
HAL Id: hal-02020330
https://hal.science/hal-02020330

Submitted on 15 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Path Generation with LSTM Recurrent Neural
Networks in the context of the Multi-agent Patrolling
Mehdi Othmani-Guibourg, Amal El Fallah-Seghrouchni, Jean-Loup Farges

To cite this version:
Mehdi Othmani-Guibourg, Amal El Fallah-Seghrouchni, Jean-Loup Farges. Path Generation with
LSTM Recurrent Neural Networks in the context of the Multi-agent Patrolling. 30th International
Conference on Tools with Artificial Intelligence (ICTAI), Nov 2018, VOLOS, Greece. �hal-02020330�

https://hal.science/hal-02020330
https://hal.archives-ouvertes.fr

Path Generation with LSTM Recurrent Neural
Networks in the context of the Multi-agent

Patrolling
Mehdi Othmani-Guibourg
ONERA, Toulouse, France

Sorbonne Université - Faculté des Sciences
Emails: Mehdi.Othmani-Guibourg@onera.fr

Mehdi.Othmani@lip6.fr

Amal El Fallah-Seghrouchni
Sorbonne Université - Faculté des Sciences

CNRS, UMR 7606, LIP6
F-75005, Paris, France

Email: amal.elfallah@lip6.fr

Jean-Loup Farges
ONERA, Toulouse, France

Email: Jean-Loup.Farges@onera.fr

Abstract—We propose a conceptually simple new decentralised
and non-communicating strategy for the multi-agent patrolling
based on the LSTM architecture. The recurrent neural networks
and more specifically the LSTM architecture, as machines to
learn temporal series, are well adapted to the multi-agent patrol
problem to the extent that they can be viewed as a decision
problem over the time. For a given scenario, a LSTM neural
network is first trained from data generated in simulation for
that configuration, then embedded in agents that shall use it
to navigate through the area to patrol choosing the next place
to visit by feeding it with their current node. Finally, this new
LSTM-based strategy is evaluated in simulation and compared
with two representative strategies, a cognitive and centralised
one, and a reactive and decentralised one. Preliminary results
indicate that the proposed strategy is globally not better than the
representative strategies for the aggregating criterion of average
idleness, but better than the decentralised representative for the
evaluation criteria of mean interval and quadratic mean interval.

Index Terms—Multi-agent systems, Multi-agent coordination,
Multi-agent patrolling, Artificial Neural Networks, Long Short-
Term Memory

I. INTRODUCTION

Multi-agent patrolling (MAP), also known as multi-agent
patrol task, is a generic task modelled as a multi-agent system
where agents must visit as soon as possible different places,
in order to protect or supervise them. There are a wide variety
of problems that may be reformulated as particular multi-
agent patrolling. As a concrete example, the task of monitoring
an area by a swarm of patrolling drones in order to detect
the presence of intruders or any other event such as, for
example, a start of fire in a forest. Beyond drones patrolling
an area, performing task efficiently can be useful for various
application domains where distributed surveillance, inspection
or control are required. For example, MAP could be useful, for
detecting recently modified or new web pages to be indexed
by search engines, or even for distributing computations over
calculators.

For over fifteen years different types of strategies were
proposed: centralised [13], emergent [13], idleness-based
[13], heuristic (idleness and distance) with pathfinding

[1], hamiltonian-cycle-based [5], TSP-heuristic-based [4],
reinforcement-learning-based [6] and even auctions-based [7]
strategies. Until now, few works concentrate upon the prob-
lematic of using Artificial Neural Networks (ANNs) for the
multi-agent patrolling and none tackles the advantages that
may be afforded by deep artificial neural networks in order
to outperform the previous strategies. This paper thereupon,
proposes a first model regarding the use of the Long Short-
Term Memory (LSTM) architecture as part of the multi-agent
patrolling problem. In this way, a new strategy based on the
LSTM architecture is introduced. Finally, the performances are
evaluated according to the original and aggregating evalua-
tion criterion used until now in this field of study, namely the
average idleness.

The Section II presents the background on multi-agent pa-
trolling and the LSTM networks useful to understand proposed
developments as well as previous works using ANNs as part of
the multi-agent patrolling. Then, Section III introduces LSTM
Path-Maker, the new strategy for the multi-agent patrolling
based on the LSTM architecture. In Section IV the new strat-
egy is analysed. Finally, Section V draws some conclusions
and indicates directions for further works.

II. BACKGROUND

This section presents the background on multi-agent pa-
trolling and the LSTM architecture.

