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Abstract—Spectral Clustering is a popular technique to split
data points into groups, especially for complex datasets. The
algorithms in the Spectral Clustering family typically consist of
multiple separate stages (such as similarity matrix construction,
low-dimensional embedding, and K-Means clustering as post-
processing), which may lead to sub-optimal results because of
the possible mismatch between different stages. In this paper, we
propose an end-to-end single-stage learning method to clustering
called Regularized Non-negative Spectral Embedding (RNSE)
which extends Spectral Clustering with the adaptive learning of
similarity matrix and meanwhile utilizes non-negative constraints
to facilitate one-step clustering (directly from data points to clus-
tering labels). Two well-founded methods, successive alternating
projection and strategic multiplicative update, are employed to
work out the quite challenging optimization problems in RNSE.
Extensive experiments on both synthetic and real-world datasets
demonstrate RNSE’s superior clustering performance to some
state-of-the-art competitors.

Index Terms—Spectral Clustering, One-stage Learning, Suc-
cessive Alternating Projection, Strategic Multiplicative Update

I. INTRODUCTION

Clustering is an important unsupervised learning task which
aims to group a set of data objects into clusters in such
a way that objects in the same cluster are more similar
to each other than those in different clusters. For complex
datasets, Spectral Clustering [1] and its many variants [2]–
[4] are particularly popular due to their ability of discovering
highly non-convex clusters. Such algorithms make use of
the spectrum of the similarity matrix of the data to perform
dimensionality reduction before grouping objects in a low-
dimensional space [1], [5]–[10]. Typically, the algorithms in
the Spectral Clustering family consist of multiple separate
stages as follows:
(1) Construct a pairwise similarity matrix, e.g., according to

the k-nearest-neighbors graph of the data;
(2) Compute the corresponding Laplacian matrix and normal-

ize it;
(3) Represent the data objects in a low-dimensional space

using a few eigenvectors of the Laplacian matrix corre-
sponding to its smallest eigenvalues;

(4) Re-normalize the embedded data vectors and then group
them into C clusters, e.g., through the classic K-Means
algorithm [11].

The above multi-stage approach may lead to sub-optimal clus-
tering results due to the possible mismatch between different
stages. Moreover, there is still much room for improvement

in the optimization methods. For example, normalizing the
similarity matrix into a doubly stochastic matrix1 has been
found to be beneficial [6], and imposing some global priors
(like Laplacian rank) could help to reveal the underlying
clustering structure of the dataset [9], [12].

In light of the above analysis, we extend Spectral Clustering
and propose an end-to-end single-stage learning framework
for clustering named “Regularized Non-negative Spectral Em-
bedding”, or RNSE in short. It does not rely on a predefined
similarity matrix but learn the similarity matrix in a data-driven
self-adaptive manner. Furthermore, it introduces two global
priors, i.e., the doubly stochastic constraint (for normalizing
the similarity matrix) and the non-negative low-rank constraint
(for capturing the intrinsic clustering structure), to facilitate the
optimization. The effectiveness of RNSE for clustering has
been confirmed by extensive experiments on both synthetic
and real-world datasets.

II. RELATED WORK

Our proposed clustering technique RNSE is closely con-
nected to several research areas.

First of all, RNSE obviously has its roots in the Spectral
Clustering [1] and also its many variants including Laplacian
Eigenmap (LE) [5], Locality Preserving Projections (LPP)
[13], and Spectral Regression (SR) [7]. Those techniques
start from a predefined pairwise similarity matrix and perform
clustering (and other tasks) via spectral decomposition. They
typically consist of several separate stages. In contrast, our
proposed RNSE technique carries out the whole process from
the given data straight to the clustering result in just one stage,
with the similarity matrix automatically learned.

Next, the formulation of RNSE imposes non-negative con-
straints, so it is related to the series of Non-negative Matrix
Factorization (NMF) [14] techniques including Non-negative
Matrix Tri-factorization (NM3F) [15] and Graph regularized
NMF (GNMF) [16]. Those techniques decompose the data
matrix into two or more low-rank non-negative matrices from
which the clustering structures of the data could be read out.
However, our proposed RNSE technique is different from them
as it contains two sub-problems of optimization with non-
negative constraints which are combined in a unified opti-
mization framework. Thus RNSE could obtain the clustering

1A doubly stochastic matrix is a square matrix that satisfies S1 = 1,
ST 1 = 1, and S ≥ 0, where 1 is a column vector with all elements to be 1
and S ≥ 0 represents element-wise non-negativity.
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results directly after solving the optimization problem, while
those NMF-based methods need some post-processing such as
using the K-Means algorithm [11] to get the final clustering
results.

