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Abstract—Deep learning has consistently defied state-of-the-art
techniques in many fields over the last decade. However, we are
just beginning to understand the capabilities of neural learning
in symbolic domains. Deep learning architectures that employ
parameter sharing over graphs can produce models which can
be trained on complex properties of relational data. These include
highly relevant A/P-Complete problems, such as SAT and TSP.
In this work, we showcase how Graph Neural Networks (GNN)
can be engineered — with a very simple architecture — to solve
the fundamental combinatorial problem of graph colouring. Our
results show that the model, which achieves high accuracy
upon training on random instances, is able to generalise to
graph distributions different from those seen at training time.
Further, it performs better than the Neurosat, Tabucol and greedy
baselines for some distributions. In addition, we show how vertex
embeddings can be clustered in multidimensional spaces to yield
constructive solutions even though our model is only trained as
a binary classifier. In summary, our results contribute to shorten
the gap in our understanding of the algorithms learned by GNNs,
as well as hoarding empirical evidence for their capability on
hard combinatorial problems. Our results thus contribute to the
standing challenge of integrating robust learning and symbolic
reasoning in Deep Learning systems.

Index Terms—relational learning, deep learning, graph neural
networks, graph coloring

I. INTRODUCTION

Deep Learning (DL) models have defied several state-of-
the-art techniques in tasks such as image recognition [1[|—[3]]
and natural language processing [4]], [S]. Deep Learning has
also been blended with Reinforcement Learning algorithms
— yielding the new research field of Deep Reinforcement
Learning — achieving outstanding performances in classic
Atari games and in the Chinese board game Go [6], [7]. In
spite of some of these games having an intrinsic structured
representation of the relations between their entities — thus
suggesting a symbolic approach — their huge state space and
reward flow limits the application of a sole DL model upon
these representations. Therefore, the direct application of DL
to symbolic domains is still in its lead-off stages [8]].

The combination of connectionist and symbolic approaches
may address the bottlenecks faced by these methods when
they are used alone such as limited reasoning and hard-coding
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knowledge and rules [9]-[11]]. In this sense, applying DL
models to combinatorial problems arises as one of the main
approaches towards achieving integrated machine learning
(ML) and reasoning [12]]. This family of problems do not
show a simple mathematical structure but, in several cases,
there are plenty of exact solvers available to them, which
allows one to produce labelled datasets in any desired amount,
even for DL models whose requirements for training data can
be substantial. Moreover, they are naturally represented by
graph structures. [[13]] argue that such models, which combine
combinatorial optimisation and ML techniques, enhance the
learning procedure mainly by: (1) dissecting the symbolic
problem into smaller learning tasks and (2) exploring the space
of decisions in search of the best performing behaviour. While
(1) is due to the natural combinatorial optimisation structure,
(2) is the main principle of all machine learning strategies.

One way of incorporating the relational structure of a
combinatorial problem into a neural model is to ensure permu-
tation invariance by letting adjacent elements of the problem
communicate with themselves through neural modules subject
to parameter sharing. That is, the problem prints its graph
representation onto the neural modules’ configuration. These
neural modules are primarily accountable for computing the
messages sent among the problem’s elements and for updating
the internal representation of each of these elements. The
family of models that makes use of this message-passing
algorithm includes message-passing neural networks [14],
recurrent relational networks [[15], graph networks [[12] and
the pioneer model: graph neural network (GNN) [16].

Recently, [17] developed a GNN solution to the NP-
Complete boolean satisfiability problem (SAT) which achieved
around 85% of accuracy on SAT instances containing 40
variables. On top of that, their model was able to decode
satisfying assignments even though it was trained only to
produce a boolean answer. [17] also tackled other combinato-
rial problems reduced to SAT and were able to extract valid
assignments in 85% of the satisfiable instances.