A. Multi-agent patrolling

1) Formal definition: The MAP model consists formally of
a society of agents noted A, able to move in an environment
with the same mobility parameters, and a graph noted G =
(V,E) representing a discretisation of the area to patrol. Here,
V = {1, .., N} is the set of nodes identified by their indexes
and standing for the places to visit. E, is the set of edges of G
accounting for the paths between the places. With each edge
{v, w} corresponds a transit time cv,w representing the travel
time of the edge {v, w}. At the beginning of an instance of a
patrol task, agents are positioned on nodes of G. To each node
is associated a dynamic variable named idleness, indicating the

time elapsed since it has not been visited by any agent [4].
The idleness of a node v at time t, noted it(v), is defined as
being the amount of time elapsed since that node has received
the visit of an agent. The idleness of all nodes at the beginning
of the patrolling task is set to 0. Finally, each time an agent
arrives at a node v, it shall decide, among the edges including
v, the next edge to travel.

2) Strategies: A strategy of agent is an information pro-
cessing method, or algorithm, allowing each agent to take a
decision each time it arrives at a node. In the MAP, whatever
the strategy considered, each agent intends actions based on
its appropriated perceptions from the environment and its
knowledge about idlenesses of nodes. Indeed, agents make
idleness estimates that can be produced assuming different
hypotheses. Two extreme hypotheses are:
• individual idleness: each agent considers only its own

visits to reset its estimated node idleness. It corresponds
to the case where communication between agents is not
possible. In case of a mission with only one agent,
individual idleness corresponds to real idleness, also
called global idleness.

• shared idleness: all agents consider visits of all agents to
reset estimated node idleness. In the case of perfect in-
stantaneous communication between agents, or a mission
with only one agent, shared idleness corresponds to real
idleness, also known as global idleness.

Thus, some strategies of agent can be viewed as decision
procedures divided into two stages: first the information pro-
cessing stage corresponding to the retrieval and processing of
the information about the environment, and then, the decision-
making stage wherein the agent makes a decision with regard
to its new state of knowledge produced in the previous stage.

Among the wide family of strategies, two are relevant for
this work as representative strategies: Conscientious Reactive
(CR) and Heuristic Pathfinder Cognitive Coordinated (HPCC).

CR consist of selecting the next node to visit as the one
with the highest idleness in its neighbourhood. There is no
communication between agents: idlenesses are estimated by
each agent on the basis of its own path. CR can be thought
of as a good representative and thereby a comparison strategy
for the reactive and decentralised ones.

For HPCC, there is a perfect communication between
agents: idlenesses are estimated by a coordinator on the basis
of all paths of agents. The decision process includes two steps:
• selection of a target node that is not necessary in the

neighbourhood,
• computation of a path between the current position of the

agent and the target node previously selected.
The selection of the target node takes into account not only

the normalised idleness, but also the normalised time to go of
a candidate goal node from the agent’s current position. The
time to go between two nodes of V corresponds here to the
shortest path between these two nodes. Idleness and time to
go are normalised by scaling them between 0 and 1. A zero
normalised value is attributed to the maximum idleness (edges

with high idleness values shall be traversed) whereas a value
equal to 1 is attributed to the minimum idleness. Intermediary
values are calculated by means of proportions as shown in (1):

If minv∈V{it(v)} 6= maxv∈V{it(v)},∀v0 ∈ V

īt(v0) =
maxv∈V{it(v)} − it(v0)

maxv∈V{it(v)} −minv∈V{it(v)}
(1)

where it(v) and īt(v) are the global and normalised idle-
ness, respectively.

Normalised time to go is calculated similarly. For that pur-
pose, at the minimum time to go is attributed a zero normalised
value (edges with short distances shall be traversed) whereas
at the maximum time to go is attributed a value equals to one.
Intermediary values are calculated by means of proportions as
shown in (2) :

∀d(v0, v) a time to go from v0 to v,

d̄(v0, v) =
d(v0, v)−min{d}
max{d} −min{d}

(2)

where max{d} and min{d} are the maximum and the min-
imum time to go respectively, over all the v, w ∈ V : v 6= w.

Finally, for an agent at the position v0 at time t, the values
associated to nodes are given by (3):

∀rH ∈ [0, 1],∀v ∈ V, valrH (v, t) =

rH × īt(v)) + (1− rH)× d̄(v0, v))
(3)

where the weighting factor rH must be chosen by the
strategy designer. Minimising the node values according to that
expression i.e. selecting the nodes with the minimum value,
allows agents to visit nearby nodes with higher idleness first
and foremost. Moreover, there is a mechanism forbidding the
coordinator to select nodes that are currently assigned to other
agents.

The path computation takes into account the idleness of the
nodes between the current location and the goal to compute
the best path leading there. For that, it weights the edges as
shown in (4) :

∀rP ∈[0, 1],∀e ∈ E : e = {v, w},
crP (e) = rP × īt(w) + (1− rP)× c̄v,w

(4)

where the weighting factor rP must be chosen by the
strategy designer. In that case, it is the normalised transit time
¯ci,j of edge and not the normalised time to go d̄(i, j) of path

that is used to value edges.
Minimising the edge weights according to that expression

allows agents as well to visit nearby nodes with higher idleness
first and foremost.

