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Abstract—The convolutional neural networks (CNNs) have
shown an intrinsic ability to automatically extract high level
representations for image classification, but there is a major
hurdle to their deployment in the remote-sensing domain because
of a relative lack of training data. Moreover, traditional fusion
methods use either low-level features or score-based fusion to
fuse the features. In order to address the aforementioned issues,
we employed a deep supervision (DS) strategy to enhance the
generalization performance in the intermediate layers of the
AlexNet model for remote-sensing image scene classification. The
proposed DS strategy not only prevents from overfitting, but also
extracts the features more transparently. Secondly, the canonical
correlation analysis (CCA) is adopted as a feature fusion strategy
to further refine the features with more discriminative power. The
fused AlexNet features achieved by the proposed framework have
much higher discrimination than the pure features. Extensive
experiments on two challenging datasets: 1) UC MERCED data
set and 2) WHU-RS dataset demonstrate that the two proposed
approaches both enhance the performance of the original AlexNet
architecture, and also outperform several state-of-the-art meth-
ods currently in use.

Index Terms—Pre-trained AlexNet, Canonical Correlation
Analysis(CCA), Deep Supervision (DS), Scene Classification

I. INTRODUCTION

With the rapid increase of remote sensing satellites over

the past decade, the mutil-angle and high-resolution remote

sensing (HRRS) images are available to study the structural

and spatial patterns with large detail. However, inter-class

similarity among scene categories or identical land-covers

make the classification tasks very challenging. For example,

images from river and beach, which are two typical scene

categories, may both consists of water, trees, and boats at the

same time but differs in the density and spatial distribution of

these three thematic classes. In this regard, it becomes a crucial

task for researcher to formulate efficient and effective descrip-

tors for the scene classification and existing methods can be

roughly divided into three main classes [1] : hand-crafted or

manually created methods (low-level), mid-level methods, and

deep feature learning based methods (high-level). Recently, a

significant progress has been made for learning high-level se-

mantic features due to the development of convolutional neural

network (CNN), since it has an end-to-end advanced structure

to efficiently encode spectral and spatial information based

on stack of convolutional filters. One approach is to use pre-

trained CNN as a activation vector (transfer learning). Another

approach is to construct the CNN from the start. However,

the back-propagation process, the stochastic gradient descent

(SGD) strategy or training a deep CNN from the start is a

highly time-consuming work. Moreover, overfitting is the main

reason due to small number of training samples. To achieve

transparent and better representation of hidden layers, a deep

supervision (DS) strategy is introduced [8]. It is an effective

companion objective operation which increase transparency of

the intermediate layers to boost the classification performance.

DS strategy can also minimize the gradient vanishing and help

CNN model to prevent overfitting.

In order to use multi-layer features, features fusion is an

efficient step to get the benefits of transfer learning features in

scene understanding. Among fusion methods, the multi kernel

learning (MKL) [3] and metric learning (ML) [4] are the

famous approaches to fuse features from different layers of

the CNN model. The work in [5], fused the fully connected

layer features based on the discriminant correlation analysis

(DCA). In [6], authors attempt to fuse the convolutional

and fully-connected layer features based on fisher kernel

coding approach (MIFK). Nonetheless these methods present

an improved classification accuracy, no literature has attempted

to use canonical correlation analysis (CCA) [7] as a feature

fusion strategy to fuse the different layers of AlexNet model,

so far. This make us so inquisitive to examine the impact

of fusing the AlexNet for the application of remote-sensing

image scene classication. Therefore, we attempt to address

the problem of remote sensing classification by fusing AlexNet

features and give detail of the fusion, how it can be explored to

make a complementary feature space. The major contributions

of this article can be summarized as follows.

(1) A simple but an efficient data expansion technique based

on affine transformations is proposed to expand the training

data.

(2) A deep supervision strategy is proposed to prevent

overfitting and to maintain the features robustness through both

final-layer supervision and intermediate-layer supervision of

the pre-trained AlexNet architecture.

(3) We employ CCA transformations and combine the

features of two fully-connected layers of the model into a

single one with more discriminative power, which allows an



improved classification performance.

