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Abstract—In this paper, the concept of representation learning
based on deep neural networks is applied as an alternative
to the use of handcrafted features in a method for automatic
visual inspection of corroded thermoelectric metallic pipes. A
texture convolutional neural network (TCNN) replaces hand-
crafted features based on Local Phase Quantization (LPQ) and
Haralick descriptors (HD) with the advantage of learning an
appropriate textural representation and the decision boundaries
into a single optimization process. Experimental results have
shown that it is possible to reach the accuracy of 99.20% in the
task of identifying different levels of corrosion in the internal
surface of thermoelectric pipe walls, while using a compact
network that requires much less effort in tuning parameters
when compared to the handcrafted approach since the TCNN
architecture is compact regarding the number of layers and
connections. The observed results open up the possibility of
using deep neural networks in real-time applications such as
the automatic inspection of thermoelectric metal pipes.

Index Terms—Automatic Inspection, Convolution Neural Net-
works, Deep Learning, Visual Inspection, Texture;

I. INTRODUCTION

Nowadays it is a fact that computer vision-based solutions
are being applied more and more in the industry. One of
the branches of these applications aims to release the human
operators industrial inspection process, offering robust sys-
tems with a high-quality performance of quality control and
manufacturing process [1]. According to Malamas et al. [2],
inspection tasks can be categorized with respect to the features
into four different groups: dimensional characteristics, surface
characteristics, structural quality, and operational quality. Re-
garding the surface characteristics, there are several pieces of
research in the field of corrosion detection in metallic surfaces.
This topic requires the attention of the industries, where
preventive measures are taken to observe the life reduction
of iron/steel components caused by corrosion that could lead
to the failure of the system or reduce its efficiency [3]. A
branch that could be used as an example is the thermoelectric
companies. Their operation basically consists of metallic com-
ponents conducting high-pressurized steam through pipelines
to generate power. The severe operational conditions subject
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these pipes to several types of degradation, such as pitting
corrosion, material loss, flow accelerated corrosion (FAC) and
corrosion cracking [4]. Once that corrosion effect changes the
inner surface of the pipes, it is possible to apply algorithms to
extract the texture features in order to classify and evaluate the
surface. Vriesman et al. [5]] presented a dataset acquired from
pipes corroded in a laboratory setup, which emulates FAC
similar to the thermoelectric operational conditions. Besides
the dataset, Vriesman et al. [5]] also showed that it is possible,
based on handcrafted features, to classify the severity of the
corrosion. Once that the handcrafted extraction requires the
evaluation of different texture extractors and the adjustment
of the corresponding parameters, the aim of this work is to
bring to the same subject, an approach based on automatic
texture analysis using convolutional neural networks (CNN)
in order to identify and classify different types of corrosion
conditions.

In a similar direction, some works describe the use of CNN
as an automatic feature extractor. For instance, based on an
industrial dataset, Tao et al. [6] described a novel cascade
autoencoder that is capable of locating and classifying different
defects on metallic surfaces. Such defects are identified via
an autoencoder network that learns the representation of the
defect data in its convolutional layers and select the features
that represent the surface defects, segmenting the regions with
the accuracy of 89.60%. After the segmentation, the defects are
then classified by a compact CNN, reaching the state-of-the-
art with the accuracy of 86.82%. Ren et al. [7] used the Decaf
network pre-trained on the ImageNet dataset, characterizing a
transfer learning process. The image is segmented in patches
and features are extracted based on the full connected layer
(fc6) of the Decaf network. The extracted features are used
for training a multinomial logistic regression (MLR) model.
Their method was evaluated on three public and one industrial
dataset, when compared to handcrafted methods such as the
multiresolution local binary patterns (MLBP) and the gray
level co-occurrence matrix (GLCM), the method improved the
accuracy of the classification task between 0.66% and 25.50%.



With this in mind, in this paper, our hypothesis is that the
use of automatic extraction of deep features may improve
the classification accuracy of our previous method for visual
inspection of corroded thermoelectric metal pipes [5]. To such
an aim, deep features extracted using a Texture Convolutional
Neural Network (TCNN) [8], [9] are used to replace well-
known and efficient handcrafted features. The experimental
results have confirmed our hypothesis, since the accuracy was
improved from 98.71% to 99.20% in the task of identifying
different levels of corrosion in metallic pipes. The deep
textural features were able to better deal with some difficulties
presented in the images like illumination variance and the
presence of blurred spots. In addition, less effort is required
in terms of parameters tuning and computational processing
when compared to the original handcrafted features since the
TCNN architecture is compact regarding the number of layers
and connections. The observed results open the possibility
to apply the power of deep neural networks to real-time
applications such as the automatic inspection.

