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Abstract—In cloud systems, computation time can be rented
by the hour and for a given number of processors. Thus, accurate
predictions of the behaviour of both sequential and parallel
algorithms has become an important issue, in particular in
the case of costly methods such as randomized combinatorial
optimization tools. In this work, our objective is to use machine
learning algorithms to predict performance of sequential and
parallel local search algorithms. In addition to classical features
of the instances used by other machine learning tools, we consider
data on the sequential runtime distributions of a local search
method. This allows us to predict with a high accuracy the parallel
computation time of a large class of instances, by learning the
behaviour of the sequential version of the algorithm on a small
number of instances. Experiments with three solvers on SAT
and TSP instances indicate that our method works well, with a
correlation coefficient of up to 0.85 for SAT instances and up to
0.95 for TSP instances.

I. INTRODUCTION

For decades, solving a difficult SAT instance has been a
challenge. Now, with the improvements of the solvers and
the availability of computation time in parallel architectures,
that can be rented by the hour, the problem has changed. The
question, as in [1] for instance, is no longer “how much time
would I need to solve an instance”, but rather “since I have
paid for x hours of computation on n cores, how many SAT
instances could I solve?”. In this paper, we propose a method
for solving large classes of SAT instances with randomized
algorithms, by learning features related to the solving time on
a small set of instances and applying this knowledge to predict
the solving time for the other instances.

The originality of our method, and what makes its pre-
diction accurate, lies in the critical parameters we learn about
the runtime distribution (RTD) of the target algorithm. Unlike
traditional methods that learn single metrics such as mean or
median runtime of the algorithm, we learn the actual runtime
distribution. Therefore, we have the complete knowledge of the
behaviour of the sequential algorithm, from which the runtime
of its multiwalk parallel version can be inferred. To do this, we
use the probabilistic model proposed by [2] for approximating
the solving time of multiwalk parallel local search algorithms.

The runtime distribution can be learned by running the
algorithm several times on a particular instance, which we do
on a small set of instances (the learning set). On this set, we
can approximate the type of distribution, its expectation and its
variance. Once this is done, we use pace regression [3] to pre-
dict the critical parameters of the distribution for the unsolved
instances, hence to predict the resolution time (sequential and

parallel). We expect this work to have potential applications in
multiple areas such as: algorithm selection, parameter tuning,
and modelling the behaviour of the algorithms.

The remainder of the paper is organized as follows. Sec-
tion II presents background material on machine learning,
runtime distributions, and our case study problem domains, i.e.,
SAT and TSPs. Section III details the proposed methodology.
Section IV reports on the experimental validation. Section V
discusses related work with a focus on the current method-
ologies for estimating the performance of a given algorithm.
Finally, Section VI concludes the paper and dicusses directions
for future work.

II. BACKGROUND

A. Problem Domains

The Boolean Satisfiability problem (SAT) involves deter-
mining whether a given Boolean formula F is satisfiable or
not. This formula is usually represented using the Conjunctive
Normal Form (CNF) as follows: F =

∧
i

∨
j lij , where each

lij represents a literal (a propositional variable or its negation)
and the disjunctions

∨
j lij are the clauses in F .

Solving F involves deciding whether or not there exists
a model (so-called solution) in which the truth assignment
for the variables in F satisfies all clauses, or demonstrating
that no such assignment exists. Currently, there are two well
established techniques for solving SAT formulas; complete
and incomplete search. State-of-the-art complete solvers, e.g.
[4]–[6], are developed based on the DPLL algorithm. They
combine a tree-based search with unit propagation, conflict-
clause learning, and intelligent backtracking. State-of-the-art
incomplete solvers are mainly based on local search algorithms
[7] to find a truth assignment for the variables which satisfies
all the clauses. Alternatively, hybrid algorithms [8], [9] com-
bine local search with clause learning to devise a complete
algorithm.

The Traveling Salesman Problem (TSP) is a well-known
combinatorial optimisation problem with applications in mul-
tiple areas ranging from transportation to VLSI circuit design,
and bioinformatics. The TSP consists in finding the shortest
path, or tour, among a predefined list of n cities such that all
cities are visited only once. In this paper we focus our attention
in the 2D Euclidean TSP in which we are given a set S of
points in a plane, and the distance between two points is the
Euclidean distance between their corresponding coordinates.