Last but not the least, RNSE utilizes structural regularization
in its learning algorithm. Generally speaking, it is useful to
incorporate appropriate priors into the learning process as the
priors could help to find the intrinsic structure of data. Locality
Preserving Projections (LPP) [13] tries to maintain the k-
nearest-neighbors graph while performing linear dimension-
ality reduction of the data. Similarly, Graph Regularized Non-
negative Matrix Factorization (GNMF) [16] adds a k-nearest-
neighbors graph based regularizer term to the vanilla NMF
algorithm. Those two techniques both use the local (manifold)
structure of data for regularization. There also exist tech-
niques with global structural regularization. For example, Dou-
bly Stochastic Normalization (DSN) [6] enforces the doubly
stochastic condition on the similarity matrix before carrying
out Spectral Clustering. Besides, Structured Doubly Stochas-
tic Matrix (SDS) [17], Clustering with Adaptive Neighbors
(CAN) [18] and Constrained Laplacian Rank (CLR) [9] bor-
row the idea of C-connected components (cf. Theorem 1)
from the spectral graph theory to form the regularization for
their learning algorithms. Inspired by the above methods, our
proposed RNSE technique utilizes both global structures (i.e.,
doubly stochastic matrix and non-negativity constrained C-
connected components) as regularizers for clustering.

III. THE PROPOSED APPROACH

Given a data matrix X = [x1, x2, · · · , xN ] ∈ RM×N , where
M is the dimension of a sample, N marks the number of the
total samples, and xi ∈ RM denotes the i-th sample (i =
1, 2, · · · , N ). Let S ∈ RN×N be the similarity matrix and
Sij corresponds to the similarity between xi and xj . Besides,
consider that Φ(·) : x ∈ RM 7→ H be a feature mapping
from x onto a reproducing kernel Hilbert space H and there
exists K(x, y) =< Φ(x),Φ(y) >. Classic clustering methods
usually pre-compute the similarity matrix based on the Euclid
distance between pairwise samples. However, we formulate it
as a data-based learning problem:

min
S
O(S) =

1

2

∑
ij
Sij ||Φ(xi)− Φ(xj)||22 (1)

s.t. S ≥ 0, S = ST , S1 = 1,

where S is constrained to become a doubly stochastic matrix
for better clustering [6], [19]. Note that we utilize the distance
between the kernel mappings instead of the original vectors
in Eq. (1) because || · ||2 measures the Euclid space and
kernel mappings in the Hilbert space would match such
characteristic. Based on the similarity matrix S, the classic
spectral embedding methods [1], [5], [6], [9], [10] could be
formulated as below:

min
P

1

2

∑
ij
Sij ||Pi −Pj ||22, s.t. PPT = IE , (2)

where P is the spectral embedding for the data points and
E is the dimension of the embedding vectors. Thereafter, K-
Means is adopted to cluster the data samples as a popular
post-processing technique. However, we further put the non-
negativity on P, set E to C (the number of clusters), and
finally arrive at:

min
P
O(P) =

1

2

∑
ij
Sij ||Pi −Pj ||22, (3)

s.t. P ≥ 0, PPT = IC .

Noticeably, each column of P will be one-hot vector; in other
words, P could be treated as an indicator matrix for clustering.
Besides, from the following Theorem 1 and Theorem 2, we
can conclude that the optimization (3) actually captures the
intrinsic structures, i.e., C-collected clusters.

Theorem 1 (C-connected clusters [20]). “The multiplicity C
of the eigenvalue 0 of the Laplacian matrix LS is equal to
the number of connected clusters/components in the graph
associated with S.”, which implies:

rank(LS) = N − C ⇔
C∑
i=1

λi = 0, (4)

where LS = diag(S1)2 − S, and {λ1, λ2, · · · , λN} are the
eigenvalues of LS in an ascending order.

