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Abstract—We introduce Boundary Focused Thompson sam-
pling (BFTS), a new Bayesian algorithm to solve the anytime
m-top exploration problem, where the objective is to identify
the m best arms in a multi-armed bandit.

First, we consider a set of existing benchmark problems that
consider sub-Gaussian reward distributions (i.e., Gaussian with
fixed variance and categorical reward). Next, we introduce a
new environment inspired by a real world decision problem
concerning insect control for organic agriculture. This new en-
vironment encodes a Poisson rewards distribution. For all these
benchmarks, we experimentally show that BFTS consistently
outperforms AT-LUCB, the current state of the art algorithm.

Keywords-Thompson sampling, probability matching, m-top
exploration, multi-armed bandits, anytime decision making

I. INTRODUCTION

The multi-armed bandit game [2] concerns a bandit with
K stochastic arms (e.g., a slot machine with K levers).
When an arm ak is pulled, a reward rk is drawn from
that arm’s reward distribution Rk. For each arm ak, we
have the expected reward µk = E [rk]. Our aim is to
solve the m-top exploration problem (m < K), where the
objective is to identify the m best arms, with respect to the
expected reward µk of the arms [3], [22]. Formally, we have
µ1 ≥ . . . ≥ µm ≥ µm+1 ≥ . . . ≥ µK , and the objective is
to identify the set {µ1, . . . , µm}.

Most commonly, the m-top exploration problem is studied
in a fixed confidence or fixed budget setting. On the one
hand, fixed confidence algorithms attempt to recommend the
m best arms with probability 1− δ using a minimal number
of arm pulls, where δ is a failure probability that needs to
be chosen up front [8], [9], [11], [15], [16]. On the other
hand, the goal for fixed budget algorithms is to recommend
the top m arms, within a given budget of arm pulls [2], [4],
[9], [10], [16], [17]. Recently, a third setting was introduced,
where the top m arms are to be recommended after every

time step [14]. This setting, referred to as anytime explore-
m, is more challenging than the fixed confidence and fixed
budget setting, but offers a more realistic framework [14].

An example of an m-top exploration problem presented in
[14] is a crowd-sourcing task, i.e., the New Yorker cartoon
caption contest [12]. In this application, the aim is to collect
ratings for the captions submitted for each week’s cartoon,
and to identify the top-m captions at a requested time. In
a crowd sourcing application, the sampling budget corre-
sponds to the number of ratings that are obtained. Therefore,
as this budget is unknown a priori, the fixed-budget setting
cannot be used. Moreover, the fixed-confidence setting is not
applicable either, as this setting requires that an unlimited
stream of samples is available until a certain confidence
threshold has been reached. The crowd sourcing application
is thus a natural fit for the anytime explore-m problem.

Apart from this example, we believe that there is a
great potential for the anytime m-top exploration bandit to
support decision makers with complex societal challenges
such as climate issues, epidemics of infectious diseases
and migration. Such decisions are often guided by intricate
simulation models, to evaluate a set of alternative policies
that can be modelled as bandit arms [18], [19]. Given this
formulation, a learning agent can select the m policies for
which it expects the highest utility, enabling the experts to
inspect this small set of alternatives. The anytime component
provides the decision makers with flexibility to when a
decision can be made. This is especially important when
computationally intensive models are used, for which it is
difficult to make a trade-off between the available budget
and desired confidence.

Next to introducing the m-top exploration problem, a new
algorithm is presented in [14]: AnyTime Lower and Upper
Confidence Bound (AT-LUCB). This algorithm remains the
state-of-the-art up until today. We discuss the algorithmic
details of AT-LUCB in Section II.



While UCB algorithms, such as AT-LUCB, permit speci-
fying tight theoretical bounds, algorithms based on Thomp-
son Sampling (TS) typically perform better in practice [7].
Furthermore, TS works for any type of reward distribution,
and permits the inclusion of any form of prior knowledge.
This is important, as prior knowledge can be specified for
many practical settings, even if it is only in the form of
basic common knowledge or even intuitions, and can greatly
help to improve sample-efficiency. Therefore, we investigate
the potential of TS for the m-top exploration problem,
and propose the first Bayesian algorithm for this setting:
Boundary Focused Thompson Sampling (BFTS). BFTS
is a non-parametric algorithm that focuses its exploration on
the problem’s decision boundary, i.e., the mth and m + 1th