Local search algorithms for the TSP typically use the k-
opt operator [10]. The operator iteratively selects k edges
from the current solution and replaces them with k new edges
by improving the objective function. Alternatively, complete
solvers (e.g., Concorde [11]) combine the use of branch-and-
bound with cutting algorithms to find optimal tours.

In the remainder of this paper we consider the performance
of local search algorithms on these two problem domains.
For this purpose, we need high-level data that describes the
instances, which we will describe below.

B. Problem Features

1) SAT Features: We will use a widely known set of
problem descriptors or features for SAT previously described
in [12]. In particular, we use the feature computation code
available from the Beta lab at the University of British
Columbia.1 This tool can compute several collections of fea-
tures describing the SAT instances. Some are static, such as:
number of variables, clauses, ratio variables/clauses, etc. It also
collects relevant information of two local search algorithms,
namely SAPS and GSAT, to compute information of the
trajectory of the LS process such as: number of steps to the
best local minimum in a run (mean, median, 10th and 90th
percentiles) for SAPS; average improvement to best run: mean
improvement per step to best solution for SAPS; fraction of
improvement due to first local minimum: mean for SAPS and
GSAT; coefficient of variation of the number of unsatisfied
clauses in each local minimum: mean over all runs for SAPS.
The tool can use Knuth’s sampling method [13] to estimate the
number of nodes and the depth of the search tree. In total we
will use 81 of these features. The same reference also describes
a set of features involving the use of DPLL and MIP based
solvers for a short time, however, these features appear to be
irrelevant in our case, since we use local search algorithms.

2) TSP Features: In this paper we use the set of features
for TSP problem described in [14]. In particular, we use the
feature computation code, again, from the Beta lab at the
University of British Columbia.2 We use a set of 50 features,
collecting general statistics of the target problem instance
such as number of cities; cost matrix features; statistics on
the resulting minimum spanning tree of the input instance;
relevant information of the local search trajectory for the LKH
solver [10]; and branch and cut features collecting statistics of
the concorde solver.

C. Runtime Distributions of Las Vegas Algorithms

Local Search is a well-known technique to solve combi-
natorial problems in multiple domains. Generally speaking, a
local search algorithm starts with a random initial solution
or assignment to the variables, and iteratively improves the
solution by performing small changes until a stopping crite-
rion is met. Local Search algorithms include several random
components: choice of an initial configuration, choice of a
move among several candidates, plateau mechanism, random
restart, etc, and their runtime varies from one execution to

1Code available at www.cs.ubc.ca/labs/beta/Projects/SATzilla. We use the
following settings: -base, -ls, and -lobjois

2Code available at http://www.cs.ubc.ca/labs/beta/Projects/EPMs, we use
the following setting: -all

another even on the same input. Indeed, these algorithms
can be considered into the larger framework of Las Vegas
Algorithms [15], i.e., randomized algorithms whose runtime
might vary from one execution to another, even with the same
input instance.

The multi-walk method [16] is a popular parallel local
search algorithm that does not require to modify the base
algorithm. It consists in executing multiple copies of a given
algorithm with different random seeds until a solution is
obtained. Ideally, one would like a linear speed-up, that is,
the runtime required to solve a given instance decreases
proportionally with the number of processing units.

Typically, the most popular metric to evaluate the per-
formance of sequential and parallel local search algorithms
is the average runtime. However, a more detailed analysis
could be obtained by studying the execution time of the
algorithm as a random variable and performing a statistical
analysis of its probability function. This analysis leads to the
runtime distribution (RTD), a powerful tool that describes the
probability of a given algorithm to find a solution for a given
instance within a given amount of time.

The RTD is heavily used to analyze the behaviour of
randomised algorithms. In [7], the authors use RTD to finely
tune local search algorithms, additionally [17] uses the runtime
distribution to define optimal restart strategies in sequential
and parallel algorithms and to provide bounds on the parallel
expectation.

