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Abstract—Instability and slowness are two main problems in
deep reinforcement learning. Even if proximal policy optimiza-
tion (PPO) is the state of the art, it still suffers from these
two problems. We introduce an improved algorithm based on
proximal policy optimization, mixed distributed proximal policy
optimization (MDPPO), and show that it can accelerate and
stabilize the training process. In our algorithm, multiple different
policies train simultaneously and each of them controls several
identical agents that interact with environments. Actions are sam-
pled by each policy separately as usual, but the trajectories for
the training process are collected from all agents, instead of only
one policy. We find that if we choose some auxiliary trajectories
elaborately to train policies, the algorithm will be more stable and
quicker to converge especially in the environments with sparse
rewards.

Index Terms—machine learning, reinforcement learning, dis-
tributed system

I. INTRODUCTION

Function approximation is now becoming a standard method
to represent any policy or value function instead of tabular
form in reinforcement learning [20]. An emerging trend of
function approximation is to combine deep learning with
much more complicated neural networks such as convolutional
neural network (DQN [12]) in large-scale or continuous state.
However, while DQN solves problems with high-dimensional
state spaces, it can only handle discrete action spaces. Policy-
gradient-like [21] or actor-critic style [9] algorithms directly
model and train the policy. The output of a policy net-
work is usually a continuous Gaussian distribution. However,
compared with traditional lookup tables or linear function
approximation, nonlinear function approximations cannot be
guaranteed to convergence [1] due to its nonconvex optimiza-
tion. Thus, the performance of algorithms using nonlinear
value function or policy is very sensitive to the initial values
of network weights.

Although PPO which we will mainly discuss in this paper is
the state of the art, it is under the actor-critic framework, which
has a very tricky disadvantage of instability during the training
process. Combining with nonlinear function approximations
makes the training even worse. Thus, the speed to convergence
varies greatly or divergence may happen inevitably even if
two policies have the same hyperparameters and environments,
which makes developers confused about whether the reason
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is algorithm itself, hyperparameters or just initial values of
neural network weights. So, for now, instability and slowness
to convergence are still two significant problems in deep
reinforcement learning with nonlinear function approximation
[2] and actor-critic style architecture.

In this paper, we propose a mixed distributed training
approach which is more stable and quick to convergence,
compared with standard PPO. We set multiple policies with
different initial weights to control several agents at the same
time. Decisions that affect the environments can only be made
by each agent, but all trajectories are gathered and allocated
to policies to train after elaborate selection. We define two
selection criteria, (i) complete trajectories, where an agent
successfully completes a task like reaching a goal or lasting
till the end of an episode, and (ii) auxiliary trajectories, where
an agent doesn’t complete a task but the cumulative reward
is much higher than other trajectories. In previous works,
[18],[14],[6],[3] only distribute agents, not policies. [11] or
RL with evolution strategies like [15] distribute policies,
but they only choose and dispatch the best policy with the
highest cumulative rewards. So, this work is the first, to our
knowledge, to distribute both policies and agents and mix
trajectories to stabilize and accelerate RL training.

For the purpose of simple implementation, we evaluated our
approach on the Unity platform with Unity ML-Agents Toolkit
[8] which is able to easily tackle with parallel physical scenes.
Our algorithm performs very well in a Unity scenario, simple
roller, with random initial weights. The source code can be ac-
cessed at https://github.com/BlueFisher/RL-PPO-with-Unity.