HPCC as a communicating, fully-informed, coordinated,
and thereby centralised strategy is one of the best online -
namely without pre-calculation of paths - strategy. It can be
then regarded as a representative and thereupon a comparison
strategy for the coordinated and centralised ones.

3) Evaluation criteria: Graph idleness, also known as
average idleness, noted Iav or ITG, if it does not lead to
confusion, noted ITG, measures the average idleness over all
the nodes of G and the duration T , as follows:

ITG =
1

|N | × T

T∑
t≥0

∑
v∈V

it(v) (5)

Sampaio et al. [16] introduced evaluation criteria relevant
to establish aggregation measures not based on idleness but on
the intuitive concept of interval between visits to a node. In
this class of evaluation criteria, the size of intervals between
visits for each node is calculated by registering the value of
idleness just before an agent’s visit. All intervals for all nodes
are used to make an aggregated calculation. Two main interval-
based evaluation criteria are the Mean Interval (MI) and the
Quadratic Mean Interval (QMI), the mean and the root-mean-
square respectively, on all intervals between visits of a mission
execution. The latter penalises strategies that leave nodes
unvisited, or which produces wide intervals between visits
during the simulation and provides an additional precision
upon the distribution of visits over the nodes: one node with
wide intervals have a little impact upon MI while it has upon
QMI.

Finally, these two criteria are relevant insofar as the average
idleness of a simulation execution ITG can be defined from
those as follows:

ITG =
NInt

2NT
(QMI2 +MI) (6)

with NInt the total number of intervals during the simulation
execution.

In order to better evaluate the contribution of each agent
when the population size varies, these evaluation criteria are
normalized by multiplying values by the number of agents.

B. LSTMs

Recurrent Neural Networks (RNNs) are neural networks that
process an input sequence one element at a time, maintaining
in their hidden units - neurons in the hidden layers - a state
vector called hidden state, containing information about the
history of the sequence’s past elements. Each output of the
hidden units ht, depends upon the hidden state ht−1. This
hidden state can be viewed as a memory. Indeed, adding
memory to a neural network allows to process information
of the sequence itself. Classical feed-forward networks cannot
perform tasks depending upon sequential information. With
RNNs the relevant sequential information is preserved in their
hidden state due to the memory that enables to find correlations
between events separated by several time steps. This memory
is contained in the hidden layers which have a feedback loop,
and therefore they constitute recurrent layers.

Generally, the main purpose of this kind of architectures is
to learn long-term dependencies but theoretical and empirical
evidences show that it is difficult to learn to store information

Fig. 1: Layered LSTM unit: the core composant of the LSTM
architecture

for very long time [2]. A correction for that was to augment the
network with specialised memory cells. The first proposal in
that direction has been the Long Short-Term Memory (LSTM)
networks that use a special hidden unit, with the natural
behaviour to remember inputs for a long time.

LSTM are a special kind of RNN introduced and designed
to take into account the long-term dependencies. They have
the same general chain structure as the classical RNNs except
that the repeating module has a different structure more
complicated as shown in Fig. 1. In the first place, as stated
by Hochreiter et al. [11], an LSTM network was a recurrent
neural network with one input layer, one fully self-connected
hidden layer containing purpose-built memory cells, gate units,
and an output layer. Originally, an LSTM’s hidden layer was
assumed to have a dense connectivity: each gate unit and each
memory cell have seen all non-output units [11]. This memory
unit corresponds to a neuron with a recurrent self-connection.
Thus, a cell referred originally to an object with a single scalar
output. The activations of those neurons within the memory
units compose the state noted ct, sometimes called cell state,
of the LSTM network.

As stated by Graves et al. [9] an LSTM layer consists of a
set of recurrently connected blocks, known as memory blocks,
which in turn consists of cells. One cell, as neuron, outputs
one scalar. Originally, each memory block has contained one
or more layered recurrently connected neurons called memory
cells and sharing the same three multiplicative units: it the
input gate, ot the output gate and ft the forget gates, i.e. all
the cells of a memory block are connected to the same gate
units. The gate units provide continuous analogies of write,
read and reset operations for the cells. A memory block of
size 1 is then a simple memory cell [11] connected to tanh
activations. These blocks, can be thought of as a differentiable
version of the memory chips in a digital computer. In doing so,
it follows the network can only interact with the cells via the

gates. Besides, the memory block and the gates form the LSTM
unit as shown in the Fig. 1, which corresponds to a repeating
module. The state is thereupon, the memory accumulated by
the LSTM through time by using its forget, input and output
gates. However, unlike the base RNN model in which they
cover the same concept, the cell state ct must not be confused
with the hidden state ht, the former being the cell output while
and the latter the output of the hidden layers.