Recently, [2] proposed a methodology to estimate the
runtime distribution of the parallel algorithm with a statistical
analysis, based on order statistics, of the sequential ver-
sion. The methodology assumes that the multi-walk algorithm
(sometimes called parallel portfolio) executes multiple copies
of the algorithm, with different random seeds. Thus, the
processes are independent, and identically distributed.

Roughly speaking, the runtime distribution describes the
performance of the algorithm and provides the probability
density function of a given algorithm to solve a given instance
within some time. Let fY (x) and FY (x) be the probability
distribution and cumulative distribution functions of the se-
quential algorithm. The probability functions give return the
probability that the runtime of the algorithm is smaller that
a given time x. Let Z(n) be a random variable denoting
the runtime of a given parallel algorithm implementing the
multi-walk framework with n cores to solve a given instance
within some time, with probability distribution fZ(n)(x), and
the cumulative distribution FZ(n)(x) that can be computed as
follows:

FZ(n)(x) = P[Z(n) ≤ x]

= P[∃i ∈ {1...n}, Xi ≤ x]

= 1− P[∀i ∈ {1...n}, Xi > x]

= 1−
∏n
i=1 P[Xi > x]

= 1− (1−FY (x))
n

The derivative of the cumulative probability function leads
to the probability density function of the parallel algorithm as



follows:

fZ(n) = (1− (1−FY )
n
)′

= nfY (1−FY )n−1

The expected runtime of the parallel algorithm (assuming
the multi-walk framework) is defined as follows:

E
[
Z(n)

]
=

∫ ∞
0

tfZ(n)(t) dt

= n

∫ ∞
0

tfY (t)(1−FY (t))n−1 dt

In [2] the authors show that the RTD for different local
search algorithms and a variety of instances can be charac-
terised using two types of distributions: shifted exponential
and lognormal. An algorithm is exponentially distributed if
the probability of finding a solution within time t is given by:

FY (t) =

{
0 if t ≤ x0
1− e−λ(t−x0) if t > x0

where the parameter x0 represents the shift of the distribu-
tion. An important property of an algorithm exponentially
distributed is that its expectation when the number of cores
tends to infinity is 0. However, as shown in [18] the speedup
for the shifted exponential distribution is limited to 1+ 1

x0 λ
,

where x0 is the minimum value of the distribution and λ
= 1/mean. Intuitively, a shifted distribution means that a
minimum number iterations are needed to find a solution.

Alternatively, an algorithm is lognormally distributed if the
probability of finding a solution within time t is given by:

FY (t) =

{
0 if t ≤ 0
e−(ln t−µ)2/(2·σ2)

t·σ·
√
2π

if t > 0

From these formulas, the expected runtime of the multiwalk
parallel algorithm can be derived either symbolically (in case
of the exponential) or numerically (in case of the lognormal).
The key parameters of shifted exponentially distributed algo-
rithms are the shift x0 and λ denoting 1 divided the mean
runtime of the algorithm. The key parameters for a lognormally
distributed algorithm are µ and the standard deviation σ of the
natural logarithm of the runtime.

The lognormal distribution is a typical example of a fat-
tailed distribution [19], and this distribution is known to be
a good characterisation for local search algorithms. Unlike
the exponential distribution where it is feasible to analytically
solve the integral under the curve to compute the expected
value, for the lognormal distribution it is necessary to use
numerical methods to compute the expected value.

We remark that [2] computes the RTD of the algorithms
after collecting a representative number of runtime executions

of the algorithms. Informally speaking, [2] requires that an
instance is solved in order to analyse its RTD. In this paper,
we overcome this limitation by using ML techniques to predict
the parameters of the distributions of unseen instances.

D. Supervised Machine Learning

Supervised Machine Learning (SML) exploits data labelled
by an expert to automatically build hypotheses emulating the
expert’s decisions [20]. Formally, a learning algorithm works
on a space of features Ω which are usually vectors of d values
in a given set R, i.e. Ω = Rd. To each vector of features is
assigned an output which can be numerical or a class label (in
the case of classification). Let Y be the set of outputs; in case
of multiple outputs Y can be a Cartesian product of numerical
or discrete sets. An SML algorithm first processes a training set
E = {(xi, yi), xi ∈ Ω, yi ∈ Y, i = 1 . . . k} made of k examples
(xi, yi), where xi ∈ Ω is the example description, and yi is the
associated output. The learning algorithm outputs a hypothesis
f : Ω 7→ Y associating to each example description x the
output y = f(x). The function f is built from the training set
and can then be used to predict the output for other examples.