II. RELATED WORK

Several works have been done to solve the problem of
instability. In deep Q network (DQN [13]), a separated neural
network is used to generate the target Q value in online
Q-learning update, making the training process much more
stable. In order to break the correlation between transitions
since the input of neural networks is preferably independent
and identically distributed, the experience replay technique
stores agent’s transitions at each time step in a data set and
samples a mini-batch from it during the training process.
Deep deterministic policy gradient (DDPG [10]) applies both
experience replay and target network into the deterministic
policy gradient [19], and uses two different target networks to
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represent deterministic policy and Q value. However, in the
aspect of stochastic policy gradient, almost all algorithms that
based on actor-critic style [9] have the problem of divergence,
because the hardness of convergence of both actor and critic
makes the whole algorithm even more unstable. Trust region
policy optimization (TRPO [16]) and proximal policy opti-
mization (PPO [18],[5]) try to bound the update of parameters
between the policies before and after update, in order to make
the extent of optimization not too large to out of control.

In terms of accelerating training process, the general rein-
forcement learning architecture (Gorila [14]) , asynchronous
advantage actor critic (A3C [11]) and distributed PPO (DPPO
[5]) take the full use of multi-core processors and distributed
systems. Multiple agents act in their own copy of the envi-
ronments simultaneously. The gradients are computed sepa-
rately and sent to a central parameter brain, which updates
a central copy of the model asynchronously. The updated
parameters will be then added and sent to every agent at a
specific frequency. Distributed prioritized experience replay
[6] overcomes the disadvantage that reinforcement learning
cannot efficiently utilize the computing resource of GPU, but
it only can be applied to the algorithm that uses replay buffer
like DQN or DDPG. Besides, a distributed system is not
easy and economical to implement. Reinforcement learning
with unsupervised auxiliary tasks (UNREAL [7]) accelerates
training by adding some additional tasks to learn. However,
these tasks mainly focus on the tasks with graphical state input,
which predict the change of pixels. And it is difficult to be
transferred to some simple problems with vector state space
environments.

III. BACKGROUND

In reinforcement learning, algorithms based on policy gra-
dient provide an outstanding paradigm for continuous action
space problems. The purpose of all such algorithms is to max-
imize the cumulative expected rewards L = E [

∑
t r(st, at)].

The most commonly used gradient of objective function L
with baseline can be written into the following form

∇θL =

∫
S
µ(s)

∫
A
∇θπθ(a|s)A(s, a)

= E [∇θ log πθ(a|s)A(s, a)]
(1)

where S denotes the set of all states and A denotes the set of
all actions respectively. µ(s) is an on-policy distribution over
states. π is a stochastic policy that maps state s ∈ S to action
a ∈ A, and A is an advantage function.

TRPO replaces objective function L with a surrogate objec-
tive, which has a constraint on the extent of update from an
old policy to a new one. Specifically,

maximize
θ

E
[
πθ(a|s)
πθold(a|s)

A(s, a)

]
subject to E

[
KL[πθold(·|s), πθ(·|s)]

]
≤ δ

(2)

where πθold is an old policy that generates actions but the
parameters are fixed during the training process. πθ is the
policy that we try to optimize but not too much, so an upper

bound δ is added to constrain the KL divergence between πθ
and πθold .

PPO can be treated as an approximated but much simpler
version of TRPO. It roughly clip the ratio between πθold and
πθ and change the surrogate objective function into the form

yLCLIPθ = E
[
min

(
r(θ)A, clip

(
r(θ), 1− ε, 1 + ε

)
A
)]

(3)

where r(θ) = πθ(a|s)
πθold (a|s) and ε is the clipping bound. Note

that PPO here is an actor-critic style algorithm, where actor is
policy πθ and critic is advantage function A.

In intuition, advantage function represents how good a state-
action pair is compared with the average value of current state,
i.e., A(s, a) = Q(s, a) − V (s). The most used technique
for computing advantage function is generalized advantage
estimation (GAE [17]). One popular style that can be easily
applied to PPO or any policy-gradient-like algorithm is

At(st, at) = rt + γrt+1 + · · ·+ γT−t+1rT−1

+ γT−tV (sT )− V (st)
(4)

where T denotes the maximum length of a trajectory but not
the terminal time step of a complete task, and γ is a discounted
factor. If the episode terminates, we only need to set V (sT ) to
zero, without bootstrapping, which becomes At = Gt−V (st)
where Gt is the discounted return following time t defined in
[20]. An alternative option is to use a more generalized version
of GAE:

At(st, at) = δt + (γλ)δt+1 + · · ·
+ (γλ)T−t+1δT−1

(5)

where δt = rt+γV (st+1)−V (st) which is known as td-error.
Noted that (5) will be reduced to (4) when λ = 1 but has high
variance, or be reduced to δt when λ = 0 but introduce bias.