In this work, we introduce a mode to tackle the decision
version of the graph colouring problem (GCP), with no need of
prior reductions. We also formalise our solution using a Graph
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Neural Network (GNN) framework [[14]], [[16]], [18]]. Our model
mainly relies on GNN’s power of coping with several types
of edges as we approached the GCP problem by using two
different types of vertices. By designing a GNN model to solve
an important combinatorial problem (with applications on flow
management [[19]], job scheduling [20], register allocation [21]]
and others), we hope we can foster the adoption and further
research on GNN-like models which in turn integrate deep
learning and combinatorial optimisation. We believe that, from
an Al perspective, our work provides useful insights on how
neural modules reason over symbolic problems, and also on
how their hidden states or embeddings can be interpreted.

The remainder of the paper is structured as follows. First,
we describe our solution to the Graph Colouring Problem in
terms of a GNN-based model. We then report the model’s per-
formance on different datasets along with baseline heuristics
comparisons. Finally, we present an analysis of results and
directions for further research.

II. A GNN MODEL FOR DECISION GCP

Usually, graph neural network models assign multidimen-
sional representations, or embeddings € RY, to vertices and
edges. These embeddings are then refined according to some
adjacency information throughout a given number of message-
passing iterations. The adjacency information controls which
are the valid incoming messages for a given vertex (or
edge), these filtered messages undergo an aggregating function
and finally a Recurrent Neural Network (RNN) receives the
aggregated messages and computes the embedding update
for the given vertex. The Graph Network model [12] also
allows the instantiation of global graph attributes which seems
appropriate to the k-colorability problem. However, as we treat
each possible colour as an attribute, there must be multiple
global graph attributes, i.e. each colour has its own embedding.
Because of that, we chose to model the k-colorability problem
in a Graph Neural Network framework [16], a seminal formal-
isation which already leveraged the capability of dealing with
several types of nodes. GNN models were already proven to be
promising on solving relational problems, even when dealing
with numeric information, such as the travelling salesperson
problem (TSP) [22].

Given a GCP instance I = (G,C) composed of a graph
G = (V,€) and a number of colours C € N | C > 2,
each colour is assigned to a random initial embedding over an

1
uniform distribution (C)[z} ~U(0, 1) | Ve; € C and the model
initially assigns the same embedding € RY to all V vertices:
this embedding is randomly initialised and then it becomes
a trained parameter learned by the model. To allow the
communication between neighbouring vertices and between
vertices and colours, besides the vertex-to-vertex adjacency
matrix Myy, € {0, 1}VIXIVI, the model also requires a vertex-
to-colour adjacency matrix My € {1}/VI*ICl that connects
each colour to all vertices since we chose to give no prior
information to the model; i.e., a priori any vertex can be
assigned to any colour. After this initialisation adjacent ver-
tices and colours communicate and update their embeddings

Algorithm 1 Graph Neural Network Model for GCP
. procedure GNN-GCP(G = (V, &), 0)

/I Compute binary adjacency matrix from vertex to vertex

ny[i,j](—l iff (36 S 5|e:(vi,vj))| V’UiEV,UjGV

1
2
3
4:
S:
6 /! Compute binary adjacency matrix from vertices to colours
7 Mvc[i,j}eNvieV,chC

8

9 /I Compute initial vertex embeddings

1
10: (V)[i] ~N(0,1) | Vv, €V

11:
12: /I Compute initial colour embeddings
(1)

13: Cli]|~U(0,1) | Ve, €C
14:
15: /l Run t,,,, message-passing iterations
16: fort=1...t,,,: do
17: /I Refine each vertex embedding with messages received

from its neighbours and candidate colours

(t+1) (t+1) (1) (t) (t)
18: V,, V %Vu(vh,MyvaMvc x C (C))
msg

19: // Refine each colour embedding with messages received

from all vertices

(t+1) (t+1) (t) T (t)
20: C,, C <—Cu(ch,Mvc xV (V))
msg
21: // Translate vertex embeddings into logit probabilities
tmax

22: Wogits <~ V'uote
23: /] Average logits and translate to probability (the operator

() indicates arithmetic mean)
24: prediction < sigmoid((Viogits))

during a given number of iterations. Then the resulting vertex
embeddings are fed into a MLP which computes a logit
probability corresponding to the model’s prediction of the
answer to the decision problem: “does the graph G accept
a C-coloration?”. This procedure is summarised in Algorithm
m