Also, it should be emphasised that the hidden state, re-
spectively the cell state, noted ht, respectively ct, of an
LSTM network, must be distinguished from the hidden state,
respectively the cell state, of the layer l (for a multi-layer
LSTM) noted hlt, respectively clt.

For some years and hitherto, most implemented LSTM
architectures contain only one cell in their LSTM units. The
LSTM units of a same layer can thereupon be “layered” into
only one LSTM unit where for all t a time step, it, ft, ot and
ct, the input gate, forget gate, output gate and cell activation
turn into vectors with the same size as the hidden vector ht;
hence the element-wise multiplication ∗. In that context, an
LSTM layer can be viewed as a vectorial LSTM unit and
thereby the vectorial cell and gates compose a layer. It follows
that defining the size of a layer’s cell defines that of its memory
cell block and that of its hidden state in cascade.

The hidden state output from an LSTM layer l is then
computed from the following composite function:

ilt = σ(W l
xi x

l
t +W l

hi h
l
t−1 + bli) (7)

f lt = σ(W l
xf x

l
t +W l

hf h
l
t−1 + blf) (8)

olt = σ(W l
xo x

l
t +W l

ho h
l
t−1 + blo) (9)

clt = f lt ∗ clt−1 + ilt ∗ tanh(W l
xc x

l
t +W l

hc h
l
t−1 + blc) (10)

hlt = olt ∗ tanh(clt) (11)

The parameters of an LSTM layer that must be learned for
a layer l are thereby:
• W l

xi,W
l
hi,W

l
xf ,W

l
hf ,W

l
xo,W

l
ho,W

l
xc and W l

hc

• bli, b
l
f , b

l
o and blc

The structure corresponding to several memory blocks in a
layer l can be derived from its more general architecture by
setting the elements of W l

hi, W
l
hf , W l

ho which are not block-
diagonal to 0.

It must be pointed out that the deep recurrent neural net-
works i.e. recurrent neural networks with several layers were
investigated for the first time by studying the performances
of the deep LSTMs [10]. Deep LSTMs combine the multiple
levels of representation that have proved so effective in deep
networks with the flexible use of long-range context that
empowers RNNs. The architecture of the deep LSTMs is the
same as that presented previously apart from the fact that there
are several LSTM layers.

C. Related works

Guo et al. [8] studied the use of neural network-based
methods for planning a complete coverage patrolling path. In

that work, the area to patrol is discretised into fixed radius
disks corresponding to the coverage range of robot’s sensor.
Every disk can then be thought of as a node to visit. The neural
network used in this work is non-hierarchical to the extent that
each neuron encoding a specific region, has an output into,
and receives an input from, each one of its neighbours. Each
neuron as a state variable, represents a region and is activated
negatively or positively, in function of presence of obstacle
or non-coverage by the patrol, respectively. The activities of
all these neurons compose a dynamic landscape such that the
non-visited areas globally attract the robot in the entire space,
and the obstacle locally repel the robot to avoid collisions.

Sales et al. [15] developed an autonomous patrolling system
composed of four intelligent robots that can freely move
through an indoor environment and detect intruders. The
robots are endowed with a localisation/navigation system
composed of an artificial neural network (ANN) used in
combination with a Finite State Machine (FSM) of which
the states correspond to the key features of the environment.
The FSM associates a sequence of actions to execute with a
sequence of states. The ANNs process the sensors’ data to
identify and classify the FSM states to determine the actions
to perform. After being trained offline to identify the key
features of the environment such as corridors, crossroads and
turns, they are fed into data obtained from robots’ sensors,
and they output the FSM states. Finally, each robot calculates
the shortest path by using A* to reach the enemy’s position
with taking into account its teammates, which have informed
it when they detected the intruder.

III. AN LSTM-BASED STRATEGY

In this work we specifically created and assessed one
LSTM-based strategy named LSTM Path Maker (LPM). The
LSTM network was trained over simulation traces of a fully-
informed, coordinated and communicating strategy: HPCC.
Finally, it was tested and compared to HPCC and CR.

This section presents our contribution, that is LPM, a
new LSTM-network-based decentralised agent strategy, which
learns to navigate the nodes composing the area to patrol,
from series of histories collected from numerous simulation
executions of a fully-informed and coordinated strategy: the
HPCC strategy. The main goal of this work as well as our first
assumption was that whether agents learn in average, to behave
similarly to the coordinator which have all information over
the area (the shared idleness of nodes and the real position of
agents), by using an LSTM network, then agents may approach
performances reached by the coordinated strategy.

