,
in the case of catalogue navigation where we want edges to
appear between the most similar products subject to satisfying
a specific critique, we cannot hope to find a solution that
introduces the smallest number of high similarity edges.

A reasonable alternative approach, which can be solved
in polynomial time, is to add a minimal, with respect to set
inclusion, set of edges such that the resulting DGi has one
single strongly connected component while maximising the
minimum similarity of the added edges. More formally, given
the directed acyclic graph DAGi = (V,E) and the set of all
possible edges E∗, the objective is to find an E′ ⊆ E∗ − E
such that CGi = (V,E ∪ E′) has one strongly connected
component and there does not exist an E

′′ ⊆ E∗−E such that
CG′i = (V,E∪E′′

) is one strongly connected component and
the minimum similarity of any edge in E

′′
is greater than that

in E
′
. This problem can be solved using an iterative algorithm,

very similar to QuickXplain which is generally used for finding
maximal relaxations of sets of constraints [8]. The resulting
algorithm is presented as Algorithm 1.

The objective of this approach is to add a minimal set
of additional edges of highest minimum similarity to achieve
a single strongly connected component. First, the algorithm
sorts all possible edges E∗ in decreasing order of similarity.
Mandatory edges are initially identified as the original com-
ponent graph edges. The algorithm considers each possible
augmenting edge of the graph one by one starting from the
one that has maximum similarity, until the graph contains
one strongly connected component. The last added edge, that

Algorithm 1 Augmentation algorithm
1: procedure SCC–CONNECT(V, E)
2: DAG← (V,E)
3: Eman ← E
4: Set E∗ to be the set of all possible augmentations
5: Sort E∗ by decreasing similarity
6: while DAG does not have a single SCC do
7: for e ∈ E∗ do
8: add e to DAG
9: if DAG has a single SCC then

10: remove e from E∗

11: add e to Eman

12: break
13: end if
14: end for
15: DAG← (V,Eman)
16: end while
17: return DAG
18: end procedure

makes the graph strongly connected is part of the best minimal
set and maximises the minimum similarity of edges included.
The edge that is added on the first iteration sets the bound
on the minimum similarity of the added edges. The algorithm
then ensures that only those edges of higher similarity that are
necessary to achieve a single strongly connected component
are added, thereby ensuring the set of augmenting edges is
minimal.

Identifying strongly connected components of a graph has
a worst case performance of O(|V | + |E|) using Tarjan’s
algorithm.

The overall procedure is clearly polynomial in the size of
the graph.

IV. EXPERIMENTAL EVALUATION

We compare the success of our algorithm with Eswaran
and Tarjan’s (unweighted) augmentation algorithm [6]. That
method computes the minimum number of edges to augment
a graph such that there is one strongly connected component.
This provides us with a lower bound on the number of edges
added in the weighted case. Eswaran and Tarjan’s procedure
can be summarised as follows:

• Find the number of source nodes (ni), that have an
in-degree of 0 in DAG .

• Find the number of sink nodes (no), that have an out-
degree of 0 in DAG .

• The minimum number of edges required is equal to
max(ni, no).

In our evaluation we have used three well-known cata-
logues: camera, laptop and travel, which have been previously
used in the context of critique graphs [7]. We have removed
some product-specific features such as image name and de-
scription from the data. Table I provides summary information
about the number of products and the number of features used
in our experiments. We developed a test tool in Java, using

TABLE I. DETAILS OF DATA SETS.

Data set # of products # of features
Camera 112 9
Laptop 403 9
Travel 1440 9

JGraphT library. We perform the tests on a machine with
Intel(R) Core(TM) i7-4600U processor with 8 GB RAM.

There are two alternative standard semantics for construct-
ing the starting critique multigraph: add each product to a sin-
gle example of the most similar products satisfying the critique,
or use all equally best products. Figure 5 illustrates the effect
of two different edge creation policies. Similarly, Figure 6
demonstrates how adding links to all closest neighbours change
the diameter of the graph, which provides a measure of how
many critiques in the best case are required to find any product
from any other.

Fig. 5. Number of edges in the critique graph under different edge creation
policies.