Our GNN-based algorithm updates vertex and colour em-
beddings, along with their respective hidden states, according
to the following equations:

V(t“),VgH) “ Vu(VEf),Mvv % (V(t)),
Mye x C (CV))

msg

(1)

C(t+1),C§Lt+1) — Cu(Cglt)aMVCT x V (V(t))) (2)

msg

In this case, the GNN model needs to learn the message
functions (implemented via MLPs) C : R¢ — R?, which will

msg

translate colours embeddings into messages that are intelligible

to a vertex update function, and V : R¢ — R9, responsible
msg

for translating vertices embeddings into messages. Also, it

learns a function (RNN) responsible for updating vertices



V, : R?? — R? given its hidden state and received messages
and another RNN to do the analogous procedure to the colors
V., : R?® — R4,

III. TRAINING METHODOLOGY

To train these message computing and updating modules,
MLPs and RNNs respectively, we used the Stochastic Gra-
dient Descent algorithm implemented via TensorFlow’s Adam
optimiser. We defined as loss the binary cross entropy between
the model final prediction and the ground-truth for a given
GCP instance — a boolean value indicating that the graph
accepts (or not) the target colorability. We intended to train
our model with very hard GCP instances. To do so, our
training instances, with number of vertices n ~ (40, 60),
were produced on the verge of phase transition: for each
instance I = (G = (V,€),0)|C = x(G)]} there is also an
adversarial instance I = (G' = (V,&),C)|C + 1 = x(G")
such that £ # E’ only for a single edge (v;,v;). This edge
is usually called frozen edge since for every valid colouring
C of G, Clv;] = Cv;], which implies that this edge cannot
belong to any C'-colourable graph containing G as a subgraph
[23]]. To produce a pair of instances, first we randomly chose
a target chromatic number y between 3 and 8, then populate
the adjacency matrix My v with a connectivity probability p
adjusted to the selected chromatic number, and finally a CSP-
Solveﬂ is used to ensure that the undirected graph represented
by the initial matrix My has a chromatic number y: if
it has, then we proceed adding edges to the graph until
the CSP-Solver is no longer able to solve the GCP for .
The last two generated instances were added to the dataset
(both considering C' = x), ensuring that the dataset is not
only composed by hard instances but also perfectly balanced:
50% of the instances do not accept a C-colouring while the
remaining 50% accept. A total of 2 x 2'° such instances were
produced. An example of such training is depicted in Fig.

These instances were randomly joined into a larger graph
during training to produce a batch-graph containing 2 x 8
instances. This was done with a disjoint union so that the My
and the My ¢ of each instance does not allow communication
between vertices and colours of different subgraphs. There-
fore, we ensure that despite being on the same batch-graph,
there is no inter-graph communication. The logit probabilities
computed for each vertex within the batch are separated and
averaged according to which instance the vertex belongs to.
Finally, we calculated the binary cross entropy between these
predictions and their instances labels. Upon the initialisation,
the model is defined with 64-dimensional embeddings for
vertices and colours. The MLPs responsible for message com-
puting are three-layered (64,64,64) with ReLU nonlinearities
as the activations for all layers except for the linear activation
on the output layer. The RNN cells are basic LSTM cells with
layer normalisation and ReLu activation. All results presented

x stands for chromatic number, i. e. the smallest value to obtain a k-
colouring
Zhttps://developers.google.com/optimization/cp/cp_solver

hereafter considered T},,, =
passing.

32 time steps of message-

Fig. 1. Pictorial representation of random training instances (top left) and
some of the structured test instances (clockwise: power-law tree, power-law
cluster, small-world). All instances are coloured with a number of colours
equal to their chromatic number.