A. Formal definition

The LPM strategy is an ANN-based strategy: the decision-
making process is carried out by means of an LSTM network
which outputs the next node from the current node given as
input of the network. This strategy can be thought of as a
reactive strategy that uses an artefact for guidance through the
area to patrol, such as a compass, which takes implicitly into
account the idleness of nodes and the agents’ positions. In our

context, the temporal series representing the successive visited
nodes by an agent is called a path. Any path’s vertex, has one
of its neighbours for next vertex.

For a given scenario, the LSTM network temporally learns
the next node to visit vt+1 from a model strategy, according
to the previous ones vt, vt−1, ..., v0 in the path and that for
all paths regardless of the path: each path, as a temporal
series accounting for the path of an agent, is fed into the
network node after node. It follows that, with defining f as
the decision procedure of the model strategy - and thereby
the strategy itself -, the LSTM network of the scenario that
approximates f can be defined as follows:

Let It = {it(v0), it(v1), ..., it(vN)} being the set of shared
idlenesses at the time t and va the node from which a next
node to visit, noted v̄, must be selected as a decision process,
by an agent a. Then, the next node to visit v̄ will be selected
from the procedure f , the requesting node va and the set of
shared idlenesses It such as:

∀t ∈ T, v̄ = f(va, It) (12)

Thus, with considering f̃ the vertex-purpose-LSTM-
network-based decision procedure as a function approximator
of f , and vt ∈ V the node visited by an agent a at the time
t ∈ T, we have:

∀t ∈ T, vt+1 = f̃(vt, ..., v1) (13)

This equation pertains to the formal definition of an LSTM
network: each output depends on the previous outputs.

Let N the number of nodes in the graph. With the aim
of feeding the LSTM network with the most appropriate and
relevant information about the nodes, each node has been
encoded as an N -dimensional one-hot vector: for the vertex
vi all the coordinates of the vector will have 0 as value
except the i-th coordinate which will have the value 1. The
output of the network thereupon, is an N -dimensional vector
whose the values are in [0, 1]; these values can be regarded as
probabilities. Thus, to ensure that all values are positive and
their sum equal to one, the output layer of the networks is a
softmax layer. The node represented by the maximum output
vector’s coordinate will be selected as the next one to visit.

Let (L,H) be the profile of parameters of an LSTM
architecture so that L and H stand for the number of layers
and the number of hidden units (or memory cells) per layer,
respectively, of a given LSTM architecture. Formally, by
defining b : V→ Vbin as being the function mapping all the
indices of nodes into their one-hot representation, the proposed
architecture can then be described with:

x1t = b(vt) (14)

If L > 1,∀l ∈ {1, ..., L− 1} xl+1
t = hlt (15)

Lnet = softmax(W · hLt) (16)

where dim(h) = H and W is a card(V) × H matrix of
parameters.

Finally, upon training stage’s completion, each LPM agent
will be endowed with the same parametrised LSTM network.

B. Network training

The training of the LSTM network is performed from the
logged paths of any high-performance strategy f . Generally,
the high-performance strategies make use of communications
and centralised decision-making process. The purpose here, is
then to approach the performances of these strategies without
communicating and thereupon distributing and decentralising
the decision-making process. Indeed, for example in the con-
text of a drones’ reconnaissance mission or even silent bots
penetrating a network, communications may be impossible or
discouraged. Such a strategy to learn will be called the model
strategy or simply the model if that does not lead to confusion.

For each scenario {f,G, Na}, also called simulation con-
figuration or simply configuration, with Na the number of
agents, whether it does not cause any confusion, the LSTM
network is first pre-trained with the purpose of learning the
topology i.e. the structure of the graph representing the area.
Thereafter, the network is trained over all the paths retrieved
from the executions of configuration for {f,G, Na}, so that
it learns to output with the highest probability the next node
to visit in the path. The process described here can be thought
of as performing sequence modelling where the sequence is a
path of nodes; here the sequence modelling corresponds to a
path generation.

As aforementioned in the Subsection III-A, the network’s
output layer is a softmax layer in order to return a probability
distribution as output. Path generation aims at learning a
probability distribution over paths by minimising the cross-
entropy of a model given a set of N training sequences of
length T :

min
θ
−

N∑
n=1

T∑
t=1

log p(vnt |vn1 , ..., vnt−1;θ) (17)

where θ is the set of the model’s parameters, of dimension
dim(θ) = 4(2L − 1)H2+(4L + 5Card(V))H , and p is our
predicted probability for the current element of the observed
sequence (vnt).

C. Decision

Generally, despite the pre-training stage, the network may
output the highest probability for a node that is not in the
neighbouring of the one given in input. In doing so, the
decision shall be made only among the output probabilities
standing for the neighbour nodes. It follows that each time
the one-hot vector of the current vertex is presented to the
network, the decision procedure f̃ concerning the next node to
visit consist of selecting the next node among the neighbours
of the current vertex with the maximum probability. This can
be mathematically rewritten as bellow:

Let:
• Vbin ⊂ {0, 1}card(V) be the set of nodes formatted into

one-hot vectors,

Fig. 2: Graphs used during assessment.