Theorem 2 (Ky Fan’s Theorem [21]). Given a matrix P ∈
RC×N , the following optimization problem:

min
P

1

2

∑
ij
Sij ||Pi −Pj ||22 = tr(P · LS ·PT ) (5)

s.t. PPT = IC

is equivalent to
C∑
i=1

λi → 0.

Generally, learning with multi-stages, e.g., Spectral Cluster-
ing, would usually lead to sub-optimal solutions for clustering.
Therefore, we build a marriage between (1) and (3) into a joint
learning approach:

min
S,P
O(S,P), s.t. S ∈ Sdsm, P ∈ Pnlr, (6)

with
O(S,P) = O(S) + α||S||2F + βO(P), (7)

Sdsm = {S ≥ 0|S = ST ,S1 = 1}, (8)

Pnlr = {P ≥ 0|P ·PT = IC}. (9)

Obviously, Sdsm is a set of doubly stochastic matrices, Pnlr is
a set of non-negative low-rank matrices, and α and β are two
positive hyper-parameters. The philosophy of the optimiza-
tion (6) is an end-to-end single-stage learning for clustering
based on non-negative spectral embedding. Therefore, we call
our method “Regularized Non-negative Spectral Embedding
(RNSE)” for Clustering.

2diag(·) is a diagonal matrix spanned by the vector parameter. For
instance, diag(1) is actually an Identity matrix I. However, if the parameter
is a square matrix, then it will returns a column vector with the diagnoal
elements, e.g., diag(I) = 1.



Algorithm 1: The learning process: RNSE

Input: Dataset {xi}Ni=1; hyper-parameters α, β.
Output: Similarity matrix S and indicator matrix P.

1 begin
2 Randomly initialize indicator matrix P and similarity

matrix S;
3 repeat
4 Optimize problem (6) w.r.t. S while keeping P

fixed, i.e., Algorithm 2;
5 Optimize problem (6) w.r.t. P while keeping S

fixed, i.e., Algorithm 3;
6 until convergence;

IV. OPTIMIZATION METHODS

Regarding the objective function O(S,P), there are two
coupled variables to be learned which indicates that it’s a
non-convex optimization problem. Thus, we adopt the classic
strategies to address such optimization problem with alterna-
tive iterations [14], [16], [22], i.e., updating P while keeping
S fixed and vice versa, until a local minima is achieved. The
learning process is narrated in Algorithm 1. Subsequently, we
depict the detailed ideas for solving the two subproblems.

A. Optimizing S while keeping P fixed

When clustering indicator matrix P is fixed, the subproblem
for optimizing similarity matrix S can be written as:

min
S
O(S,P) s.t. S ∈ Sdsm. (10)

Set A = [Φ(x1),Φ(x2), · · · ,Φ(xN )], then we can transform
(10) into:

min
S

α||S||2F + tr(A · LS ·AT ) + β · tr(P · LS ·PT ) (11)

s.t. S ∈ Sdsm,

which is further equivalent to the simplified formalization:

min
S
||S−T||2F , s.t. S ∈ Sdsm, (12)

with T = 1
2α

[
(ATA + βPTP)− diag(ATA + βPTP) · 1T

]
.

Essentially, this is an optimization problem to find a doubly
stochastic matrix S nearest to the given matrix T, which
could be converted into the “metric projection optimizations”
and solved with alternating projection methods.

Definition 1 (Metric Projection). Given a set S ⊆ H and a
point x ∈ H, the metric projection (if exists) of x onto S is a
point p ∈ S such that:

||p− x|| = d(x,S) := inf
s∈S
||x− s||. (13)

Additionally, if for any x ∈ H, there exists such a unique p,
then the metric projection onto S is rewritten as the following
operator:

PS : H 7−→ S, i.e., PS(x) = p. (14)

Algorithm 2: Optimizing S while keeping P fixed

Input: Dataset {xi}Ni=1, indicator matrix P,
hyper-parameters α, β.