IV. EXPERIMENTAL RESULTS AND ANALYSES

We stopped the training procedure when the model achieved
82% of accuracy and 0.35 of Binary Cross Entropy loss
averaged over 128 batches containing 16 instances at the end
of 5300 epochs. To produce the chromatic number on 4096 test
instances (which followed the same distribution of the training
ones) we fed the model with the same instance several times,
with C' € (2, x+3), and assigned as the chromatic number the
first C' which implied in a positive answer from our model.
Figure [2] shows how the GNN model performed over these
test instances according to their chromatic number. Under the
same settings, i.e. d = 64 and 32 timesteps, we trained our
implementation of Neurosat with the same GNN-GCP training
instances, but reduced to SAT instances. We also compared
GNN-GCP’s performance with two heuristics: Tabucol [24],
a local search algorithm which inserts single moves into a
tabu list; and a greedy algorithm which assigns to a vertex the
first available colour. As both heuristics outcomes are valid
colouring assignments, they never underestimate the chromatic
number, as opposed to our model.

Along the first six chromatic numbers our model slightly
outperforms the Tabucol algorithm w.r.t. accuracy — hit only
when the exact chromatic number is achieved — however,
it demonstrates a drop on its performance at the highest
chromatic number, where the Tabucol achieves around 90%
of accuracy. Nevertheless, our model’s absolute deviation
from the exact chromatic number averaged 0.2473, while the
Tabucol and the greedy algorithm achieved 0.2878 and 1.5544,
respectively.

Even though we trained our model on instances whose C
was true (C' = x) or false (C' = x — 1) only by a narrow
margin, we could only state it can solve the GCP problem if
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Fig. 2. Prediction distributions over 4096 unseen test instances, with similar features to those seen in training, for our model (GNN), Neurosat, Tabucol and
the Greedy algorithm. Note that the darker the main diagonal, the better the predictions.

as the margin goes wider, the model still gives the right answer,
despite being positive or negative. We can see that in Fig. [3}
our model’s predictions undergo a regime remindful of a phase
transition — as we fed our model with C' values closer to it
became unsure about its prediction, nevertheless the model is
quite sure about its prediction on the upper (C' = x + 2) and
lower (C' = x — 2) bounds. Phase transition is a well-known
phenomenon in several combinatorial problems, including SAT
[25] and the GCP itself [26], in which the existence and the
distribution of colouring solutions are related to several levels
of connectivity within an instance. We exploited this feature
to generate our training instances and our model also presents
a similar behaviour during the test.

A. Performance on Real and Structured Instances

In order to assess the performance of our trained model
in unseen instances, both larger and smaller than those
it was trained upon, we gathered 20 instances from the
COLORO02/03/04 Workshop dataseﬂ and fed them to our
model and to the previously cited heuristics (Tabucol and
Greedy). These instances have sizes (number of vertices) up to
835% larger than the training ones, and also have chromatic

3https://mat.tepper.cmu.edu/COLOR02/

numbers exceeding the boundaries seen during the training
procedure. We also fed them to our Neurosat model, but it
was not able to output a positive answer inside the range of
[2,x + 5] for all instances. This suggests that these different
graph distributions are not well suited for the trained Neurosat
model. It is also worth mentioning that to reduce from GCP to
SAT one is required to create C' %) variables, C'x) clauses to
ensure that there will be no uncoloured vertex, C x £ clauses
to ensure that each edge has its source and target coloured
differently and (C' — 1) * V clauses to ensure that at most
one colour will be assigned to each vertex, thus causing a
significant increase of nodes and edges in the resulting SAT
graph in comparison to the original GCP graph.

To compute the chromatic number we adopted the same
previous procedure: with C' ranging from C = 2 up to C' =
X + 3, the first C' which yielded a positive prediction/answer
is considered the chromatic number. If our model — or the
Tabucol — did not present a positive answer until this upper
boundary, it accounts for a NA answer on Table m

As both Tabucol and the greedy algorithm produce a valid
colouring assignment, they never underestimate the chromatic
number, as our model eventually does. When it comes to
predict the exact chromatic number, our model only achieved
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Fig. 3. Average prediction — above 0.5 means a positive answer — extracted
from the model for testing instances with size ranging from 40 to 60. Each
of the 128 instances were fed seven times to the model with target C €
[x —2,x+2]

4 hits, against 11 and 7 from the Tabucol and the Greedy
algorithm, respectively. Nevertheless, our model’s absolute
deviation from the actual chromatic number accounted for
1.15, standing in between Tabucol (0.33) and greedy algorithm
(2.15). Despite its overall low performance on these instances,
it is worthy reminding that upon training our model have never
seen instances with more than 60 vertices and x larger than
7.