arm.
We empirically compare the performance of BFTS to AT-

LUCB. First, we evaluate the set of benchmarks settings
introduced in [14], which consists out of an artificial envi-
ronment (i.e., a bandit with fixed-variance Gaussian reward
distributions) and a bandit that models the New York cartoon
crowd sourcing task introduced earlier. Second, in order to
evaluate BFTS’ performance with respect to decision prob-
lems, we introduce a new benchmark environment motivated
by a real-world decision problem, i.e., the organic bandit,
where we aim to maximize the prevalence of certain insect
species on farmland to support organic agriculture [26].
As this problem corresponds to maximizing the occurrence
of an event, we model this setting using Poisson reward
distributions. This is a particularly hard problem, as for
Poisson distributions the variance is equal to the mean,
and subsequently there is a large variance among the top
arms, complicating the m-top exploration. We show that
BFTS consistently outperforms AT-LUCB for all of the
investigated environments, and show a vast improvement in
performance on the organic bandit.

II. BACKGROUND: AT-LUCB

AT-LUCB repeatedly invokes the fixed-confidence LUCB
algorithm [15], with a decaying failure parameter, δs =
δ1α

s−1, for each LUCB stage s, where δ1 and α are
parameters of the AT-LUCB algorithm. At each time step
t, AT-LUCB returns the empirical m-top arms.

To provide more insight in AT-LUCB’s exploration strat-
egy, we discuss details on AT-LUCB’s exploration bound
[14]. Note that this bound was constructed following the
assumption that reward distributions are sub-Gaussian with
means in the interval [0, 1].

At each stage, LUCB depends on upper confidence bound
U ta and lower confidence bound Lta, where:

U ta(δs) = µ̂ta + β(nta, t, δs)

Lta(δs) = µ̂ta − β(nta, t, δs),
(1)

with,

β(nta, t, δs) :=

√
1

2nta
ln

(
5

4

K · t4
δs

)
, (2)

where µ̂ta is the empirical mean for arm a at time t, K is
the number of arms, nta is the amount of times arm a was
pulled at time t and δs is the confidence parameter at stage
s.

From this confidence bound definition, it is clear that
the empirical mean is the only reward distribution statistic
used by AT-LUCB. We expect that such a confidence bound
will be sub-optimal with respect to reward distributions
with complex higher-order statistics, such as skewness or
high variance. We demonstrate that this is the case in our
experiments with the organic bandit, with Poisson distributed
rewards, in Section V.

III. RELATED WORK

The anytime explore-m setting is a generalization of the
anytime best-arm identification setting [5]. As introduced
earlier, this setting is related to the fixed confidence [8],
[9], [11], [15], [16] and fixed budget [2], [4], [9], [10], [16]
explore-m algorithms.

As we stated in Section I, the anytime explore-m setting
was only recently introduced, and to our best knowledge, the
AT-LUCB algorithm remains the state-of-the-art algorithm.
In [14], another algorithm called DSAR is presented next
to AT-LUCB. DSAR repeatedly invokes the fixed budget
m-top algorithm Successive Accept and Reject (SAR) [4]
where the budget is doubled upon each invocation. It is
experimentally shown in [14] that AT-LUCB consistently
outperforms DSAR, and DSAR is deemed unsuitable for
anytime purposes due to fluctuations in its performance (i.e.,
stagnation or even decrease) when the algorithm changes
from one stage to the next. We therefore chose to omit the
DSAR algorithm from our experiments.

Bayesian exploration methods have been used in the
context of best-arm identification, i.a., BayesGap, Top-
Two Thompson sampling, Ordered statistic Thompson sam-
pling, and the Top-Two Expected Improvement algorithm.
BayesGap is a gap-based Bayesian algorithm [10] and
requires that for each arm, a high-probability upper and
lower bound is defined on the posterior of the arms’ means
at each time step t. These bounds are used to establish a
gap quantity that the algorithm attempts to minimize. Top-
Two Thompson sampling [25] uses a variant of TS that
adds a re-sampling step in order to increase exploration.
Ordered statistic Thompson sampling [21] ranks the samples
from TS and pulls any arm randomly according to a rank
distribution to add extra exploration. The Top-Two Expected
Improvement algorithm enhances the Expected Improvement
algorithm, by randomizing which of the two top arms to
sample [23].



IV. BOUNDARY FOCUSED TS

In this section, we propose our anytime m-top algorithm
Boundary Focused Thompson sampling (BFTS). The pur-
pose of the algorithm is to recommend the top m arms at
each time step.