We only need to approximate V̂θv (s) instead of Q̂(s, a)
to compute the approximation of advantage function where
δ̂t = rt+ γV̂θv (st+1)− V̂θv (st). So, instead of optimizing the
surrogate objective, we have to minimize loss function

LVθv =
(
rt + γrt+1 + · · ·+ γT−t+1rT−1

+ γT−tV̂θvold(sT )− V̂θv (st)
)2 (6)

where V̂θvold is the fixed value function which is used to
compute δ̂t.

IV. MIXED DISTRIBUTED PROXIMAL POLICY
OPTIMIZATION

We distribute both policies and agents in contrast to
DPPO where only agents are distributed. We set N policies
π1, · · · , πN that have exactly the same architecture of policy
network and value function network as well as hyperparame-
ters. Each policy, like a command center, controls a group of
M identical agents ei1, · · · , eiM where i denotes the serial num-
ber of policy that the group related to. So, N×M environments
are running paralleled, interacting with N×M agents divided
into N groups. Each agent eij interacts its own shared policy
πi, sending states and receiving actions. When all agents have
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Fig. 1: MDPPO: There are N policies in the figure. Each
policy controls M agents (red lines), gives them the decision
that how to interact with environments (blue and green lines).
The data for computing gradients flows through gray lines
where each policy gets updated not only by the data generated
from agents that it controls, but also from other groups of
agents.

finished a complete episode s0, a0, r0, s1 · · · , sT , aT , rt, sT+1,
each policy is not only going to be fed with trajectories from
the group of agents that it controls but also a bunch of ones
from other groups elaborately that may accelerate and stabilize
the training process. Figure 1 illustrates how decisions and
training data flows.

We define two sorts of trajectories being used to mixed
training.

Complete trajectories, where an agent successfully com-
pletes a task. We simply divide tasks into two categories, (i)
task with a specific goal, like letting an unmanned vehicle
reach a designated target point, or making a robotic arm grab
an object, and (ii) without a goal but trying to make the
trajectory as long as possible till the maximum episode time
is reached, like keeping a balance ball on a wobbling plate.

Auxiliary trajectories, where an agent does not complete
a task but the cumulative reward is much higher than other
trajectories. In many real-world scenarios, extrinsic rewards
are extremely sparse. An unmanned surface vehicle may get
no reward or cannot reach the target point for a long time in
the beginning. However, we can utilize trajectories that have
the highest cumulative rewards to encourage all policies to
learn from current better performance.

We mix complete trajectories and auxiliary trajectories,
and allocate them to every policy during the training process.
So each policy computes gradient with its usual and mixed
data altogether to update policy networks and value functions
independently.

Note that in practice, mixed transitions from other policies
may cause the denominator of ratio r(θ) in (3) to be zero
if πθold(a|s) is too small that exceeds the floating range of
computer. So that gradients cannot be computed correctly and
result in ”nan” problem when using deep learning frameworks
like TensorFlow. We introduce four solutions, (i) simply
removing all transitions that make πθold(a|s) < ε before
training, (ii) adding a small number to denominator such

Algorithm 1: Mixed Distributed Proximal Policy Opti-
mization (MDPPO)

1 for iteration = 1, 2, · · · do
2 for policy πi = π1, · · · , πN do
3 for environment eij = ei1, · · · , eiM do
4 Run policy πθiold in environment eij for T

timesteps and compute advantage function.
5 Store trajectories and cumulative rewards in

dataset Di.
6 end
7 end
8 Compute complete and auxiliary trajectories from

D1, · · · , DN and store them in D−1 , · · · , D
−
N .