This paper is organized as follows. Section II describes the
feature extraction method and the dataset of thermoelectric
pipe images. Section III presents the CNN architecture. Sec-
tion IV presents the experimental results, which are discussed
in Section V. Finally, in Section VI, we present our conclusions
and perspectives of future work.

II. REPRESENTATION LEARNING AND DATASET

In this section, we describe the dataset of thermoelectric
pipe images used in our experiments, and we discussvthe
use of handcrafted textural features versus learning textural
representation directly from the images.

A. Image Dataset Description

The dataset of thermoelectric metal pipe images was ac-
quired from the internal surface of pipe walls using the
acquisition system described in [5]. The metal pipes emulate
flow accelerated corrosion (FAC) conditions. The images were
acquired at the resolution of 1024 x768 pixels as shown in
Fig. 1] For a better analysis of the focused region, the images
were preprocessed using a Cartesian to Log-Polar coordinate
conversion to unfold the images. The resulting images have
a resolution of 94x768 pixels, as shown in Fig. |2| . The
dataset consists of three different inner surfaces, which are:
non-defective (ND), medium corrosion (MC) and aggravated
corrosion (AC), as shown in Fig. 2] For each type of inner
surface, 50 images were gathered resulting in 150 images.

A visual inspection of the images has shown that the cor-
rosion changes the piper inner surface. Therefore, the relevant
information to discriminate among the three classes is more
related to texture than shapes or edges [5]]. The main challenge
is that the variability of luminosity and reflectance affect the
texture information severely. Besides that, as the acquisition
device moves within the pipes while acquiring images, the ac-
quired images could present some blurred spots along with the
image. These are some relevant points that a texture extractor
must overcome to extract the texture information efficiently

Fig. 1: An example of a non-preprocessed image of the internal
surface of the pipe wall.

(a) (b)
Fig. 2: Preprocessed examples representing the three classes
of pipes: (a) non-defective (ND); (b) medium corrosion (MC);
(c) aggravated corrosion (AC).
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Fig. 3: Texture CNN (TCNN) architecture with two convolution layers.

in order to train a classifier with a good generalization and
robustness.

B. Handcrafted Features vs. Representation Learning

Several algorithms for extracting textural features from im-
ages have been proposed, such as Local Binary Patterns [10],
[T1]], Local Phase Quantization [12], [13]], Rotation Pairwise
Invariant Co-occurrence Local Binary [[14]], Haralick Descrip-
tors [135]], and Gabor wavelets and other well-known
algorithms [I7]]. The point is that in a handcrafted approach,
the designed solution should consider the balance between
accuracy and computational efficiency. The robustness of these
algorithms normally comes with high computational costs.
Furthermore, these are general representations that may not
take into account all statistical properties and repeated patterns
since these algorithms have several parameters to tune in order
to achieve a good performance.

For example, to overcome the illumination/reflectance vari-
ation and the presence of blurred spots using a handcrafted
extractor, Vriesman et al. [3]] used as one of the extractors the
Local Phase Quantization (LPQ) algorithm, which is robust
for blurred spots and illumination invariant, reaching accuracy
between 87.43% and 96.28% depending on the values of two
parameters: slice width and window dimension. Furthermore,
to achieve a higher performance, the LPQ features had to be
concatenated with Haralick Descriptors (HD), reaching for
the best setup the accuracy of 98.71%. However, the use
of two different descriptors requires the fine-tuning of three
parameters as well as to find the best concatenation of feature
representations. Besides that, the fine-tuning of the feature
extractors must also be coordinated with the parameters of
the classifier algorithm. Therefore, finding the best setup to
maximize performance in terms of accuracy requires many
efforts in terms of parameter tuning.

Convolutional neural networks (CNN) emerged as an inter-
esting alternative since they can learn both the representation
and the classification into a single optimization process. Nani
et al. have shown that along with the layers of a CNN,

an image can be represented at different levels of abstraction
from low to high-level features, which can provide greater
robustness to intra-class variability and the presence of blurred
spots and illumination variation. In case of blur situations,
Wang et al. described the performance of a Simplified-
Fast-AlexNet (SFA) to classify different types of blurred
images, such as defocus, Gaussian, and motion blur. They
compared the performance between consolidated handcrafted
methods and the trained model over the same dataset. The SFA
solution reached accuracy between 93.75% and 96.66%, while
the handcrafted methods reached accuracy below 90.00%,
proving the capability of the CNN approaches to deal with
blurred spots. Considering the illumination/reflectance varia-
tion, Ramaiah et al. used a CNN approach that improved
the accuracy in 4.96% over the usual handcrafted methods
for facial recognition under non-uniform illumination, proving
the capability of the CNN to classify correctly images in an
illumination invariant way.

Therefore, in this paper we exploit the capacity of CNNs
to learn good representations and good discriminators to deal
with the classification of thermoelectric metal pipe images,
which contain essentially textural information.