Output: Similarity matrix S.
1 begin
2 Initialize x0

1 := T, I1
0 := 0, I2

0 := 0, n = 1;
3 repeat
4 Calculate x1

n := PC1
(x0
n) and x2

n := PC2
(x1
n);

5 Calculate I1
n := x1

n − (x0
n − I1

n−1) and
I2
n := x2

n − (x1
n − I2

n−1);
6 Iterative index n = n+ 1;
7 x0

n := x2
n−1;

8 until convergence;

Theorem 3 (Projection Theorem). Set C ⊆ H be a closed
convex set. For any x ∈ H, there exists a unique p ∈ C such
that ||x − p|| ≤ ||x − c|| for all c ∈ C, which is formally
denoted as:

PC(x) = p. (15)

Proof. See Ref. [23].

Theorem 4 (Dykstra’s Method). Let C1, C2, · · · , Cr ⊆ H be

closed convex sets and C :=
r⋂
i=1

Ci. If C 6= ∅, then given x ∈ H
iterated by:  xin := PCi(x

i−1
n − Iin−1)

Iin := xin − (xi−1
n − Iin−1)

x0
n := xrn−1

, (16)

with initial values x0
1 := x, Ii0 := 0, there holds:

lim
n→∞

xn = PC(x). (17)

Proof. See Refs. [24], [25] and [26].

Theorem 5. Let H = RN×N and S = {M ∈ H|M =
MT , M1 = 1, M ≥ 0}, then S is a closed convex set.

Proof. This can be easily verified.

Now, let’s go back to subproblem (12). Firstly, Theorem 3
and Theorem 5 together tell us that there must be one global
and unique S for the optimization problem (12). Then, inspired
by the Theorem 4, we could turn (12) into:

x1
n := PC1(x0

n), (18)

and
x2
n := PC2(x1

n), (19)

where C1 = {S|S = ST , S1 = 1}, C2 = {S|S ≥ 0}, x0
1 :=

T, x0
n := x2

n−1, and n = 1, 2, · · · denotes the iterative index.
The solutions to the two sub-problems (18) and (19) could be
achieved by Theorem 6 and Theorem 7, respectively.

Theorem 6. Given any point Tv , the global optimal solution
to PC1(Tv) is

K +
N + 1TK1

N2
11T − 1

N
K11T − 1

N
11TK, (20)



where K =
Tv+TT

v

2 .

Proof. See Ref. [17].

Theorem 7. Given any point Tv , the global optimal solution
to PC2(Tv) is

[Tv]+, (21)

where [·]+ is an element-wise non-negative operation.

Proof. This can be easily verified.

Up to present, we could achieve the optimal solution for
problem (12) through Dykstra’s method, which is concluded
in Algorithm 2.

B. Optimizing P while keeping S fixed

It is straightforward to see that, when similarity matrix S is
fixed, the optimization problem (6) could be reduced as:

min
P
O(P), s.t. P ∈ Pnlr. (22)

Regarding that P is constrained to be both orthogonal
and non-negative in (22), it seems quite challenging to deal
with such problem. Subtly, since the similarity matrix S is a
doubly stochastic matrix, then we could draw the following
Theorem 8.

Theorem 8 (P-Transformer). Given S is a doubly stochastic
matrix, the subproblem (22) could be converted to the follow-
ing optimization problem:

min
P
||S−PTP||2F , s.t. P ∈ Pnlr. (23)

Proof. Since S ∈ Sdsm, then there is LS = IC − S, which is
followed by:

tr(P · LS ·PT ) = C − tr(P · S ·PT ).

Then the objective function in (22) could be further trans-
formed into:

min
P

tr(P · LS ·PT )

∝max
P

tr(P · S ·PT )

∝min
P
{tr(S · ST )− 2tr(S ·PTP) + tr(PTPPTP)}

∝min
P
||S−PTP||2F .

(24)

Consequently, the two optimization problems (22) and (23)
are equivalent.

In light of the optimization problem (23), its augmented
Lagrange function is displayed as:

L(P,Λ) = ||S−PTP||2F + tr{Λ(PPT − IC)}, (25)

where Λ denotes the Lagrange multiplier for the constraint
PPT = IC . With respect to the non-negative constraints,
they could be ignored in the augmented Lagrange function
when the multiplicative update philosophy [22], [27], [28] is
adopted, because the non-negativity for variable P is naturally
maintained during iterative updatings. More specifically, the

Algorithm 3: Optimizing P while keeping S fixed
Input: Similarity matrix S and hyper-parameters λ, µ
Output: Clustering indicator matrix P.