9 for policy πi = π1, · · · , πN do
10 optimize LCLIPi (or LCLIP

+

i ) and LVi
respectively or combined LCLIP+V

i (or
LCLIP

++V
i ) with mixed transitions from Di and

D−1 , · · · , D
−
i−1, D

−
i+1, · · · , D

−
N .

11 end
12 end

that r(θ) = πθ(a|s)/(πθold(a|s) + ε) to make sure it has a
lower bound, (iii) rewriting the ratio into exponential form
exp(πθ(a|s) − πθold(a|s)) without modifying the clipping
bound, and (iv), which we used in our experiments, rewriting
the ratio into subtraction form instead of fractional one and
limit the update of new policy to the range of [−ε, ε]:

LCLIP
+

θ = E
[
min

(
r(θ)A, clip

(
r(θ),−ε, ε

)
A
)]
,

where r(θ) = πθ(a|s)− πθold(a|s)
(7)

We no longer need to worry about ”nan” problem since there
is no denominator in (7).

Furthermore, there are two common forms of loss func-
tions and network architectures. (i) training separated LV

and LCLIP as the standard actor-critic style algorithms with
completely different weights between policy and value func-
tion networks, and (ii) policy and value function networks
can share a part of the same weights [18]. In this case,
LV and LCLIP should be combined into one loss function,
LCLIP+V = LCLIP −LV , to make sure the update of shared
weights is stable.

Note that the entropy term LS in [18] only acts as a
regularizer, instead of maximizing the entropy [4]. We discover
that in our approach, the entropy term is optimal. Because a
part of data used to update policy is actually generated by
other different policies, which is the reason that MDPPO can
encourage exploration. Although all policies’ architectures and
hyperparameters are identical, the initial weights of neural
networks are totally different, which is the source of instability
in standard PPO that gives MDPPO a more powerful ability
of exploration. Algorithm 1 illustrates the mixed distributed
proximal policy optimization (MDPPO).
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Fig. 2: MDPPO with Separated Critic (MDPPOSC): The
architecture is the same as Figure 1, except for the separated
value function. The data through gray lines are now not only
fed to actual N policies, but to centralized value function (gray
box), which needs all transitions generated by N ×M agents
without filtering.

In contrast to DPPO where the computation of gradients
is distributed to every agent and gradients are summarized to
the center policy update then, in our approach, to take the full
advantage of GPU resources, agents are only used to generate
data, and transition data are transferred to the policy that it
controls. So, gradients are computed in each policy centralized.
In order to break the correlation between transitions, we tend
to shuffle all transitions before training.

A. MDPPO with Separated Critic

Actually, although the label of red box in Figure 1 is shown
as policy, the data through gray lines should be used to update
both policy and value function, which we usually call them
actor and critic in actor-critic style algorithms. We find that
having N different value function networks is not quite neces-
sary. We expect more actors and mix them to some extent to
encourage exploration and increase diversity, which may speed
up the training process and make it more stable. However,
critic only needs state-reward transitions as much as possible,
trying to make the approximation of states’ value more correct.
Besides, the loss function LVt = (G(st)−V̂ (st))

2 is irrelevant
to the policy or action. So, we can separate the value function
network from Figure 1 and feed all transitions to one
centralized critic. Figure 2 shows the separated value function
which is extracted from the policies in Figure 1 .

However, under the circumstances of sparse positive re-
wards, the value function may be fed with a large number
of useless transitions generated from a bad policy at the
beginning, which will cause the critic to converge to a local
optimum in a very short time and hard to jump out the gap,
since the algorithm would have learned a terrible policy with
the guide of a terrible advantage function. In practice, we
only simply feed transitions where td-error is greater than a
threshold. We also set the threshold to exponential decay since
we would like value function to explore more possibilities at

the beginning, but converge to the real optimal point at the
end.