Consider a stochastic multi-armed bandit for which our
prior belief over the means is given by a distribution π(.).
Inspired by TS, at each time step t we sample an estimate
θ(t) for the means µ1..K from π(· | H(t−1)), i.e., the poste-
rior over the means, given by π(.) conditioned on the history
of arm pulls and observed rewardsH(t−1). Consequently, we
order the samples that comprise θ(t), and define Ψρ(θ

(t)) to
be the ρ ordered arm. In the case of vanilla TS [27], where
the objective is to minimize cumulative regret, we would
always play top arm Ψ1(θ(t)). However, for the anytime m-
top bandit problem, where the objective is to return the top
m arms at any time1, we need to focus the exploration on the
decision boundary. Specifically to decrease the uncertainty
about arm a

(t)
m and a

(t)
m+1. We focus on both sides of the

decision boundary as in a pure exploration setting, it is
equally important to gain information about the arms with
the potential to be optimal and sub-optimal.

To implement the intuition of focussing on the decision
boundary, at each time step t we play the arm ordered
Ψm(θ(t)) or Ψm+1(θ(t)) with equal probability. To do this,
we use a Bernoulli experiment, as formalized in Algorithm 1.
The reward r(t) of the played arm a(t) is observed and used
to update the history H(t−1). At the end of each step, we
recommend the m-top arms based on the current belief over
the bandit posterior π(· | H(t−1)).

Given: π(.) and H(0) = ∅
for t = 1, . . . ,+∞ do

θ(t) ∼ π(· | H(t−1))
b ∼ Ber(0.5)
a(t) = Ψm+b(θ

(t))
r(t) ← Pull arm a(t)

H(t) ← H(t−1) ∪ {a(t), r(t)}
Recommend top arms based on π(· | H(t))

end
Algorithm 1: Boundary Focused TS

An important observation with respect to BFTS is that
the exploration is guided by sampling from the posterior,
while balancing between Ψm(θ(t)) and Ψm+1(θ(t)), i.e., our
belief of the decision boundary at time t. As the posterior
reflects the uncertainty with respect to the bandit problem,
sampling the mth or m+1th ordered arm will initially explore
all arms, when an uninformative prior is chosen. However,
as the uncertainty of the outer extreme arms is reduced,
BFTS will increase its focus on the arms near the decision

1The top m arms should be recommended, but they are not expected to
be ranked.

Figure 1: Posteriors for an artificial bandit (K = 6,m = 3)
(gray) and BFTS’ decision boundary with confidence bounds
to demonstrate its uncertainty (red).

boundary. In Figure 1, we visualize this process for a simple
bandit setting (K = 6 and m = 3) with Gaussian posteriors.

BFTS is thus convenient for real-world applications, as
its belief-based exploration can be intuitively understood
and informed by its users, without the need to specify any
exploration parameters that are typically hard to choose in
advance. Moreover, the anytime aspect of BFTS removes
the need to decide on the computational budget or desired
confidence before starting the analysis.

V. EXPERIMENTS

We compare the performance of BFTS to the current state-
of-the-art algorithm, i.e., AT-LUCB, and uniform sampling
as a baseline. AT-LUCB operates as described in Section II,
and we choose the same parameters as in [14]. Uniform
sampling pulls at each time step t the arm that was least
sampled in the previous time steps, and recommends the
empirical m-top arms.

For BFTS, we recommend the m-top arms with the
highest posterior expectation. The use of the posterior expec-
tation is well-grounded in our experiments, as all priors we
use tend to a bell-shaped posterior, for which the expectation
is a natural summary statistic.

To perform a fair and unbiased evaluation we commence
with the experimental environments introduced in [14].
Then, we introduce a new environment, i.e., the organic
bandit. This new settings considers a Poisson reward dis-
tribution.

AT-LUCB expects sub-Gaussian reward distributions with
means in the interval [0, 1]. We demonstrate experimentally,
using the organic bandit environment with Poisson reward
distributions, that AT-LUCB indeed performs poorly when
this assumption is not met.

The probability of error, i.e., the probability that all of
the true best arms are recommended, does not yield a useful



comparison in our experiments, as the considered environ-
ments are hard, and it takes a large amount of samples to
find the true m top arms [14]. Therefore, we evaluate the
algorithms’ performance using two proxy statistics instead:
the sum of the means of the m top arms at time t, as
introduced in [14], ∑

a∈J(t)

µa, (3)

and the proportion of correctly recommended arms at time
t,

|J (t) ∩ J∗|
m

, (4)

where J (t) is the set of recommended arms at time t and
J∗ is the true set of optimal arms.