III. TEXTURE CNN ARCHITECTURE

The architecture of the Texture CNN is based on the T-CNN
proposed by Andrearczyk and Whelan which includes
an energy layer that pools the feature maps of the last
convolutional layer by calculating the average of its rectified
activation output. This results in one single value per feature
map, similar to an energy response to a filter bank.

The proposed Texture CNN uses a simple structure derived
from AlexNet network, as illustrated in Fig. [3] but it has a
reduced number of parameters made up of only two con-
volutional layers, a max pooling layer to reduce the spatial
size of the representation, two fully connected layers and
an output layer. Besides the reduced number of layers, this
CNN achieves a good performance in learning textural features
while requiring low computational time and memory size. This
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Fig. 4: A sliding window with 50% overlapping to extract squared images of 94x94 which are further upscaled to 224 x224

to feed the TCNN.

trade between performance and computational time is possible
due to the energy layer (Fig. [3). The implementation of this
layer was made in a way that preserves the data flow of the
original layers. That means that the flattened output of the
energy layer is redirected directly after the last pooling layer,
in the concatenation layer. This concatenation generates a new
flattened vector containing information from the shape of the
image and the texture, which are then propagated through the
full connected layers [8].

The advantage when considering a feature extraction ap-
proach based on such a CNN is the fact that each layer
learns through the forward and backpropagation procedure,
an appropriate representation, which can lead to a better
classification of unknown images. This relevant point is where
this kind of approach differs from the usual handcrafted
methods, where the extraction and selection of features are
based on changing the parameters of the algorithms and
training classifiers separately.

A. Pre-Trained Models

From the perspective of deep learning, the classification
problem can also be solved through transfer learning. Instead
of starting the learning process with randomly initialized
networks, we start with a pre-trained model that was trained on
a large dataset to solve a problem similar to the one we want to
solve. Several pre-trained models used in transfer learning are
based on large CNNs that have a large number of parameters.
VGG16, Inception V3, and ResNet50, all trained on Imagenet
dataset, which are among the pre-trained CNN models used
for transfer learning, have 138M, 23M and 25M of parameters
respectively.

However, these pre-trained CNNs focus on obtaining in-
formation about the overall shape of the image which leads
to sparse and complex features that are less appropriate in
texture analysis as we mainly seek repeated patterns of lower
complexity [8]]. Nevertheless, we have also evaluated some
pre-trained models in Section IV.

B. Dataset Preparation

For training and testing the CNN in the thermoelectric metal
pipe dataset, some modifications were necessary to evaluate
the proposed method. Each preprocessed image present on

the dataset (Fig. [2) is upscaled using a bicubic interpolation
over 4x4 pixel neighborhood to match the input dimensions
required by the input layer of CNNs. Furthermore, to train the
CNNs properly, it is necessary large amounts of data. To such
an aim, we used the sliding window with overlapping of 50%.
Therefore, a 94x768 image produces fifteen 94x94 images,
resulting in 2,250 images. Furthermore, during the training,
we generate batches of tensor image data with real-time
data augmentation. The low-level data augmentation employs
transformations such as horizontal flipping, rotation, and width
and height shifting. This process can be observed in the Fig. 4]

IV. EXPERIMENTAL RESULTS

The evaluation of the TCNN was carried out using two dif-
ferent methodologies, 3-fold cross-validation (CV) and hold-
out. For the 3-fold CV, one fold was used each time for
training, validation and test, resulting into three TCNNs. The
percentage of images in each fold, as well as the accuracy
when each fold was used for training, validation and test is
shown in Table [

Fold Images Accuracy (%)
(%) Training Validation  Test
1 34 99.50 94.20 94.80
2 34 99.60 97.90 98.80
3 32 100.0 99.90 96.80

TABLE I: Accuracy of the proposed TCNN using 3-fold cross-
validation method.

The average accuracy on the test set is 96.80% with a
standard deviation of 2.00%. Besides the 3-fold CV, the TCNN
was also evaluated using the hold-out method. For such an
evaluation, we just merged folds 1 and 2 to make our training
set (68% of samples), and use the fold 3 as a test set (32%).
During the training procedure, 20% of the training set was
used as validation set to look at the mean squared error and
stop the training to avoid overfitting. This validation set was
also used to tune the hyperparameters of the feature extraction
algorithms (LPQ and HD) and SVM [5]]. The percentage of
images used, and the accuracy of each step can be observed
in Table [II} The accuracy on the test set is 99.20% using the
hold-out method.



Dataset Images Accuracy
(%) (%)
Training 54.4 99.60
Validation 13.6 99.40
Test 32.0 99.20

TABLE II: Accuracy of the proposed TCNN using hold-out
method.