For the case of numerical outputs, linear regression is
among the most prominent regression techniques. This tech-
nique considers real-valued features (Ω = Rd) and constructs
a function f(x) = β0 + β1x that best fits the training data.
Pace regression is a linear regression technique to compute
β0 and β1 with outstanding performance in particular when
the number of features is large and not completely mutually
independent.

In the binary classification case, the output of the learning
algorithm is either positive or negative (Y = {−1, 1}). Among
the most prominent classification algorithms are support vector
machines. This classification algorithm constructs the separat-
ing hyperplane that maximises the margin, i.e., the minimal
distance between the examples and the separating hyperplane.
The margin maximisation principle provides good guarantees
about the stability of the solution.

III. THE APPROACH

We describe here our method, which combines machine
learning and statistical evaluation to predict the computation
time of a randomized algorithm for large classes of SAT
instances. In the following, we assume that we have:

• a class of instances of a given problem, assumed to be
similar (for instance, k-SAT instances for a constant k),
• a local search algorithm A for the problem.

For sake of clarity, we describe the method in the case of the
SAT problem.

A. Offline Learning Phase

The first step consists in defining the training set and
compute its features and outputs. For this, we proceed in two
phases. In the first phase, we compute the set of SAT features
R1 as defined in SATzilla. Most of them are static, and we keep
the features concerning the solving time for SAPS and GSAT
as described above in Section II-B2. In the second phase,
we run A a certain number p of times, and we collect all
these runtimes. From this, we approximate the distribution of



the runtime of A on the training instances using the method
described in Section II-C. From this, we collect three data
points: the type of distribution of the RTD, its expectation
and its variance. These three data are the output that we are
interested in.

Concerning the type of distribution, we make the assump-
tion, that is does not change inside a given class of problem.
Precisely, if all 3-SAT instances for a particular clause-to-
variable ration in the training set correspond to a lognormal
distribution, we will take the lognormal distribution for every
new 3-SAT instance. For the parameters, we need a numerical
estimation which is done with a linear regression method. In
Section IV-A we describe how we select the most suitable
distribution for the target problems.

In case of a lognormal distribution, we collect the expec-
tations and variances of all the training set: Eµ = {(x1, µ1),
. . . , (xk, µk)} and Eσ = {(x1, σ1), . . . , (xk, σk)}. In case
of a shifted exponential distribution, we collect the minimum
and expectation of all the training set: Em = {(x1,m1), . . .
(xk,mk)} and Eλ = {(x1, λ1), . . . , (xk, λk)}. Then we learn
the functions allowing us to estimate the parameters (one func-
tion for each parameter), for instance in case of a lognormal
distribution we learn a function estimating the expectation and
another function estimating the variance: fσ(x)=βσ0 + βσ1 x and
fµ(x)=βµ0 , βµ1 x. This learning phase is used to calibrate the
model, and it happens offline.

B. Predicting the Sequential and Parallel Runtime Distribution

For unsolved instances we use our regression models to
estimate the runtime distribution of the sequential distribution.
First, we collect the vector of features characterising the new
instance xi in a given class. Then we use fσ and fµ if the
best fit was the lognormal distribution for this class of instances
during the learning phase, and fm and fλ for the shifted expo-
nential distribution. Finally, we feed the cumulative distribution
function with the output of the regression models to predict
the performance of the algorithm, using the model defined in
Section II-C.

With the same notation as we used in Section II-C, the
mean of the cumulative distributions for the sequential algo-
rithms can be calculated symbolically as x0 + 1/λ for the
shifted exponential distribution, and as eu+σ

2/2 the lognormal
distribution. For the parallel algorithms we use the expectation,
i.e., E

[
Z(n)

]
, where n indicates the number of cores. The

integral can be solved symbolically for the shifted exponential
distribution to compute the mean runtime as min + 1/(n · λ).
For the lognormal distribution we use Mathematica to compute
the integral.