The remainder of this paper is organized as follows. In section

II, two proposed scenarios are explained using the pre-trained

AlexNet architecture. Experiments on two data sets and the

results are presented in section III. Finally, in section IV , we

draw conclusions about the proposed methods.

II. THE PROPOSED METHODOLOGY

In this section, two scenarios are proposed for investigating

the effectiveness of pre-trained AlexNet architecture [21]. In

the first scenario, we incorporate a deep supervision strategy,

and in the second scenario, a feature fusion approach is

proposed to combine relevant information from two fully

connected layers into a single one with more discriminative

power than any of the input feature vectors.

A. Scenario(I): The deep supervision (DS) strategy

The goal of the pre-trained AlexNet architecture is to pro-

vide supervision at the output layer and propogating this super-

vision back to earlier layers. However, this single supervision

is not enough because the features learned at hidden layers (

early hidden layers in particular) are not always transparent to

deal with the classification error minimization. To alleviate the

single supervision in the pre-trained AlexNet architecture, and

to provide integrated direct supervision to the hidden layers,

a deeply-supervised (DS) [8] strategy is incorporated into the

model. DS is a strong convex strategy, and advantage of such

integrated deep supervision is evident on three aspects of:(1)

to minimize the non-transparency in the intermediate layers of

the Alexnet architecture; (2) discriminativeness and robustness

of learned features, through both final-layer supervision and

intermediate-layer supervision; (3) training effectiveness in the

face of ”exploding” and ” vanishing” gradients. This integrated

direct hidden layer supervision is added by the companion

objective function for each hideen layer, and can be regarded

as an additional constraint within the learning process. An

illustration is given below.

Let’s assume that the input sample xi ∈ Rn comprises

the raw input data and yi ∈ {1, · · · ,K} represents the

corresponding ground truth label for sample Xi. Suppose

that M denotes the total number of layers in the pre-trained

Alexnet architecture, W = (W (1), ...,W (M)) are the weight

combinations of the model, Meanwhile, the corresponding

weights w = (w(1), ..., w(M−1)) are associated for each

classifier in each hidden layer. Equations (1) and (2) refers

the weight parameters and the filters of the network:

Z(m) = f(Q(m)) and Z(0) = x (1)

Q(m) = W (m) ∗ Z(m−1) (2)

where the specific layer of the pre-trained model is denoted

by m. Wm,m = 1...M are the weights to be learned; Q(m)

concerns to the convolved responses based on the previous

map, and f(·) is a pooling function on Q. The total object

function is defined in Equation (3).

F (W ) = P (W ) +Q(W ) (3)

P(W) denotes the output objective, and Q(W ) is the summed

companion objectives, defined in Equations (4) and (5), re-

spectively.

P (W ) = ||w(out)||2 + L(W,w(out)) (4)

Q(W ) =

M−1∑
m=1

αm[||w(m)||2 + l(W,w(m) − r]+ (5)

where the classifier weight for the output layer is denoted

by w(out). The final combined objective function of the

architecture is shown in Equation (6).

||w(out)||2 + L(W,w(out) +
∑M−1

m=1 αm[||w(m)||2 + l(W,w(m) − r]+ (6)

where ||w(out)||2 and L(W,w(out)) are respectively the margin

and the (squared) hinge loss of the support vector machine

(SVM) classifier. For the AlexNet architecture, ||w(m)||2 and

l(W,w(m)) are respectively the margin and (squared) hinge

loss of the classifier at each hidden layer. The overall loss of

the output layer and the companion loss of the intermediate

layers is defined by:

L(W,w(out)) =
∑

yk �=y[1− < w(out), φ(Z(M), y)− φ(ZM), yk) >]2+ (7)

and

l(W,w(m)) =
∑

yk �=y[1− < w(out), φ(Z(M), y)− φ(ZM), yk) >]2+ (8)

From the above formulations , it can be observed, the deep

supervision via companion objectives make the pre-trained

AlexNet architecture not only learn the convolutional kernels

W �, but implie as an additional (soft) constraint at each

hidden layer of the architecture (or as a new regularization)

within the learning process. It is illustrated [8] that for each

l(W,w(m)), the w(m) directly depends on Z(m), which is

dependent on W 1, ...,Wm up to the mth layer. During the

course of training, the second term often goes to zero. In

this regard, the aim of enhancing the performance at output

layer is not altered and the companion objective acts in the

form of proxy or regularization for discriminative features. In

order to perform this operation, we set γ (a hyper parameter)

as a threshold in the second term of Eq.(6).In this way, the

companion objective function vanishes once falls to γ (or

below) and will stop contributes to the gradient update during

learning process. The mth balance parameter αm emphasizes

the importance of the error between the output objective and

the companion objective. To make it more clear, diagrammat-

ical representation is provided in Fig.1.