1 begin
2 Randomly initialize clustering indicator matrix P;
3 repeat
4 Update P according to the strategic multiplicative

update rule (34);
5 until convergence;

derivative of L(P,Λ) w.r.t. P can be formulated into two parts,
i.e.,

∂L(P,Λ)

∂P
= 4PPTP− 2P(S + ST ) + (Λ + ΛT )P

∆
= (A)+ − (B)+,

(26)

where (A)+ and (B)+ both represent element-wise non-
negative matrices. Then the iterative formula for updating P
could be written as:

P← P⊗ (B)+ � (A)+, (27)

where ⊗ and � corresponds to the element-wise multiplication
and element-wise division respectively [29]. Obviously, if the
factors in Equation (27) are all non-negative, then the result
will also hold non-negativity. In order to figure out the detailed
formula for Equation (27), we have to derive Λ.

Taking the partial derivatives of L(P,Λ) w.r.t. P and Λ
respectively, and setting them to zero by the Karush-Kuhn-
Tucker conditions, we arrive at:

∂L(P,Λ)

∂P
= 4PPTP−2P(S+ST )+(Λ+ΛT )P = 0, (28)

and
∂L(P,Λ)

∂Λ
= PPT − IC = 0. (29)

Multiplying factor PT on both sides of Equation (28) and
then taking the Equation (29) into it, there comes:

Λ + ΛT = 2P(S + ST )PT − 4IC . (30)

Combining Equation (30) with Equation (26), we could
easily obtain:

(A)+ = 4PPTP + 2P(S + ST )PTP;

(B)+ = 2P(S + ST ) + 4P.
(31)

Then the specific formula for updating P is expressed in
the following:

P← P⊗ {P(S + ST ) + 2P}
� {2PPTP + P(S + ST )PTP},

(32)

or in an element-wise version:

Pij ← Pij

[
P(S + ST ) + 2P

]
ij

[2PPTP + P(S + ST )PTP]ij
, (33)



where i = 1, 2, · · · , C and j = 1, 2, · · · , N. Inspired by
Ref. [30], using Equation (32 or 33) to update P directly
would yield unstable performance, then we adopt the following
“strategic multiplicative updates”:

Pij ← Pij{(1− λ) + λQ}µ (34)

where Q =
[P(S+ST )+2P]

ij

[2PPTP+P(S+ST )PTP]ij
, λ and µ are set to 0.5

and 0.9 respectively in our experimental parts. Here we call
the iterative rule (34) “Strategic Multiplicative Update”. Thus
the procedure for optimizing P is summarized in Algorithm 3.

V. EXPERIMENTS

This section would empirically evaluate the effectiveness of
RNSE for clustering on both synthetic and real-world datasets.

A. Experiments on Synthetic Datasets
The first synthetic dataset we constructed is a 1000× 1000

matrix with four 250×250 block matrices diagonally arranged
(Fig. 1). The data in each block denotes the affinity of any
two points within one cluster while the data outside all blocks
denotes noise. The affinity data within each block is randomly
generated in the range from 0 to 1, while the noise is randomly
generated in the range from 0 to c, which is set as 0.2, 0.4
and 0.8 respectively during the experiments.

Fig. 1 exhibits the original graphs and their corresponding
clustering results under different noise (e.g. c) settings. We
can see that RNSE overall presents good performances w.r.t.
clustering task. Specifically, RNSE successfully learns a struc-
tured doubly stochastic matrix with explicit block structures,
which divided the data samples into four clear clusters. As the
noise increases, the block structure in the original graph blurs,
but RNSE is still able to detect the intrinsic structures of the
data, which indicates the robustness of the RNSE method for
potential practical applications.

The second synthetic dataset is a randomly generated two-
moon dataset. There are two clusters with each being a volume
of 100 samples distributed in the moon shape (Fig. 2). Here,
we tested K-Means [11], Ncuts [1], [31] and RNSE on such
dataset. Note that in this figure, the color of the two clusters
are set to be red and blue, respectively; and the green lines
denote the affinity of any two points. Obviously on the whole,
Fig. 2 tells us the RNSE’s effectiveness.