IV. EXPERIMENTAL EVALUATION

We focus our attention on three SAT local search solvers
(Sparrow [21], probSAT [22], and g2wsat [23]), and a TSP
local search solver LKH [10]. We recall that these solvers are
among the best solvers in their particular domains and we use
WEKA (version 3.6.2), a popular ML library to build the ML
models. In particular, we use the Pace regression algorithm
available in WEKA with its default parameters for the machine
learning models to estimate the parameters of the distributions,
i.e., lognormal and shifted exponential.

In our experiments we use random and structured instances.
The random SAT set of instances has been used previously
in [24] and [22] and we use the software portgen to randomly
generate TSP instances. The set of structured SAT instances
has been proposed in [25] and previously in [26], and we col-
lected structured TSP instances from OpenStreetMaps (osm).3

Random instances:
• 500 × 3-SAT instances with 10,000 variables around

the phase transition with 42,000 clauses and a clause-
to-variable ratio (r) of 4.2;

• 500 × 5-SAT instances with 500 variables, 10000 clauses
and r=20;

• 500 × TSP instances with the number of cities varying
from 500 to 5000.

Structured instances:
• 500 × SAT-encoded small-world graph colouring prob-

lems (sw);
• 74 × TSP-encoded cities from OpenStreetMaps, each

instance contains a set of points of interests of the city.

Sparrow and probSAT are known to be very effective for
random instances and [26] showed that g2wsat is a robust alter-
native for sw instances. In total we evaluate five scenarios for
random instances (〈3-SAT, Sparrow〉, 〈3-SAT, probSAT〉, 〈5-
SAT, Sparrow〉, 〈5-SAT, probSAT〉, and 〈TSP-random, LKH〉)
and two scenarios for structured instances (〈SAT-sw, g2wsat〉
and 〈TSP-osm, LKH〉). We treat each scenario independently,
therefore, we learn and test an algorithm for each reference
problem class.

We use 10-fold cross-validation to evaluate the accuracy
of our machine learning approach. In 10-fold cross-validation
the entire data set is divided into 10 disjoint sets D = {D1,
D2, . . . , D10}. For each subset Di∈[1,10], the machine learning
model is learned with D−Di and tested on Di. The advantage
of the 10-fold cross-validation is that all instances in the same
problem family are used for both training and testing, but each
instance is used for testing exactly once.

We performed all our experiments on a 39-node cluster
with Intel Xeon E5430 processors at 2.66Ghz and 12GB of
RAM. In all the experiments we use a time limit of 3600
seconds. Nearly all the experiments completed the execution
within this time limit, however, in the exceptional cases where
the timeout was reached we use the timeout value.

A. Training Phase

During the training phase we collect 500 observations of
the runtime for each instance in the training set (except for
osm instances where we collect 300 observations per instance).
With this information, the first step in the RTD prediction is to
identify a theoretical distribution to characterise the empirical
data. Therefore, we use Mathematica [27] to compute the
parameters for the two reference distributions, i.e., µ and σ
(lognormal distribution) and λ and the min. runtime execution
(shifted exponential), for each instance in the training set.
Furthermore, we use the Kolmogorov-Smirnov (KS) test to
find the distribution that best fits the instances. If the two

3https://www.openstreetmap.org



0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

Time HsL

P
ro

b
Hso

lL

Predicted RTD

Actual RTD

Fig. 1. Actual empirical RTD vs. predicted RTD for sequential probSAT on
a typical 3-SAT instance

reference distributions pass the test, we break ties in favor
of the distribution with the highest p-value.

In all iterations of the 10-fold cross validation process
we observed a single winning distribution for each scenario,
that is, the lognormal distribution is the best fit for: 〈3-
SAT, Sparrow〉, 〈3-SAT, probSAT〉, 〈5-SAT, Sparrow〉, 〈TSP-
random, LKH〉, and the shifted exponential distribution is the
best fit for: 〈5-SAT, probSAT〉. We would like to highlight that
we collected statistical evidence that the winning distribution
is a good characterisation of the empirical data. For instance,
for 〈3-SAT, probSAT〉 389 instances passes the KS test with a
p-value better than 5%, and 490 instances passes the test with
a p-value better than 1% for the lognormal distribution. For the
remaining problem families the winning distribution passes the
KS test with a p-value better than 5% for more than 70% of
the instances.