• Lnet : {0, 1}card(V) → [0, 1]card(V) the function repre-
sented by the LSTM network used here,

• Ng : [0, 1]card(V) × V → [0, 1]card(V), the function
setting to zero the values of the coordinates not corre-
sponding to the neighbours of a given node’s one-hot
vector.

Then,

∀t ∈ T,∀vt ∈Vbin,

vt+1 =argmax(Ng(Lnet(b(vt)), vt))
(18)

It then follows that:

∀t ∈T : vt ∈ V,

f̃(vt, ..., v1) = argmax(Ng(Lnet(b(vt)), vt))
(19)

with f̃ depending upon v1, ..., vt due to their relevant
features being stored in the memory of Lnet.

Finally, the first experiments showed that using LSTM net-
work as it stands, tends to lead agents to converge indefinitely
towards a small set of nodes, leaving thereupon others nodes
non-visited until the end of the execution. In doing so, the
decision procedure was slightly improved: henceforth, with
the aim to make the system more robust, the next vertex to
visit from the current one will be randomly selected according
to the distribution of probability output by the LSTM network,
normalised over the neighbourhood of the current vertex using
the Bayes’ theorem over the distribution of neighbours. This
new procedure enables therefore to add a little randomness
in the decision process when selecting the next node in
the neighbourhood, leading to increase the robustness of the
system, and thereby to avoid agents to visit only a restricted
set of nodes. This new resulting strategy was called Random-
Next-Neighbour-LSTM-Path-Maker, abbreviated RLPM.

IV. EXPERIMENTS AND RESULTS

A. Scenarios

Following Othmani et al. [14], three topologies were se-
lected to evaluate the new strategy: the maps Islands, Grid
and A, as shown in the Figure 2. For each map we tested the
strategies CR, HPCC with a value of 0.2 for r and RLPM was
trained from HPCC’s simulation with the same value for r as
well. To that end we used Pytrol, a new Python multi-agent-
patrolling-purpose simulator that has been specially designed
for this purpose. These tests were performed over population
sizes of 1, 5, 10, 15 and 25 agents and for each size 100
random starts, also called executions, were selected. For each
start, each strategy was tested over 3000 time steps. Consider-
ing that each move takes exactly one time step in the proposed
model, after excluding the moves upon edges, an agent visits
in average 650 nodes during one execution of 3000 time steps.
In doing so, the paths used to train the LSTM networks have
approximately a length of 650 nodes.

B. Training results

For each scenario seven architectures: (1, 1), (2, 2), (4, 10),
(1, 50), (2, 50), (3, 50), and (50, 2) were trained, with an end-
to-end training i.e. a non truncated back-propagation through
time. For any architecture we trained over 10000 epochs one
LSTM network for each simulation configuration in two stages
using the Pytorch library. First, the network is pre-trained over
2×106 epochs to capture as far as possible the structure of the
topology from 2-length series which stand for the edges of the
graph. Then, the network is trained during 10000 epochs over
the paths of agents where the parameters are initialised with
the values learnt during the pre-training stage. The Figure
3 shows the initial and final values of the cost, that is the
cross-entropy, during the validation stage for each architecture,
averaged over the maps and numbers of agents. Here, the
initial cost corresponds to the validation cost after the first
epoch. This figure shows that the better networks are (4, 10),
(1, 50) and (2, 50). Interestingly, the initial and final cost for
the architecture (50, 2) are almost identical and it has the
worst cost with a value of 3.87. This result tends to show
that the network’s parameters converged very quickly, namely
in 1 epoch. The number of parameters for (1, 1), (2, 2) and
(50, 2) are 258, 564 and 2484 respectively. It seems that those
numbers are too low for a satisfactory approximation of the
sequences. At the opposite, (3, 50) has 63100 parameters. It is
likely that this number is too large to avoid over-fitting and a
relatively bad performance in term of validation cost. Indeed,
for one agent the size of the training data is approximately
50000, that is lower than the number of parameters of the
(3, 50) network.

Considering the bad final validation costs of (1, 1), (2, 2)
and (50, 2), of 3.03, 2.08, and 3.87 respectively, we tested
and evaluated the four LSTM architectures (4, 10), (1, 50),
(2, 50), and (3, 50). Thus, each architecture has given rise to
four variants of RLPM named RLPM-L-H .

Fig. 3: Costs averaged over the maps and numbers of agents for each
architecture

C. Performance results

To evaluate their performances, the RLPMs were tested and
compared with CR, the reactive and decentralised strategy, and
HPCC, the cognitive one wherefrom they were trained. We
used the average idleness as evaluation criterion.