More specifically, some analysis could be drawn as follows.
First, there are some points split into the wrong cluster w.r.t
K-Means (Fig. 2(b)). It’s easy to understand that K-Means
mainly deals with ball-like distributed data points, which is
obviously not fit for the manifold (e.g. two-moon) data points.
Second, From Fig. 2(c), NCuts could well divide the data
points into two separate clusters, but the green lines (affinities)
between samples are mixed across different clusters, which
indicates that the classic spectral clustering methods tends to
mis-recognize neighbors. Third, RNSE (Fig. 2(d)), extended
from the spectral family, could tell the differences between
both classes and neighbors. This implies that RNSE potentially
holds stronger abilities than the classic spectral methods (e.g.
NCuts) in handling complex datasets.

TABLE I
STATISTICS OF DATASETS.

Datasets #Samples #Features #Classes

diabetes 768 8 2
arcene 900 1000 2
mnist 1000 784 10
alpha digit 1404 320 36
yeast uni 1484 1470 10
PCMAC 1943 3289 2
waveform-21 2746 21 3
gisette 7000 5000 2

B. Experiments on Real-world Datasets

Datasets. Eight real-world datasets are selected in the
clustering experiments. More specifically, the “diabetes”,
“arcene”,“yeast uni”, “waveform21” and “gisette” are 5 pub-
licly available collections from website3; the “PCMAC”
datasete is available from website4; while the “mnist” and
“alpha-digit” datasets are collected from Sam Roweis’ page5.
Note that we just select the top-100 samples of each digit
(“0”∼“9”) in “mnist” dataset for our experiments. The detailed
statistics are summarized in Table I.

Competing Methods. To demonstrate the effectiveness
of RNSE, we compare it with several popular clustering
algorithms, i.e., (1) Canonical K-Means (K-Means) [11]6,
(2) Principal Component Analysis (PCA) [32]7, (3) K-Means
clustering in the Low-Rank subspaces (LRR) [33]8, (4) Non-
negative Matrix Factorization (NMF) [14], [34]9, (5) Normal-
ized Cut (NCuts) [1], [31]10, (6) Structured Doubly Stochastic
Matrix (SDS) [17], (7) Clustering with Adaptive Neighbors
(CAN) [18] and (8) Constrained Laplacian Rank Algorithm
for Graph-based Clustering (CLR) [9]11.

Among these algorithms, NCuts, SDS, CAN, CLR and
RNSE are approaches that consider the graph-based struc-
tures. PCA and LRR seek the low-rank principal components
for data compression. NMF is a model with non-negative
constraints and thus could learn additive parts-based compo-
nents. Note that K-Means directly splits the original high-
dimensional data points into clusters; while our RNSE method
could also cluster the datasets directly owing to the end-
to-end single-stage learning for indicator matrix. However,
other methods (excluding K-Means, CAN, CLR and RNSE)
mainly conduct two-stage learning for data clustering, i.e.,
low-dimensional embedding and K-Means clustering.

3https://archive.ics.uci.edu/ml/datasets.php
4http://featureselection.asu.edu/datasets.php
5https://cs.nyu.edu/home/index.html
6http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans
7http://www.cad.zju.edu.cn/home/dengcai/Data/DimensionReduction.

html
8https://sites.google.com/site/guangcanliu/
9http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.

NMF
10https://scikit-learn.org/stable/modules/generated/sklearn.cluster.

SpectralClustering
11SDS, CAN and CLR are available at http://www.escience.cn/people/

fpnie/index.html

https://archive.ics.uci.edu/ml/datasets.php
http://featureselection.asu.edu/datasets.php
https://cs.nyu.edu/home/index.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans
http://www.cad.zju.edu.cn/home/dengcai/Data/DimensionReduction.html
http://www.cad.zju.edu.cn/home/dengcai/Data/DimensionReduction.html
https://sites.google.com/site/guangcanliu/
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering
http://www.escience.cn/people/fpnie/index.html
http://www.escience.cn/people/fpnie/index.html


(a) Original Graph, noise = 0.2 (b) Original Graph, noise = 0.4 (c) Original Graph, noise = 0.8

(d) RNSE Result, noise = 0.2 (e) RNSE Result, noise = 0.4 (f) RNSE Result, noise = 0.8

Fig. 1. Clustering results on the block-diagonal synthetic dataset.

(a) Original Points (b) K-Means Result (c) NCuts Result (d) RNSE Result

Fig. 2. Clustering results on the two-moon synthetic dataset.