Similarly to random instances we also observed a single
winner distribution for structured instances, that is, the the non-
shifted exponential distribution (i.e., with x0 = 0) is the best fit
for 〈SAT-sw, g2wsat〉, and the lognormal distribution is the best
fit for 〈TSP-osm, LKH〉. We also collected enough statistical
evidence that the winner distribution is a good characterisation
of the empirical observations.

The last step of the training phase consists in computing
the regression models for the parameters of the distributions.
We experimented with the following regression models from
WEKA: Simple linear regression, Linear Regression, Gaussian
Process, RBF Network, and Pace Regression. Pace regression
reported the overall best results, and therefore we report the
results obtained with this method.

B. Testing Phase

In order to evaluate the accuracy of the machine learning
models, we perform 10 runs of the multi-walk parallel algo-
rithms and report the mean runtime for each actual empirical
evaluation of the algorithms. We recall that for each instance
in the testing set, we collect the set of features as described
in Section II, and use the regression models to compute the
parameters of the best distribution from the learning phase.

We begin our analysis with random instances. To this end,
Figure 1 shows the actual vs. predicted RTD for probSAT to

TABLE I. ROOT MEAN SQUARE ERROR (RMSE) AND CORRELATION
COEFFICIENT (CC) BETWEEN THE PREDICTED AND ACTUAL MEAN

RUNTIME FOR RANDOM 3-SAT INSTANCES (WITH 1, 10, 20, 30, AND 40
CORES)

Cores Sparrow probSAT
RMSE CC RMSE CC

1 0.23 0.82 0.22 0.85
10 0.30 0.78 0.25 0.82
20 0.26 0.79 0.23 0.82
30 0.24 0.82 0.22 0.83
40 0.25 0.79 0.21 0.82

TABLE II. ROOT MEAN SQUARE ERROR (RMSE) AND CORRELATION
COEFFICIENT (CC) BETWEEN THE PREDICTED AND ACTUAL MEAN

RUNTIME FOR RANDOM 5-SAT INSTANCES (WITH 1, 10, 20, 30, AND 40
CORES)

Cores Sparrow probSAT
RMSE CC RMSE CC

1 0.24 0.78 0.23 0.79
10 0.49 0.63 0.47 0.60
20 0.43 0.62 0.37 0.60
30 0.38 0.66 0.31 0.65
40 0.35 0.68 0.29 0.66

solve a typical random 3-SAT instance. Clearly, the predicted
RTD closely matches the actual empirical RTD. Similar be-
haviour has been observed for other instances in the dataset.
Certainly, this figure visually confirms the accuracy of the
proposed framework to estimate the sequential RTD. Our next
step involves inferring the RTD of the parallel algorithm using
order statistics as discussed earlier.

We now evaluate the quality of the predicted RTD of the
parallel algorithms using the multi-walk framework. Figure 2
shows the actual vs. predicted mean runtime for probSAT on 3
and 5 SAT instances with 1, 10, 20, 30, and 40 cores and LKH
on TSP instances with 1, 2, 4, 8, and 16 cores. Each point
in the figure represents the predicted mean runtime (x-axis)
and the actual empirical mean runtime (y-axis), the diagonal
line represents a perfect prediction. As expected the sequential
algorithm exhibits larger runtimes than the parallel ones, and as
we increase the number of parallel units the algorithm tends
to report shorter runtimes. It can be visually observed that
the predictions greatly match the empirical observations of the
sequential and parallel algorithms.

In Tables I, II, and III we consider two of the most
common metrics to evaluate the accuracy of machine learning
models: the root mean square error (RMSE) and the correlation
coefficient (CC) of the predictions vs. the actual runtimes. The
RMSE measures the quality of the fit, with 0 representing
a perfect prediction. CC measures the direction of the linear
relationship between the actual and the predicted runtimes, +1
being a perfect positive fit.