The Fig. 4 shows the normalised average idleness for the
topology Islands. For the sake of clarity, we showed the RLPM
variant corresponding to the best value over this criterion, i.e.
the RLPM variant with the lowest value. Not surprisingly,
HPCC always outperformed all the other strategies for all
the population sizes, except for 1 agent where CR is slightly
better. Such an observation stems from the fact that CR
being a decentralised strategy, for 1 agent the visits are
better distributed over nodes, penalising the average idleness.
In that topology, RLPMs have poor performances. They are
always worse than HPCC and CR with values of 347 periods
(RLPM-3-50) for 1 agent, 550 (RLPM-1-50) for 5 agents,
1078 (RLPM-4-10) for 10 agents, and 1793 (RLPM-1-50)
for 15 agents, 1153 (RLPM-1-50) for 25 agents. Besides,
the evolution of RLPMs’ performances over the normalised
Iav with respect to the number of agents shows a peak for
15 agents. This result suggests that from 1 to 15 agents the
RLPMs do not exploit the advantage provided by additional
agents. However, for 25 agents the performances are slightly
better regarding this issue considering that there are 25 agents
for 50 places to visit, namely 1 agents for 2 places.

The Fig. 5 shows the normalised average idleness for the
topology A. As well as for the Fig. 4, we showed the RLPM
variant corresponding to the best value over this criterion. As
previously, HPCC remains the best strategy. The best RLPM
is better than CR by 60 periods in average with RLPM-1-50
for 5, 10 and 15 agents, with values of 339, 366 and 424
periods, respectively, but worse by 207 periods for 1 agent,
with a value of 308 periods, and by 266 periods for 25 agents
with RLPM-3-50, with a value of 789 periods. The results for
1 and 25 agents tend to show that the strategy lead agents to
visit very frequently few nodes as explained bellow in the last
paragraph of this section. Particularly, further investigations for
25 agents showed that the bad distribution of visits over the
nodes is amplified by the benefit afforded by the presence of
additional agents not taken into account: many agents visit the

Fig. 4: Normalised average idleness of the evaluated strategy for the
map Islands in ordinate for the three maps and the population sizes
of agents in abscissa.

same set of nodes as previously stated, leading the normalised
criterion to be penalised.

Fig. 5: Normalised average idleness of the evaluated strategy for the
map A in ordinate for the three maps and the population sizes of
agents in abscissa.

The Fig. 6 shows the normalised average idleness for the
topology Grid. As previously, HPCC remains the best strategy.
For this map, RLPM-1-50 is always the best RLPM variant
except for 1 agent where it is RLPM-2-50. The best RLPM
is better than CR only for 15 and 25 agents by 43 periods in
average, with values of 347 and 384 periods, respectively. For
5 agents, RLPM-1-50 and CR are approximately equal with
313 periods for the former and 302 for the latter. Lastly, as
well as for the map A, the best RLPM is worse than CR for
1 agent with a value of 231 periods against 167 for CR, and
for 25 agents with a value of 716 periods against 558.

Finally, RLPM shows the worst performances for the map
Islands where it is always worse than CR, the reactive ref-
erence. Also, even though it is better than, or approximately
equal to CR for 5, 10 and 15 agents on the topologies A and
Grid, it is worse for 1 and 25 agents. Further analyses finally
showed that the best RLPM is always and by far better than
CR over the MI criterion, it is better or approximately identical
to CR for QMI, except for Islands. However, considering the
Eq. 6 depicting ITG as a function of MI, QMI, and NInt the

Fig. 6: Normalised average idleness of the evaluated strategy for the
map Grid in ordinate for the three maps and the population sizes of
agents in abscissa.

number of intervals, the QMI values and NInt of the best
RLPM are not low enough to offset the quadratic growing of
QMI in that equation.

V. CONCLUSION AND PERSPECTIVES

We have presented a new decentralised multi-agent pa-
trolling strategy based on LSTM networks, as well as the
way these networks were trained to be used online by the
patrolling agents. Our results show that in our proposed frame-
work, networks have globally good training performances:
the difference between the initial and final costs are globally
significant. Considering the bad final validation costs of cer-
tain network architectures, only the four LSTM architectures
(4, 10), (1, 50), (2, 50), and (3, 50) were embedded into agents
and tested in simulation.

To generate multi-agent patrolling training data and assess
this new strategy, we developed a new fully-fledged simulator
in Python, specially designed for the multi-agent patrolling;
this simulator, that we named Pytrol, allowed to gather data
for learning, test and evaluate the new strategies which were
confronted to the reactive and the cognitive standard strategies.