Fig. 6. Diameter of the critique graph under different edge creation policies.

Table II reports our experimental results on the three data
sets. For each dataset, there are a set of nine rows, each row
corresponding to the decomposition graph DGi for a feature in
the dataset. These appear lexicographically with respect to the
order they appear in the data. The type refers to whether the
critique on that attribute is a replacement (R) or directional (D),
depending on whether the attribute is categorical or numeric,
respectively.

Number of edges |E| in DGi denotes the number of
edges in the decomposition graph associated with feature i
and, therefore, represents the number of possible critiques
that can be made on that feature. DAGi is the connected

TABLE II. CONNECTIVITY ANALYSIS OF GRAPHS AND A COMPARISON
OF AUGMENTATION ALGORITHMS.

type |E| in
DGi

|V| in
DAGi

|Eman| in
DAGi

min
|E”|

|E’|
added

C
a
m
e
r
a

R 2370 1 0 0 0
D 506 8 8 6 6
D 445 44 64 36 37
D 577 22 24 18 19
D 506 24 41 19 19
D 578 5 4 4 4
D 519 5 4 4 4
R 10578 1 0 0 0
D 446 8 9 5 7

L
a
p
t
o
p

R 9139 18 18 16 17
R 6090 54 63 47 48
D 1853 28 30 25 26
D 2617 28 35 20 22
D 1909 104 157 83 84
D 2014 43 52 34 38
D 2214 34 44 27 28
R 4049 175 184 173 173
D 2121 29 36 19 20

T
r
a
v
e
l

R 43430 16 15 15 15
D 11323 7 7 5 5
D 10537 73 89 60 63
R 259053 1 0 0 0
R 18450 394 492 345 346
D 9704 206 227 193 195
R 57623 2 1 1 1
R 28444 80 95 63 64
R 1048686 1 0 0 0

component graph of DGi. Each vertex in DAGi corresponds
to a strongly connected component in DGi. Therefore, |V |
represents the number of strongly connected components in the
corresponding DGi, and |Eman| is the number of edges in that
component graph. The minimum number of unweighted edges
required to compute a single connected component in DGi is
represented by min|E′′|, as computed using the Eswaran and
Tarjan method, which provides a lower bound on the number
of edges required to achieve a single connected component
and, thereby, guaranteeing reachability to all products during
critiquing. Finally, |E′|added represents the number of edges
our method, SCC_Connect requires to guarantee a single
strongly connected component that maximises the similarity
of the added edges.

These results show us that we can guarantee reachabil-
ity by ensuring single strongly connected components by
adding a relatively small number of edges to the graphs.
SCC_Connect performs very well in terms of minimising
the number of edges, almost always reaching the lower bound
computed using the Eswaran and Tarjan method. The results
also show us that decomposed graphs of replacement features
are more likely to be strongly connected.

Figure 7 illustrates the success of SCC_Connect in
terms of augmenting each critique graph while not negatively
impacting the similarity between products. Here we plot
the worst-case similarity across all edges appearing in the
critique multigraph, before and after augmentation. Clearly
the augmentation process has had little or no effect on this
measurement. Therefore, the additional edges added by the
augmentation have little or no negative impact on the quality

of the navigation experience of the user.

Camera Laptop Travel

Fig. 7. Comparison of worst-case similarity in the three catalogues before
and after the augmentation process using SCC Connect.

Figure 8 shows the execution time required by
SCC_Connect. The algorithm scales well with graph
size. While this is also a nice property, it is not particularly
important since our process is entirely offline and is
performed before any interaction takes place between a user
and a catalogue.

Fig. 8. Execution time of SCC_Connect.

V. CONCLUSIONS

The use of critique graphs is a relatively new approach to
analysing and designing conversational catalogue navigation
and recommender systems. The structure seems to be attractive
and promising especially since it relies on an offline analysis.
It is suitable for finding closest neighbours of products, as
well as compiling all possible critiques that a user might use
to explore a catalogue.