It can be observed that for 3-SAT (resp. 5-SAT) instances
the RMSE of the predictions is between 0.21 and 0.25 (resp.
0.24 and 0.49) and the CC ranges from 0.79 to 0.85 (resp.
0.60 to 0.78), and more importantly the accuracy remains
stable as we increase the number of cores. The predictions
are better for TSP instances with a RMSE close to 0.2 and a
CC up to 0.95. We would like to point out that our results for
random SAT instances is consistent with the literature for mean
runtime predictions, with the benefit that our method estimates
the RTD for both sequential and parallel versions of the
algorithms. Additionally, we would like to point out that our
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(d) 3 SAT with 40 cores
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(e) 5 SAT with 40 cores
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(f) TSP rand with 16 cores

Fig. 2. Actual vs. Predicted mean runtime varying the number of cores for probSAT and LKH on SAT and TSP instances

TABLE III. ROOT MEAN SQUARE ERROR (RMSE) AND CORRELATION
COEFFICIENT (CC) BETWEEN THE PREDICTED AND ACTUAL MEAN

RUNTIME FOR RANDOM TSP INSTANCES (WITH 1, 2, 4, 8, 16 CORES)

RMSE CC
1 0.206 0.934
2 0.225 0.936
4 0.213 0.940
8 0.210 0.942

16 0.203 0.950

methodology reports more reliable results than [14] (RMSE of
0.69 vs. 0.2) for the LKH solver on TSP instances with similar
characteristics. We attribute this to the fact that [14] uses only
one run with a single seed per instance, whereas our method
relies on more accurate information by predicting the RTD of
the algorithm.

We now move our attention to structured instances. This
instances are typically more challenging, however, we recall
that we were able to identify a distribution to characterise the
two problems. Figure 3 shows the actual vs. predicted mean
runtime for g2wsat and LKH on sw and osm instances.

Although the predictions for this set of instances are
less accurate than for random instances, we provide reliable
estimations for the mean runtime (see Table IV) with a RMSE
ranging from 0.25 to 0.7 (resp. 0.88 to 0.89) for g2wat (resp.
LKH) and the CC of the predictions is between 0.65 and 0.71
(resp. 0.88 and 0.89) for g2wsat (resp. LKH). We would like to
point out that predicting the mean performance on structured

TABLE IV. ROOT MEAN SQUARE ERROR (RMSE) AND CORRELATION
COEFFICIENT (CC) BETWEEN THE PREDICTED AND MEAN RUNTIME FOR

STRUCTURED INSTANCES

Cores g2wsat sw TSP osm
RMSE CC RMSE CC

1 0.702 0.650 0.172 0.882
2 0.836 0.559 0.200 0.884
4 0.636 0.619 0.192 0.891
8 0.431 0.714 0.188 0.892
16 0.256 0.701 0.181 0.893

instances is more challenging than random instances. The
results for g2wsat are consistent with the literature for mean
runtime prediction, for instance, [28] showed a CC of 0.6 for
SAT local search on structured instances.

Finally, we computed the Spearman’s rank correlation
coefficient test and observed that in 31 (out of 35) scenarios
the reported correlation coefficient is significant with a p-value
better than 1%.

V. RELATED WORK

Over the last decades there has been a growing interest in
the estimation of the performance of the algorithms to tackle
a given instance. Early studies were devoted to estimating the
size of the search tree associated with general backtracking
algorithms. For example, Knuth’s estimator [13] is a Monte
Carlo method which randomly explores the tree from the root
to the leaves without backtracking, in order to get the expected
number of nodes as the average of several executions.
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(a) SAT-sw with 1 cores
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(b) TSP-osm with 1 cores
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(c) TSP-osm with 16 cores

Fig. 3. Actual vs. Predicted mean runtime varying the number of cores for g2wsat and LKH on structured instances, i.e., sw (SAT) and osm (TSP)

The Knuth’s estimator has been extended in several
ways. [29] extended the estimator to deal with upper bound
solutions which systematically help to prune useless portions
of the search tree. [30] proposed an online estimator, that is,
estimating the number of remaining nodes from the current
state of the search.

Machine learning has also been an alternative to estimate
the performance of a large number of algorithms. In [31],
the authors propose to use supervised machine learning to
classify the variation of the runtime of a given algorithm
on a set of Quasigroup instances. The authors use a set of
features to train a Bayesian learning algorithm to classify
instances into two categories, depending on whether or not
their solving time is less or equal than the median time required
to solve the entire training set. Afterwards, this information
can be used to discard low quality algorithms when solving
new instances. Alternatively, [32] shows the use of machine
learning to estimate whether a SAT instances is satisfiable or
not.