B. Scenario(II): Features Fusion Based on Canonical Corre-
lation Analysis

Feature level fusion in scene classification is believed to

be more effective than the other levels of fusion (score-

based), and an intuitive way of integrating these features is

to concatenate them into a single vector [3]. Our objective

is to combine relevant information from two fully connected

layers of pre-trained AlexNet model into a single one with

more discriminative power to construct final representation



of scenes images. In this regard, we adopt the canonical

correlation analysis (CCA) [7], a feature level fusion technique

that establish the correlation criterion function between the two

groups of feature vectors, to extract their canonical correlation

features. Suppose that X ∈ Rp×n and Y ∈ Rq×n represent

BoW features of n training images. p and q are the dimensions

of each vector.

Let’s assume that Sxx ∈ Rp×p and Syy ∈ Rq×q define

the within sets covariance matrices of X and Y respectively.

Furthermore, the Sxy ∈ Rp×q is referred the between set

covariance matrix such as Syx = ST
xy . The overall covariance

matrix S is then written as:

S =

(
cov(x) cov(x, y)
cov(y, x) cov(y)

)
=

(
Sxx Sxy

Syx Syy

)
(9)

It is complicated to follow the relationship between these two

sets of vector from matrix S because these feature sets may not

comply a consistent pattern. However, the objective of CCA is

to find the linear combinations,
∗
X = WT

x X and
∗
Y = WT

y X ,

such that to maximizes the pair-wise correlations across the

two feature sets. The pairwise correlation is defined as:

corr(
∗
X,

∗
Y ) =

cov(
∗
X,

∗
Y )

var(
∗
X).var(

∗
Y )

(10)

Where cov(
∗
X,

∗
Y ) = WT

x SxyWy, var(
∗
X) = WT

x SxxWx and

var(
∗
Y ) = WT

y SyyWy . Maximization is conducted using La-

grange multipliers subject to satisfy the following variables

var(
∗
X) = var(

∗
Y ) = 1. Both transformation matrices, Wx and

Wy , can be modeled using the eigenvalue equations:{
S−1
xx SxyS

−1
yy SyxŴx = R2Ŵx

S−1
yy SyxS

−1
xx SxyŴy = R2Ŵy

(11)

where Ŵx and Ŵy are the eigenvectors and R2 is the eignvalue

diagonal matrix. Hence, it is possible to perform feature-

level fusion either by concatenation or summation of the

transformed feature vectors and can be represented as:

Z1 =

⎛
⎝ ∗

X
∗
Y

⎞
⎠ =

(
WT

x X
WT

y Y

)
=

(
Wx 0
0 Wy

)T (
X
Y

)
(12)

or

Z2 =
∗
X +

∗
Y = WT

x X +WT
y Y =

(
Wx

Wy

)T (
X
Y

)
(13)

where Z1 and Z2 are called the Canonical Correlation Dis-

criminant Features (CCDFs). The architecture of AlexNet with

CCA is schematically illustrated in Fig.1. Hence, the feature

fusion can be performed either concatenation or summation

using the above Eq.(12)(13). Both layers features (FC6 and

FC7) are fed into a canonical correlation analysis (CCA) sub-

space to compute the new transformations. After performing

CCA, we can simply concatenate the new transformed features

into single and final feature vector to get the final classification

TABLE I
OVERALL CLASSIFICATION ACCURACY (%)OF REFERENCE AND

PROPOSED METHODS ON THE UC-MERCED AND WHU-RS DATA SETS.