Critique graphs can easily explain why during the in-
teraction process that some products become unreachable,
regardless of the critiques that the user chooses. This has
been a long-standing unsatisfactory property of critiquing since
a user would assume that it is possible to explore the full
catalogue by critiquing alone. Various ad-hoc approaches to
over-coming this problem have been proposed in the literature.

In this paper, building on the graphic-theoretic properties
of critique graphs we have proposed a novel approach to
resolving the reachability problem exploits the critique graph
directly. Specifically, the unreachability is a consequence of
a critique graph having more than one strongly connected

components. We have presented a polynomial-time approach to
augmenting a critique graph with a small number of additional
edges that can be seen as minor modifications to the semantics
of the critiquing process that ensure that all products remain
reachable at all times.

VI. ACKNOWLEDGMENTS

This research has been funded by Science Foundation
Ireland (SFI) under Grant Number SFI/12/RC/2289.

REFERENCES

[1] D. W. Aha, L. A. Breslow, and H. Muñoz-Avila. Conversational case-
based reasoning. In Applied Intelligence, pages 1–25. Kluwer Academic
Publishers, Boston, 2000.

[2] D. G. Bridge and A. Ferguson. An expressive query language for
product recommender systems. Artif. Intell. Rev., 18(3-4):269–307,
2002.

[3] R. D. Burke, K. J. Hammond, and B. C. Young. The findme approach
to assisted browsing. IEEE Expert, 12(4):32–40, 1997.

[4] L. Chen and P. Pu. Evaluating critiquing-based recommender agents.
In AAAI, pages 157–162. AAAI Press, 2006.

[5] L. Chen and P. Pu. Critiquing-based recommenders: survey and emerg-
ing trends. User Modeling and User-Adapted Interaction, 22(1):125–
150, 2011.

[6] K. P. Eswaran and R. E. Tarjan. Augmentation Problems. SIAM J.
Comput., 5:653–665, 1976.

[7] T. Hadzic and B. O’Sullivan. Critique graphs for catalogue navigation.
In RecSys ’08: Proceedings of the 2008 ACM Conference on Recom-
mender Systems, pages 115–122, New York, NY, USA, 2008. ACM.

[8] U. Junker. Quickxplain: Preferred explanations and relaxations for over-
constrained problems. In Proceedings of the 19th National Conference
on Artificial Intelligence, pages 167–172, Menlo Park, California, 2004.
AAAI Press / The MIT Press.

[9] G. Linden, S. Hanks, and N. Lesh. User Modeling: Proceedings of the
Sixth International Conference UM97 Chia Laguna, Sardinia, Italy June
2–5 1997, chapter Interactive Assessment of User Preference Models:
The Automated Travel Assistant, pages 67–78. Springer Vienna, Vienna,
1997.

[10] D. McSherry and D. W. Aha. The ins and outs of critiquing. In M. M.
Veloso, editor, IJCAI 2007, Proceedings of the 20th International Joint
Conference on Artificial Intelligence, Hyderabad, India, January 6-12,
2007, pages 962–967, 2007.

[11] P. Pu and B. Faltings. Decision tradeoff using example-critiquing and
constraint programming. Constraints, 9(4):289–310.

[12] J. Reilly, K. McCarthy, L. McGinty, and B. Smyth. Advances in Case-
Based Reasoning: 7th European Conference, ECCBR 2004, Madrid,
Spain, August 30 - September 2, 2004. Proceedings, chapter Dynamic
Critiquing, pages 763–777. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2004.

[13] J. Reilly, K. McCarthy, L. McGinty, and B. Smyth. Incremental
critiquing. In SGAI Conf., pages 101–114. Springer, 2004.

[14] S. Senecal and J. Nantel. The influence of online product recommen-
dations on consumers’ online choices. Journal of Retailing, 80(2):159–
169, 2004.

[15] R. Tarjan. Depth first search and linear graph algorithms. SIAM Journal
on Computing, 1972.

[16] J. Zhang and P. Pu. Adaptive Hypermedia and Adaptive Web-Based
Systems: 4th International Conference, AH 2006, Dublin, Ireland, June
21-23, 2006. Proceedings, chapter A Comparative Study of Compound
Critique Generation in Conversational Recommender Systems, pages
234–243. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