Evaluation Metrics. Accuracy (ACC) and Purity are widely
accepted and therefore employed here to assess the clustering
performance. The higher the performance scores, the better
the clustering results, based on the ground-truth class labels
presented in the datasets. For more details, please refer to
Refs. [35] and [36].

Experimental Settings. In light of the experimental set-
tings, all the baseline methods adopt the best parameter
configurations as suggested in their corresponding papers.
We use the widely used self-tune Gaussian method [37] to
construct the affinity matrix with kernel function K(x, y) =
exp{−(x− y)2/γ} (the value of γ is self-tuned, for not only
RNSE but also SDS, CLR, and CAN as suggested in their

corresponding papers).

As to our RNSE approach, we empirically achieve the
competitive α and β according to the 6×6 grid searches with
10[−3:1:2] and 10[−5:1:0], respectively. Generally speaking, the
best clustering performances on different datasets correspond
to slightly different parameter settings. But around the pa-
rameters α = 1 and β = 1 , all have achieved competitive
experimental results.

In addition, the maximum iterations for Algorithm 2 and
Algorithm 3 are set to 20 and 20 respectively, and the
convergence precision is configured as 10−9 for these two
sub-algorithms. Based on such settings, the number of outer
cycles for Algorithm 1 is set to 20 for convergence.



(a) diabetes (b) arcene (c) mnist (d) alpha digit
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Fig. 3. Convergence curves of RNSE on different datasets: the y-axis is the normalized objective function value (loss) and x-axis is the iteration number.

TABLE II
DIFFERENT COMPETITORS’ CLUSTERING PERFORMANCES MEASURED BY ACC (%).

Dataset K-Means PCA LRR NMF Ncuts SDS CAN CLR RNSE

diabetes 51.6± 0.0 51.6± 0.0 52.6± 0.0 52.0± 0.1 51.6± 0.0 51.6± 0.0 48.7± 0.0 64.1± 0.0 64.7± 0.0
arcene 59.0± 0.0 59.0± 0.0 59.0± 0.0 ———— 59.0± 0.0 59.0± 0.0 40.0± 0.0 50.5± 0.0 62.5± 0.0
mnist 51.0± 0.2 49.3± 0.2 54.7± 0.0 ———— 56.1± 0.7 53.2± 0.7 55.3± 0.0 56.6± 0.0 64.0± 0.3
alpha digit 43.1± 1.9 45.6± 1.2 37.8± 0.8 38.9± 1.0 39.9± 1.3 46.4± 1.0 19.8± 0.0 28.9± 0.0 48.1± 0.8
yeast uni 33.7± 3.9 37.4± 1.2 17.8± 0.1 ———— 29.4± 0.1 35.4± 0.8 30.8± 0.1 37.4± 0.0 41.3± 0.2
PCMAC 55.4± 0.0 55.3± 0.0 55.7± 0.0 56.8± 0.0 55.5± 0.0 51.6± 0.0 50.6± 0.0 50.3± 0.0 59.3± 0.0
waveform-21 50.7± 0.1 50.7± 0.0 46.1± 0.0 ———— 50.9± 0.0 51.9± 0.0 47.5± 0.0 50.7± 0.0 52.7± 0.0
gisette 51.5± 0.1 49.3± 0.1 50.6± 0.1 ———— 92.9± 0.1 93.3± 0.0 91.4± 0.1 93.8± 0.1 94.9± 0.1

Note: “—” denotes that the mixed signed matrices for those datasets are not suitable for the MU algorithms employed by NMF.

TABLE III
DIFFERENT COMPETITORS’ CLUSTERING PERFORMANCES MEASURED BY PURITY (%).