We also tested our model on three different random graphs
distributions, namely: random power-law tree (v = 3), Watts-
Strogatz small-world [27] (k = 4,p = 0.25) and Holme and
Kim model [28]] (m = 4,p = 0.1). We generated 100 instances
of each distribution with size ranging from 32 to 128 vertices.
Examples of such instances are depicted in Fig. [T] (top right,
bottom left and bottom right). By their own definition, all
power-law tree graphs are 2-coloured, a target C' never seen
by our model during training, and have their vertices ordered
by degree, thus allowing the greedy algorithm to achieve
a perfect performance. The same happens on the Holme-
Kim distribution whose graphs are built through preferential
attachment and also has a power-law distribution, thus there
is a high probability that a selected vertex has a low degree
as well as a high probability that it is connected to a vertex
of high degree, there is also the fact that the vertices have a
probability of creating a triangle, thus constraining the colours
that can be picked after selecting a vertex. With this in mind,
the algorithm can easily assign colours greedily throughout
the low degree vertices and assign differing colours to high
degree ones when they are reached, which also constrains the
bridges between these vertices.

B. Exploring vertex embeddings

The capability of GNN-like models to generate meaningful
embeddings and to learn an algorithm to solve its task was

TABLE I
THE CHROMATIC NUMBER PRODUCED BY OUR MODEL AND TWO
HEURISTICS ON SOME INSTANCES OF THE COLORO02/03/04 DATASET. AS
OUR MODEL FACES UNSEEN GRAPH SIZES AND LARGER CHROMATIC
NUMBERS IT TENDS TO UNDERESTIMATE ITS ANSWERS.

. Computed x
Instance Size X GNN | Tabucol | Greedy
queen5_5 25 5 6 5 8
queen6_6 36 7 7 8 11
myciel5 47 6 5 6 6
queen7_7 49 7 8 8 10
queen8_8 64 9 8 10 13
1-Insertions_4 67 4 4 5 5
huck 74 11 8 11 11
jean 80 10 7 10 10
queen9_9 81 10 9 11 16
david 87 11 9 11 12
mug88_1 88 4 3 4 4
myciel6 95 7 7 7 7
queen8_12 96 12 10 12 15
games120 120 9 6 9 9
queenll_11 121 11 12 NA 17
anna 138 11 11 11 12
2-Insertions_4 149 4 4 5 5
queenl3_13 169 13 14 NA 21
myciel7 191 8 NA 8 8
homer 561 13 14 13 15
TABLE II

STRICT ACCURACY OF OUR MODEL AND THE TWO ALGORITHMS
CONSIDERING THREE RANDOM GRAPHS DISTRIBUTIONS

Distribution GNN Tabucol Greedy
Accuracy [%] | Accuracy [%] | Accuracy [%]
Power Law Tree 100.0 93.0 100.0
Small-world 90.0 77.0 9.0
Holme and Kim 54.1 76.4 100.0

already highlighted by [17]. Following their findings, even
though we trained our model only to produce a boolean an-
swer, we also expected to decode valid colouring assignments
to each vertex. To achieve that, we extracted vertex embed-
dings from 1024 test instances which were fed to our model
along with their exact chromatic number as C' and resulted
in a GNN prediction > 50%. These embeddings were then
clustered into C' groups — we made the a priori assumption
that the model internally places non-adjacent vertices near
each other, thus resulting into colour assignments. For each
cluster of each instance we computed how many conflicts were
raised — the ratio between the amount of adjacent vertices
pertaining to that cluster and the number of 2-combinations
without repetition of these vertices. We then computed the
average conflicts per cluster/colour. Naturally, a perfect valid
colouring assignment for a given instance would imply in zero
conflicts.