Methods UC-Merced WHU-RS
GoogLeNet [20] 92.80±0.61 93.00

FK-S [23] 91.63±1.49 -
OverFeat [19] 90.91±1.19 -

MARTA GANs [22] 94.86±0.80 -
D-CNN with AlexNet [4] 96.67±0.10 -

D-CNN with GoogLeNet [4] 97.07±0.12 -
KCRC [12] 93.80±0.58 93.70±0.57

MTJSLRC [13] 91.07±0.67 91.74±1.14
MS-CLBP1 [14] 90.60±1.40 93.30±0.80

CaffeNet [16] 95.02±0.81 96.24±0.56
VGG-VD-16 [16] 95.21±1.20 96.05±0.91

Fusion by addition [5] 97.42±1.79 98.70±0.22
MLF [6] 89.62±1.67 88.16±2.76

AlexNet-SPP-SS [15] 96.67±0.94 95.00±1.12
SPP-net-+MKL [3] 96.38±0.92 95.07±0.79

salM3LBP-CLM [2] 95.75±0.80 96.75±0.86
Pre-trained AlexNet 94.30±0.80 95.60±1.54

Pre-trained-AlexNet-Aug 96.63±0.40 97.13±0.60
Pre-trained-AlexNet-Aug-DS 97.10±0.50 97.90±0.50

Pre-trained-AlexNet-Aug-DS-CCA 97.80±0.30 98.80±0.30
Fusion by concatenation (Proposed) 98.10±0.20 99.17±0.20

performance. This simple concatenation further improves the

classification accuracy as shown in Table I.

III. DATASETS AND EXPERIMENTAL SETUP

In this section, we explore the effectiveness of the proposed

methods, and compare with several state-of-the-art approaches

on two datasets, namely the widely utilized UC Merced dataset

[9] , and the WHU-RS dataset [10].

A. Data sets

The UC Merced dataset is acquired from the USGS National

Map Urban Area Imagery collection, contains 21 distinctive

scene categories. The image size is 256 × 256 pixels with

a pixel resolution of one foot. Each class is composed of

100 samples. The second data set chosen for evaluating the

performance of the proposed AlexNet-DS-CCA model is the

public WHU-RS data set. It consists of 950 images with a

size of 600×600 pixels with various resolutions, illumination,

scale, collected from Google Earth, which make it more

complicated than the UCM dataset. This dataset is relatively

small than the UC Merced dataset because of containing 19

scene categories.

B. Experimental Setup

In each experiment, the images are resized to 227×227×3
for the pre-defined size requirement of the AlexNet model.

To increase the diversity and preventing from overfitting

issue, we algorithmically expand both data sets by applying

affine transformations to the raw images. This simple data

augmentation was adopted by incorporating three types of

transformations including rotation, translation and scaling to

all the images. Rotation was done by rotating the images 40

degree clockwise using bilinear interpolation. Translation was

peformed by using the translation vector [80 80]. Images were

scaled using factor 5 by bicubic interpolation. For training and



Fig. 1. The pre-trained AlexNet with affine transformations, deep supervision and canonical correlation analysis. First, the affine transformations are used as
a data augmentation to expand the datasets. The Deep Supervision (DS) approach is used to prevent from overfitting. Canonical Correlation Analysis (CCA)
based transformations are performed to fuse the features in order to obtain discriminative feature representation. Finally, features are simply concatenated to
obtain the final classification performance.

testing, The linear SVM is trained on a set of 80% samples per

category and validated on the rest of data. We use LIBSVM

library package for the linear SVM. The pre-trained model

used in this paper is available on Caffe Model Zoo [11]. For

the scenario I, the optimization is performed using the SGD

algorithm in MATLAB and the gradient functions in a same

way following the AlexNet architecture. For the scenario II, we

utilize only the 4096-dimensional activation vectors from the

first and second fully-connected (FC) layers in a feed forward

way to CCA subspace, and then fuse these features sets by

concatenation. In an overall view, the pre-trained AlexNet-DS-

CCA architecture, as shown in Fig.1, illustrates the proposed

methods with affine transformations to obtain an improved

classification performance. All the experiments are conducted

using MATLAB 2017b on an Intel Core i7-3770 with a 8GB

of RAM memory. The experiments were conducted 5 times to

obtain convincing results for both datasets.