Dataset K-Means PCA LRR NMF Ncuts SDS CAN CLR RNSE

diabetes 65.1± 0.0 65.1± 0.0 65.1± 0.0 65.1± 0.0 65.1± 0.0 65.1± 0.0 65.7± 0.0 65.3± 0.0 65.7± 0.0
arcene 59.0± 0.0 59.0± 0.0 59.0± 0.0 ———— 59.0± 0.0 59.0± 0.0 40.0± 0.0 50.5± 0.0 62.5± 0.0
mnist 56.1± 1.7 55.5± 1.4 59.9± 0.0 ———— 60.6± 0.7 59.0± 6.8 64.1± 0.0 57.0± 0.0 68.1± 0.3
alpha digit 46.5± 1.6 48.9± 0.9 41.2± 0.4 41.9± 1.0 42.8± 1.3 49.7± 0.7 19.8± 0.0 33.2± 0.0 50.5± 0.3
yeast uni 47.1± 1.7 38.8± 1.2 33.6± 0.2 ———— 31.3± 0.0 37.3± 0.4 46.4± 0.1 46.4± 0.0 47.0± 0.3
PCMAC 55.4± 0.0 55.4± 0.0 55.7± 0.0 56.8± 0.1 55.5± 0.0 51.6± 0.0 50.5± 0.0 50.5± 0.0 59.3± 0.0
waveform-21 53.3± 0.0 53.5± 0.0 47.8± 0.0 ———— 51.7± 0.0 52.0± 0.0 52.8± 0.0 52.8± 0.0 52.8± 0.0
gisette 69.3± 0.1 67.8± 0.1 50.6± 0.1 ———— 67.9± 0.1 94.3± 0.0 93.9± 0.1 94.0± 0.1 94.9± 0.1

Clustering Results. In this part, we collect the average
clustering results in terms of ACC and Purity for all the
algorithms on these datasets and show them in Table II and
Table III. Note that for all datasets, α and β in RNSE are both
set to 1, we repeat the experiments for 10 times and average the
metric values as the final results. Broadly speaking, different
clustering approaches perform differently on various datasets.
From Table II, we can easily figure out that LRR presents high
ACC values on “PCMAC” dataset while performs quite poorly
on “yeast uni” and “alpha digit” datasets. This phenomenon

also appears in Table III w.r.t. Purity. It’s probably due to
the complex structures of “yeast uni” (the cellular localization
sites of proteins) and “alpha digit” (containing both letters
and numbers), which are not well match for the low-rank
assumptions. In terms of NCuts, a spectral-based method,
always performs quite well on various datasets, which is
reasonable because spectral-based algorithms could capture
the local structures by keeping the neighborhood similarities
and therefore preserve the nonlinear manifolds on complex
datasets. However, it’s usually inferior to the best performers,



and this is probably owing to the self-defined similarities and
multi-stage learning. In light of other competitors (taking SDS
for example), they also display the similar patterns, i.e., yield-
ing high values on some datasets (“yeast uni” or “waveform-
21”), but meanwhile showing poor performance on some other
datasets (“alpha digit” or “PCMAC”). Nevertheless, as one
can see clearly from all the experimental results in Table II and
Table III, our RNSE method consistently achieves the best or
at least comparative performances on all the datasets regarding
ACC and Purity. This confirms that by designing an end-to-
end single-stage learning paradigm with structured constraints,
RNSE could better capture the hidden complex structures and
thus learn a well-performed indicator matrix for clustering.

Convergence & Complexity Analysis. The updating rules
in Algorithm 1 for minimizing the objective function in the
optimization problem (6) are essentially iterative. Here, we
investigate their convergence and fastness via experiments.
Fig. 3 plots the loss curves of our RNSE on all the selected
datasets. In each sub-graph, the y-axis denotes the normalized
objective function value12 and x-axis is the iteration number.
Obviously, we could read that the RNSE algorithm converges
quickly, usually within 20 iterations.

By the way, it’s also easy to analyze the computational
complexities of the two subproblems (Algorithm 2 and 3 )
of RNSE, which corresponds to O(MN2 +CN2) and CN2,
respectively (usually M,C � N). Therefore, the RNSE’s
overall complexity is square to the number of samples which
is much faster than many existing competitors’ complexity
(i.e., O(N3)). However, for a larger dataset, say million-scale
samples, RNSE is reasonably to loss efficiency which posits
a big challenge for future work.

VI. CONCLUSION

To sum up, the main contributions of this paper are twofold:
First, we prove the advantage of performing spectral-style
clustering in an end-to-end single-stage fashion where the
similarity matrix is not prefixed but learned adaptively from
the data. Second, we show that the difficult optimization
problem of our proposed RNSE technique can be decomposed
into two subproblems (i.e., metric projection and orthogonal
symmetric non-negative matrix factorization) and then solved
by successive alternating projection and strategic multiplica-
tive update respectively.
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