All of the algorithms were run 100 times for each of the
stochastic bandit environments, as such, the average of the
statistics over these runs is reported. In order to justify this
number of replicates, all figures include the variance of the
reported statistic, which is visualized using a lighter bound
around the mean curve. In every run, each algorithm was
allowed to consume 14 × 104 samples (i.e., arm pulls), a
sufficient amount to discern a clear learning curve. Note
that for BFTS and uniform sampling only one sample per
time step is obtained, while for AT-LUCB two samples per
time step are used. Therefore, all figures report their results
in terms of the number of samples, to allow for a fair
comparison.

For all BFTS experiments, we consistently use Jeffreys’
priors. Such priors are considered non-informative and ob-
jective, such that when data is observed, the posteriors are
not influenced by the prior’s hyper-parameters [13].

A. Gaussian bandit with fixed variance

The first set of benchmark environments introduced in
[14] concerns Gaussian reward distributions with fixed vari-
ance σ2 = 0.25 and means in the interval [0, 1]. The envi-
ronment defines a bandit with 1000 arms. The benchmark
includes two instances, one where the gap between means
is increased linearly (Equation 5) and one where the gap is
increased polynomially (Equation 6).

∀k : µk = .9
( n− i
n− 1

)
(5)

µ1 = .9,∀k ≥ 2 : µk = .9(1−
√
i/n) (6)

In this environment, as each arm ak has a reward distri-
bution N (µ, σ2) with known variance, we have a conjugate
prior for the mean that is Gaussian with hyper-parameters µ0

and σ2
0 . As the means are in [0, 1], we choose this Gaussian

prior to be truncated on said interval. We consider a uniform
prior over µ. This uniform prior corresponds to the Jeffreys
prior [24]. Given rewards r = {r1, ..., rn} we have posterior:

µ ∼ N (µ̂0, σ̂
2
0), (7)

Figure 2: Results for the linear Gaussian benchmark with
fixed variance (m = 10).

Figure 3: Results for the polynomial Gaussian benchmark
with fixed variance (m = 10).

with,

σ̂2
0 = lim

σ0→+∞

(
1

σ2
0

+
n

σ2

)−1
=
σ2

n

µ̂0 = lim
σ0→+∞

σ2

n

(
µ0

σ2
0

+

∑n
i=1 ri
σ2

)
=

∑n
i=1 ri
n

(8)

The expectation of the posterior over µ, that is required for
recommending the m top arms, is the mean of the truncated
Gaussian in Equation 7.

As in [14], we perform the experiment with m = 10 and
m = 50, for both the linear and polynomial environment.
We present the results for the linear bandit in Figure 2
(m = 10) and Figure 4 (m = 50). We present the results
for the polynomial bandit in Figure 3 (m = 10) and Figure
5 (m = 50). In general, BFTS needs a short burn-in period
to meet AT-LUCB’s performance for both statistics, but
then consistently outperforms AT-LUCB, most apparently
with respect to the proportion of success’ learning curve.
On the one hand, for the linear Gaussian environment with
m = 10, it takes BFTS the most time to meet AT-LUCB’s
performance. On the other hand, for the linear bandit with
m = 50, BFTS takes the least iterations to meet the
performance of AT-LUCB.



Figure 4: Results for the linear Gaussian benchmark with
fixed variance (m = 50).

Figure 5: Results for the polynomial Gaussian benchmark
with fixed variance (m = 50).

B. Cartoon caption bandit

The second benchmark environment introduced in [14]
concerns the New York cartoon caption contest we described
in Section I. This benchmark simulates the caption contest
by setting up a bandit with 496 arms, where each arm
follows a categorical distribution Catc(p) on three categories
c = [0, 0.5, 1]. The distribution is parametrized with an event
probability vector p. For each arm, p is determined using
maximum likelihood estimation, on the dataset used in [14].

For a categorical distribution Catc(p), the conjugate prior
is a Dirichlet distribution Dirc(α) with prior parameter α.
Given rewards r = {r1, ..., rn}, we have posterior

µ ∼ c · Dirc(α + f) (9)

where f is a vector of frequencies at which the categories
occur in r. Note that this is a proper posterior if all elements
in α are greater than zero. For the experiment we use
an uninformative Jeffreys prior α = [.5, .5, .5] [28]. The
expression to compute the expectation of the posterior over
µ is:

E [µ] =

∑|c|
i=1 ci(α + f)i∑|c|
i=1(α + f)i

(10)

As in [14], we run the caption contest bandit experiment
for m = 50. We present the results for this experiment in
Figure 6. BFTS needs a short burn-in to meet AT-LUCB’s
performance for both statistics, but then consistently out-
performs AT-LUCB, most significantly with respect to the
proportion of success’ learning curve.