According to Fig. [] (leftmost boxplots) our model faces
more difficulties in assigning correct vertices to clusters when
C grows — regarding instances with C' = 7 the average
conflicts ratio within the seven clusters achieved around 30%.
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Fig. 4. After performing a k-means algorithm on the vertex embeddings, we computed the ratio of conflicts (adjacent vertices pertaining to the same cluster)
within each cluster. In this experiment, we fed our model with the exact chromatic number for each instance and selected the embeddings only for predictions
above 50%: GNN is positive that there is a colouration. In the left graph one can see that the clusters have less meaning as the chromatic number grows. The
rightmost graph shows how the clustering correlates to the GNN final prediction — when the model is more confident that there is a colouration, the clusters

have less conflicts.

On the other hand, this metric drops off to below 5%
regarding 3-colouring instances. We also verified a moderate
negative correlation (-0.6 — Spearman’s Rank Correlation)
between the positive certainty of our model and the amount of
conflicts, as seen in Fig. [] (rightmost boxplots), which goes
along with the natural thought that the fewer the conflicts
within each instance’s clusters, the more certain our model
is of a positive answer. Among the 1024 instances, our model
together with the clustering procedure were able to provide a
valid colouring assignment to only 3 examples, nevertheless
its behaviour suggests that it is able to respond positively when
some inferior threshold w.r.t. conflicts is reached.

Figure [3] helps visualising how the vertices’ distribution
along the dimensions (internal outcome of our model) and how
their clustering affects the GNN predictions. The clusters sep-
arability (measured with a silhouette score S € [—1,+1] over
the 64-dimensional clustered embeddings) increases together
with our model’s certainty of a positive answer and the inverse
ratio of conflicts within each cluster: the leftmost example
resulted in a clustering with 28.9% of average conflicts and
a S equals to 0.29, even though our model should have
answered it positively, its prediction was only 6.3% (any
answer below 50% is considered negative); when fed with
the middle instance, however, our model was able to answer
properly (61.2%) as not only the conflicts’ average decreased
to 19.2% but also the silhouette coefficient increased to 0.39;
finally, in the last example our model was quite sure about
its positive answer, which goes along with the clustering
procedure outcomes: only 7.9% of conflicts within each cluster
and a silhouette score of 0.44.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown how GNN models effectively
tackle the Graph Colouring Problem. Our model works by
keeping and updating a memory containing high dimensional
representations of both vertices and colours. After 32 message-
passing iterations between adjacent vertices and between ver-

tices and colours each vertex voted for a final answer on
whether the given graph admits a C'-colouring. We trained the
model following an adversarial procedure: for each positive
instance, we also produced a very similar one which differs
only by an addition of a single edge, causing an increase of
the original x chromatic number; both these instances were
fed to our model with C equals to the x value of the positive
instance, yielding a perfectly balanced and hard dataset. Upon
training our model achieved 82% accuracy with instances with
N € [40,60] and C € [3,7]. We also demonstrated how this
trained model was able to generalise its results to previously
unseen target C' and structured and larger instances, yielding
a performance comparable to a well-know heuristic (Tabucol).
In spite of being trained on the verge of satisfiability, we also
showed a curve depicting how our model behaved to varying
values of the target colour C' higher or lower than its chromatic
number (Figure [3).

Finally, we postprocessed the vertex embeddings to under-
stand how they were inducing the final answer. We believe
that internally our model searches for a positive answer by
attempting to cluster vertices so that vertices that could have
the same colour are near to each other. We uncovered some
kind of threshold search as our model answers positively even
when these clusters contain adjacent vertices, but in a low
ratio. We chose to present the target number of colours C' to
the model by feeding it with random initialised C' embeddings
so no prior knowledge is given, but these initial embeddings
could be arranged in some other manner. Another future
improvement is to attempt to minimise conflicts within the
model itself (as a loss measure). This, we believe, could lead
to better and more meaningful results despite the time and
space complexity being increased. Nevertheless, we expect
that our work can demonstrate how a GNN-like model can be
manipulated into solving hard combinatorial problems such as
GCP in an interpretable fashion, whose answers are not only
accurate, but also constructive.
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Fig. 5. Vertex embeddings (after a PCA-2D procedure) of three different test instances, with x = 4. The axes and the surrounding curves have no meaning
as we are simply interested in visualising how the clusters behaviour are related to our model outcomes. All these three instances should imply in a positive
answer, but our model only answered positively to the second and to the third one.
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