Table shows the performance achieved by some pre-
trained models after fine-tuning them on the thermoelectric
metal pipe dataset. The fine-tuning consists of replacing the
fully connected layers and the output layer by two fully
connected layers (128 and 64 neurons) and an output layer
(3 neurons) with softmax activation (similar to the three last
layers of the TCNN shown in Fig. [3). Table [[II] also shows
the size and number of trainable parameters of the fine-tuned
models after adapting their last layers to the target problem.
The proposed TCNN is the most compact model which has
the lowest number of trainable parameters and which leads to
the highest accuracy.

Model Size # Trainable Accuracy
(MB) Parameters (%)

TCNN 0.6 43,267 96.80 + 2.00

VGG16 148 10,295,042  95.66 + 2.57

ResNet50 120 3,682,051 80.86 £+ 6.25

InceptionV3 144 17,672,835 50.82 + 11.16

MobileNetV2 101 8,032,515 50.71 £ 10.24

TABLE III: Comparison of some pre-trained models after fine-
tuning to the problem of thermoelectric metal pipes and the
proposed TCNN using the 3-CV method.

V. DISCUSSION

Table shows the classification accuracy achieved by the
proposed TCNN as well as the results achieved by other ap-
proaches based on handcrafted features and an SVM classifier.

Feature & Classifier Accuracy (%)

Proposed TCNN 99.20
VGG16 99.10
LPQg,3+HDg and SVM [5] 98.71
LPQg, 3+HDg and LDA [5] 98.18
ResNet50 84.17
InceptionV3 66.39
MobiliNetV2 63.47

TABLE IV: Accuracy achieved by the proposed TCNN and
other approaches based on pre-trained CNNs and handcrafted
features using the hold-out method.

It is important to highlight that we cannot make a direct
comparison between the results achieved by the TCNN with
the results achieved in our previous work. Besides the dif-
ferences in the size and in the shape of the images used to
extract the features, the images of each data split are not
exactly the same. Having said that, the high accuracy of
the CNN approach shows the feasibility of implementing a
different solution for the same task based on learning a textural

representation directly from data. Concerning the handcrafted
features presented in our previous approach based on LPQ
and Haralick Descriptors (HD) [5]], the accuracy of the models
varies according to the image size and the parameters of the
LPQ algorithm (represented by the subscripted numbers in
LPQ and HD). Furthermore, the best accuracy was achieved
by fusing the information extracted from both extractors for
an image with a determined size, as indicated in Table The
variance in the accuracy can lead to a parameter-dependent so-
lution, which means the need of time-consuming procedure for
tuning the hyperparameters of feature extractors and classifiers
according to the changes in the dataset, such as the inclusion of
new classes or different image resolutions. On the other hand,
the TCNN is able to learn appropriate features and decision
boundaries through forward and backward propagation.

The TCNN leads to a better generalization through the
learning of the extraction layers, handling with efficiency
the illumination variance and the presence of the blurred
spots. Figs. [5h and [5p show some activation maps resulting
from the first and second convolutional layer, respectively.
The activation maps are useful for understanding how the
convolution layers transform the input. The first layer is
retaining (high energy) directional textures, although there are
several filters that are not activated and are left blank. At the
second convolutional layer, the activation maps encode higher-
level concepts (low-energy) carry increasingly less directional
visual contents.

VI. CONCLUSION

In this paper, we presented a texture convolutional neural
network (TCNN) for automatic visual inspection of ther-
moelectric metal pipes that learns an appropriate textural
representation and the decision boundaries into a single opti-
mization process. The experimental results have shown that the
TCNN outperforms a previous approach based on handcrafted
features and achieves the accuracy of 99.20% in the task of
identifying different levels of corrosion in the inner surface
of thermoelectric pipe walls. Furthermore, the TCNN is a
compact network that requires much less effort in tuning
parameters when compared to the handcrafted approach since
its architecture is compact regarding the number of layers and
connections. The observed results open up the possibility of
using deep neural networks in real-time applications such as
the automatic inspection of thermoelectric metal pipes.

The proposed approach could bring potential scalability for
real applications in terms of visual inspections, due to CNN ca-
pability of generalization by learning a textural representation
efficiently through its learning process. Besides that, usually,
when the topic is convolutional neural networks and deep
neural networks, it is normal to think in powerful backends
with high computational power and GPUs. But regarding
the context of industries, a solution could be implemented
in compact or embedded systems where there are not many
computational resources. Considering this, the paper brings a
solution using a compact TCNN, where the optimization of the
layers and the addition of a new layer offers high accuracy in



Fig. 5: Selected activation maps learned resulting from the convolution operation at the (a) first convolutional layer (72x72);
(b) second convolutional layer (34 x34).

the classification task at low computational cost, which is a
good aspect for real-time applications and embedded systems
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