In [14], instead of classifying the runtime of a SAT
solver into several categories, addresses the challenging task
of predicting its runtime. They collect a set of general features
of SAT, TSP, and MIP instances to evaluate the accuracy of
several regression methods to estimate the actual runtime of
the algorithms. Generally speaking, random forest offers the
overall best predictions with a correction coefficient close to
1. [33] combines logistic and linear regression models to make
online runtime predictions, that is, predict the remaining time
of the algorithm from the current state of the search.

Interestingly, most of the literature for runtime prediction
is devoted to deterministic algorithms. However, [28] extended
the approach to stochastic local search algorithms algorithms
for SAT. To do so, the authors build a linear regression
model to predict the mean performance of a given algorithm.
Similarly, [34] also deal with the performance of a stochastic
algorithm by using neural networks to learn the mean number
of iterations for two variations of the LKH solver to tackle
TSP instances. In this paper, our approach is close to theirs,
but we go beyond predicting the mean or median runtime and
predict the RTD of the algorithm, this way, we obtain complete
details about the behaviour of the algorithm.

Due to the reliable performance of the machine learning
models for runtime prediction, these models have been largely
used in the context of the algorithm selection problem to build
robust portfolios of algorithms. Informally speaking, a portfo-
lio of algorithms is a framework to select the most suitable
algorithm (based on some performance criteria) to solve a
given combinatorial problem. Typically, the portfolio learns
a machine learning model to predict the runtime of individual
algorithms. Classification models have also been employed for
the portfolio constructions. We refer the reader to [35] for a
recent survey. Our approach is rather orthogonal since we are
interested in the performances of a single algorithm.

Recently, [36] demonstrated that analysing the runtime
distribution can have important consequences in the outcome
of the annual SAT competitions. In particular, the authors
showed that due to the variance in the runtime of the solvers,
the top tree solvers from the 2014 SAT competition could
have been ranked in any permutation by simply re-running
the experiments. Additionally, the authors also pointed out that
current techniques for estimating the mean runtime of the algo-
rithms might not be enough to provide reliable predictions for
industrial SAT instances due to the extreme runtime variation
of the solvers.

Finally, [37] proposed the use of case-base reasoning to
exploit different parameter configurations in massively parallel
systems; [38] evaluates the use parameter tuning approaches
in the cloud; and [39] uses machine learning to find a good
trade-off between energy consumption and solving time in the
context of SAT solving.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a methodology to predict
the sequential and parallel RTD of a given local search
algorithm to tackle a given instance. In particular, we start with
the prediction of the most suitable theoretical distribution to
describe the behaviour of the algorithm. Based on the literature
in the area, we limit our attention to the shifted exponential and
lognormal distributions. Then, we use a ML regression model
to learn the parameters of the distribution, and finally we apply
order statistics to infer the RTD of the parallel algorithm. In
this paper, we go beyond existing work aiming at predicting



individual metrics such as mean or median runtime execution,
and predict the whole RTD of the algorithm. We would like
to recall that the RTD fully describes the performance of
randomised algorithms, and therefore, we are able to infer
accurate knowledge of the behaviour of the sequential and
parallel versions of the algorithm.

We evaluated the quality of the ML models using the
expected RTDs to predict the mean runtime of SAT solvers
namely Sparrow, probSAT, and g2wsat with up to 40 cores
and the TSP solver LKH with up to 16 cores. Interestingly,
we have observed a correlation coefficient of up to 0.85 for
SAT solvers and up to 0.95 for the TSP solver for random
instances, and a CC of about 0.65 for g2wsat and a CC of
about 0.88 for LKH on structured instances.

Currently, the feature computation code relies heavily in the
use of SAPS and GSAT. We plan to introduce similar features
with our target solvers, i.e., Sparrow and probSAT, to improve
the quality of the ML models. Furthermore, we plan to extend
our study to optimisation problems where the optimal value
is unknown, and use the ML to predict the upper and lower
bounds of the solutions.
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