Figure 6: Results for the cartoon caption benchmark

C. Organic bandit

Finally, we present a new benchmark environment mo-
tivated by a research question that stems from organic
agriculture, i.e., to investigate strategies that maximize the
prevalence of certain insect species on farmland [26].

As we are attempting to maximize the occurrence of an
event [26], we construct a benchmark environment with
Poisson distributed reward distributions [6], with linearly
increasing means:

µk = µmin +
k · (µmax − µmin)

K − 1
, (11)

for µmin = 0.5 and µmax = 5. The environment defines a
bandit with 1000 arms.

As mentioned in the Section I, this is a particularly
challenging benchmark, as for a Poisson distribution, the
variance equals the mean, which complicates the m-top
exploration process.

For a Poisson distribution, the conjugate Jeffreys prior is
a gamma distribution: Gamma(α = 0.5, β = 0) [20]. Given
rewards r = {r1, ..., rn}, this leads to posterior

µ ∼ Gamma(α+

n∑
i=1

ri, β + n). (12)

As β = 0, this posterior needs to be initialized one time for
it be proper. The expression to compute the expectation of
the posterior over µ is:

E
[
µ
]

=
α+

∑n
i=1 ri

β + n
. (13)

We present the results for the organic bandit for m = 10,
in Figure 7. It is clear that AT-LUCB’s performance grows
very slowly and is similar to random sampling, while BFTS
exhibits a much steeper learning curve. We further discuss
these results in Section VI.

D. Conclusion

In our experiments, BFTS consistently outperforms AT-
LUCB, for all reported statistics. We do identify that BFTS
needs an initialization period to meet AT-LUCB’s perfor-
mance, but we do not deem the lower performance during
the first iterations of the algorithm problematic, as at these
times both algorithms perform poorly, and a fair amount of
exploration is required to improve this.



Figure 7: Results for the organic bandit benchmark

Interestingly, BFTS also exhibits a significant perfor-
mance improvement compared to AT-LUCB for the new
settings we introduce. These additional experiments show
that AT-LUCB struggles with the organic bandit, while
BFTS performs much better. This demonstrates that BFTS
has a great potential to be used with reward distributions
that are not sub-Gaussian and non-symmetric. This is an
important result, as we are unaware of any algorithms able
to solve such problems efficiently.

BFTS outperforms AT-LUCB for both of the reported
statistics. For the sum of means, a proxy for the simple
regret, the difference is most evident during the earlier time
steps of the experiments, as the difference in performance
becomes less clear when the sum of means for both BFTS
and AT-LUCB converge to a similar value. Supported by
this observation, we argue that the number of correctly
recommend arms (i.e., proportion of success) is a better
proxy for the probability of error, i.e., the quantity that
we actually attempt to optimize. Given this statistic, it is
immediately clear how many mistakes an algorithm makes
at a certain time, and BFTS’ superior performance is even
more evident.

VI. DISCUSSION

BFTS is a Bayesian algorithm, which means that prior
knowledge with respect to the problem can be easily in-
corporated. This is important, as for many real world prob-
lems such information is available, e.g., the cartoon caption
contest [12], important societal decision problems [19] and
settings with correlated arms [10].

As expected from its assumptions imposed on the reward
distribution, AT-LUCB performs poorly in non sub-Gaussian
settings, as we experimentally confirm in Section V. This can
be explained by the symmetric bound used by AT-LUCB
(see Section II), which will make bandit problems with a
highly skewed reward distribution (e.g., Poisson) hard to
solve.

While our experimental results are promising, a bound
on the probability of error still needs to be established.
For future work, we acknowledge that efforts on theoretical
guarantees are warranted. We want to assert that, to our
best knowledge, no such proofs have been established with
respect to TS in the context of pure exploration. Even for

vanilla TS, it took almost 80 years to come up with a tight
bound on cumulative regret [1], [27].

VII. CONCLUSION

In this manuscript, we introduce BFTS, a new algorithm
for the anytime explore-m problem. We empirically show
that BFTS consistently outperforms the current state-of-
the-art algorithm AT-LUCB, in a variety of experimental
settings, even when uninformative priors are used., i.e.,
Gaussian with fixed variance, Categorical and Poisson re-
ward distributions.
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