C. Results

In Table I, results from other state-of-the-art methods are

shown, and summarized here for a comparison analysis. To

generate a class-specific codebook, an improved class-specific

codebook using kernel collaborative representation based clas-

sification (KCRC) is proposed in [12]. Multiple features, e.g.,

shape, color and textual features, are used in [13]. Then, a

multi-task joint sparse and low-rank representation is adopted

to combine the features. The fisher kernel (FK) coding frame-

work is introduced to extend the BOVW model in [23], by

characterizing the low-level features with a gradient vector.

Authors report in [14], introduce the completed local binary

patterns (CLBP) operator for the first time on remote sensing

land-use scene classification. Unsupervised learning is pro-

posed [22] to learn a representation using only unlabeled data.

In [5], discriminant correlation analysis (DCA) is used to prove

that a feature fusion can be performed efficiently by fusing two

fully connected layers of VGG-Net architecture. The AlexNet

is explored with spatial pyramid pooling (SPP-net), and then

transfer learning is performed to ensure the effectiveness of

each layer. In order to fuse the multi features, the multi-kernel

learning is used [15]. The work presented in [16], attempts to

tune the weights of CaffeNet using the fine-tuning approach

based on VGG-VD-16 architecture. Metric learning (ML) [4]

has been utilized frequently into the convolutional neural

models to further increase the discrimination of deep represen-

tations. A new approach is introduced to extract features using

sparse autoencoder in [17]. A large patch convolutional neural

network (LPCNN) is proposed in [18], where authors replace

the fully-connected layer with global average pooling layer to

decrease the kernels parameters. Other approaches including,

OverFeat [19], a fused feature representation between salM

3 LBP and CLM [2] and six fine-tuned ConvNets [20]. As

shown in table I, it can be observe that even proposed data

augmentation (affine transformation) strategy achieves high

accuracy than most of comparison methods. This phenomenon

may be caused by lacking enough training samples, as there

are 100 training samples of each class of UC merced data

set and 50 to 60 of each class of WHU-RS data set. Mak-

ing a comparison with these methods, our proposed fusion

achieves the best accuracy ( 99.17%) for WHU-RS dataset

and obtain an impressive accuracy (98.10%) for UC Merced

dataset. Hence, the proposed fusion framework achieves very

competitive accuracy in the literature of scene classification

when compared with low-level based approaches, high-level

methods, and deep learning frameworks.

For further analysis, a confusion matrix of WHU-RS dataset

and UC Merced dataset is shown in Fig.2 and Fig.3, respec-

tively. From Fig.2, the Pond category in WHU-RS dataset,

which is hard to be classified in all proposed methods because

of inter-class similarity with port and farmland categories,

achieving low accuracy. From the confusion matrix of UC

Merced dataset as shown in Fig.3, it can be observe that other

classes such as storage tanks, tennis court, sparse residential,

medium residential, forest, river, and dense residential are

easily confused due to similar structures and background color.



Fig. 2. Confusion matrix for the proposed model with WHU-RS data set.

Fig. 3. Confusion matrix for the proposed model with UC-Merced data set

In summary, these data sets are challenging, even though we

have achieved a comparable performance.

IV. CONCLUSION

This paper proposes an improved pre-trained CNN architec-

ture named the pre-trained AlexNet-DS-CCA to classify the

remote sensing scene images. It could be observed that the

proposed data augmentation strategy leads to very encouraging

classification results and competes most of the existing results

on the same data sets. However, our approach does not neglect

the importance of manually collecting more training data.

To provide rich semantic information, and to prevent from

overfitting, we integrate direct supervision by incorporating a

deep supervision strategy (DS) into the intermediate layers,

rather than the standard approach that provides supervision

only at the output layer. The incorporation of DS strategy can,

to some extent, alleviate over-fitting problem. Furthermore,

a CCA method was adopted to fuse the two fully-connected

layers features, which allows an improved classification perfor-

mance than previous fusion methods. The experiments on two

classical satellite data sets have demonstrated that the proposed

framework boost the classification results compared with state-

of-the-arts methods used now.
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