V. EXPERIMENTS

Distributed experiment environments are difficult and ex-
pensive to build in the physical world. Even in one computer,
it is still not easy to implement a parallel system which has
to manage multiple agents, threads and physical simulations.
However, as a game engine, Unity can provide us with fast and
distributed simulation. What we only need to do is copying
an environment several times, Unity will run all environments
in parallel without any extra coding.

So we test our approach in a standard scenario, Simple
Roller, on the Unity platform with Unity ML-Agents Toolkit
[8]. The agent’s goal is to hit the target as quickly as possible
while avoiding falling down the floor plane.

The first experiment is under 5 policies, i.e., N = 5. Each
policy is modeled as a multivariate Gaussian distribution with
a mean vector and a diagonal covariance matrix, parameterized
by θ = {θµ ∈ R2, θΣ ∈ R2}. We set 20 distributed agents
and environments in all, i.e., each policy controlls 4 agents
and M = 4. The complete trajectories are simply regarded
as the transitions that rollers hit targets. As for auxiliary
trajectories, we choose the top 40% transitions that have the
greatest cumulative rewards. Figure 3a and Figure 3b shows
our four experiments, MDPPO, MDPPO with subtraction
ratio, standard PPO with four distributed agents and twenty
distributed agents. We divide them into two groups, one with
shared weights and the other not.

Both MDPPO and MDPPO with subtraction ratio outper-
form standard PPO. The time to convergence is shorter, and
most importantly, MDPPO is much more stable. All five
policies are converged almost simultaneously and have similar
performance. In contrast, only a few policies that optimized
by standard PPO have converged, which shows the instability
of PPO. Besides, the speed to convergence of some policies
is quite different. Some converge as quickly as MDPPO, but
most of them delay much, even not converge. We cannot find a
pattern of time to convergence with different initial parameters
for now.

We also test the performance of our approach with different
combinations of N and M , but the total number of agents is
set to 20, i.e., N ×M = 20. We find that with the decrease
of N , the algorithm will be more unstable, especially when
N = 1, i.e., standard PPO. Besides, even the algorithm that
has the best performance is slower to convergence than any
other algorithms that N > 1. However, it is also not always
good to increase N . In this experiment, a larger N may
indeed accelerate the training process, but it will also make
the algorithm much more unstable.

Finally, we test MDPPO with separated critic. Figure 3c
illustrates the results of algorithms with two ratio forms. Both
show similar great performance.

VI. CONCLUSION

In this paper, we present two algorithms. Mixed Distributed
Proximal Policy Optimization (MDPPO) and Mixed Dis-
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Fig. 3: In 3a and 3b, MDPPO (red) and MDPPO with subtraction ratio (green) are tested with 5 policies. Each policy has 4
agents. Yellow and blue lines are standard PPO algorithms with 4 agents and 20 agents respectively. PPO with 4 agents are
tested 5 times, meanwhile PPO with 20 agents are tested 10 times. The lighter color in the background shows the best and
worst performance of each algorithm test. The more narrow the background, the more stable the algorithm. 3c shows MDPPO
with separated critic. The performance of two algorithms is similar and outperform standard PPO both.

tributed Proximal Policy Optimization with Separated Critic
(MDPPOSC) and make three contributions, (i), a method that
distributes not only agents but also policies. Multiple policies
train simultaneously and each of them controlls multiple
identical agents. (ii), the transitions are mixed from all policies
and fed to each policy for training after elaborate selection.
We define complete trajectories and auxiliary trajectories to
accelerate the training process, (iii), we formulate a prac-
tical MDPPO algorithm based on the Unity platform with
Unity ML-Agents Toolkit to simplify the implementation of
distributed reinforcement learning system. Our experiments
indicate that MDPPO is much more robust under any random
initial neural network weights and could accelerate the training
process compared with standard PPO.
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