The evaluation showed that RLPM-1-50 is globally the best
RLPM strategy and better than the decentralised representative
CR upon the graphs A and Grid, but regardless of the RLPM
version used, this new strategy is not well-adapted to the
topology Islands. Indeed, the average idleness ITG takes into
account the distribution of visits over the nodes, due to its
QMI component, and the number of intervals. Preliminary
investigations showed that for Islands, the RLPMs have a high
QMI and many intervals, leading to the conclusion that the
new strategy distributes poorly the visits of agents over the
nodes.

In order to address this problem of generating a larger
variety of nodes to visit, new deeper and more complex
architectures will be investigated, as well as cost functions
to optimise more appropriate to our problematic of node
visits. Also, in further works, it will be more significant to
take into account the mean interval and the quadratic mean

interval criteria with the aim of analysing separately the central
tendency and the distribution of intervals between visits.

REFERENCES

[1] Almeida A., PM Castro, TR Menezes et GL Ramalho. Combining
idleness and distance to design heuristic agents for the patrolling task. In
II Brazilian Workshop in Games and Digital Entertainment, pages 33–40,
2003.

[2] Bengio, Y., Simard, P. & Frasconi, P. Learning long-term dependencies
with gradient descent is difficult. IEEE Trans. Neural Networks 5,
157–166 (1994).

[3] Bennett, M., Schatz, M.F., Rockwood, H., Wiesenfeld, K.: Huygens’s
clocks. Proceedings of the Royal Society of London. Series A: Mathe-
matical, Physical and Engineering Sciences 458(2019) (2002) 563–579

[4] Chevaleyre, Y.: Theoretical Analysis of the Multi-agent Patrolling Prob-
lem. In: Proc. of the Int. Conf. On Intelligent Agent Technology, Beijing,
China, pp. 302–308 (2004)

[5] Elmaliach, Y., Agmon, N., Kaminka, G.: Multi-Robot Area Patrol under
Frequency Constraints. In: Int. Conf. on Robotics and Automation, Rome,
Italy, pp. 385–390 (2007)

[6] Santana, H., Ramalho, G., Corruble, V., Ratitch, B.: Multi-Agent Pa-
trolling with Reinforcement Learning. In: Proc. of the Third Int. Joint
Conf. on Autonomous Agents and Multiagent Systems, New York, vol. 3,
pp. 1122–1129 (2004)

[7] Menezes, T., Tedesco, P., Ramalho, G.: Negotiator Agents for the
Patrolling Task. In: Sichman, J.S., Coelho, H., Rezende, S.O. (eds.)
IBERAMIA 2006 and SBIA 2006. LNCS (LNAI), vol. 4140, pp. 48–57.
Springer, Heidelberg (2006)

[8] Guo, Y., Parker, L., Madhavan, R.: 9 Collaborative Robots for Infras-
tructure Security Applications. In: Studies in Computational Intelligence
(SCI), April 22, v 2007, vol. 50, pp. 185–200. Springer, Heidelberg (2007)

[9] A. Graves and J. Schmidhuber, ”Framewise phoneme classification with
bidirectional LSTM networks,” Proceedings. 2005 IEEE International
Joint Conference on Neural Networks, 2005., Montreal, Que., 2005, pp.
2047-2052 vol. 4.

[10] Alex Graves, Abdel-rahman Mohamed, Geoffrey E. Hinton: Speech
recognition with deep recurrent neural networks. ICASSP 2013: 6645-
6649

[11] Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural
Comput. 9, 1735–1780 (1997).

[12] Yann LeCun, Yoshua Bengio, Geoffrey E. Hinton: Deep learning. Nature
521(7553): 436-444 (2015)

[13] Machado, A., Ramalho, G., Zucker, J., Drogoul, A.: Multi-Agent Pa-
trolling: an Empirical Analysis of Alternative Architectures. In: Sichman,
J.S., Bousquet, F., Davidsson, P. (eds.) MABS 2002. LNCS (LNAI), vol.
2581, pp. 155–170. Springer, Heidelberg (2003)

[14] Mehdi Othmani-Guibourg, Amal El Fallah-Seghrouchni, Jean-Loup
Farges, Maria Potop-Butucaru. Multi-agent patrolling in dynamic envi-
ronments. 2017 IEEE International Conference on Agents (ICA). 2017.

[15] D. O. Sales, D. Feitosa, F. S. Osorio and D. F. Wolf, ”Multi-agent
Autonomous Patrolling System Using ANN and FSM Control,” 2012
Second Brazilian Conference on Critical Embedded Systems, Campinas,
2012, pp. 48-53.

[16] P.A. Sampaio, G. Ramalho et P. Tedesco. The Gravitational Strategy for
the Timed Patrolling. In 22nd IEEE International Conference on Tools
with Artificial Intelligence (ICTAI) 2010, volume 1, pages 113–120. IEEE,
2010.

