
At-Most-One Constraints in
Efficient Representations of Mutex Networks

Pavel Surynek[0000−0001−7200−0542]

Faculty of Information Technology
Czech Technical University in Prague
Thákurova 9, 160 00 Praha 6, Czechia

pavel.surynek@fit.cvut.cz

Abstract. The At-Most-One (AMO) constraint is a special case of cardinality
constraint that requires at most one variable from a set of Boolean variables to
be set to TRUE. AMO is important for modeling problems as Boolean satisfia-
bility (SAT) from domains where decision variables represent spatial or temporal
placements of some objects that cannot share the same spatial or temporal slot.
The AMO constraint can be used for more efficient representation and problem
solving in mutex networks consisting of pair-wise mutual exclusions forbidding
pairs of Boolean variable to be simultaneously TRUE. An on-line method for
automated detection of cliques for efficient representation of incremental mutex
networks where new mutexes arrive using AMOs is presented. A comparison of
SAT-based problem solving in mutex networks represented by AMO constraints
using various encodings is shown.

Keywords: mutex networks, at-most-one constraint, incremental mutex, Boolean
satisfiability, cardinality constraints, Boolean encodings, clique detection

1 Introduction

We address the problem of representing the incremental mutex network efficiently us-
ing the At-Most-One (AMO) constraint [22,26,5,27,6]. The problem is addressed in
the context of Boolean satisfiability (SAT) [10,15,32,31,7] where the task is to decide
whether there exists a truth value assignment satisfying a given Boolean formula. Usu-
ally we assume that formula F is specified using the conjunctive normal form (CNF)
[30] as a finite list of clauses where each clause is a (finite) disjunction of literals and
literal is either a variable or a negation of a variable. Let us denote a set of Boolean
decision variables on top of which F is expressed Var(F) = X = {x1,x2, ...,xn}.

A mutex network over set of variables X is defined as a set of pair wise mutual
exclusions that forbid a pair of propositional variables to be simultaneously TRUE.
Formally the mutex network of size k ∈ N denoted Mk is a set of clauses

{
(¬xui ∨

¬xvi) | ui,vi ∈ {1,2, ...,n} ∀i = 1,2, ...,k
}

. Mutex network Mk can be regarded as a
subset of clauses of given Boolean formula F (in such case all binary clauses of the
formula are included in Mk).

ar
X

iv
:2

00
6.

05
96

2v
1

 [
cs

.A
I]

 1
0

Ju
n

20
20

2 P. Surynek

Mutex networks appear in many problems expressed through the means of SAT.
Many difficult problems that arise in circuit design [1], scheduling [2], classical plan-
ning [17,16,25,13] or various cases of domain dependent planning [29,23] can be ex-
pressed using networks of mutual exclusions. Generally mutex networks are often a
product of spatial and temporal constraints between some objects. In real physical do-
mains, objects usually cannot share the same spatial or temporal slot which directly
leads to mutual exclusions of occurence of different objects in the same slot or the
same object in multiple slots. Using common direct encodings [24] is which decision
Boolean variables are used directly to represent some object relations (for example xA

1
and xB

1 represent occurence of object A and object B in slot 1 respectively) can often
give rise to complex mutex network (consisting of clauses like ¬xA

1 ∨¬xB
1 saying that

objects A and B cannot be simultaneously in slot 1).

1.1 Contribution

We contribute by a method for automated detection of the AMO constraint in mutex
networks. We propose algorithms for detecting cliques in mutex networks that can op-
erate in an on-line mode which means that mutexes are processed as they arrive into
the mutex network. Such feature is of great interest in domains where lazy Boolean en-
codings are used. Several Boolean encodings of the AMO constraint are recalled. After
detecting cliques in mutex network these cliques can be substituted by AMO constraint
using the encoding of user’s choice.

The paper is organized as follows: first we introduce existing encodings of the AMO
constraint. Then an on-line clique detection algorithms are introduced: one exact and
one relaxed. Both algorithms are theoretically analyzed. Finally, we implement and
evaluate the suggested AMO substitution method on a set of benchmarks including
various difficult SAT instances.

2 Background

The At-Most-One constraint (AMO) over Boolean variables X≤ = {xi j}m
j=1 with i j ∈

{1,2, ...,n} for j = 1,2, ...,m denoted ≤1{xi1 ,xi2 , ...xim} or ≤1{xi j}m
j=1 requires that at

most one Boolean variable from xi j variables can be set to TRUE. AMO is a special
case of more general cardinality constraints [5,27] denoted ≤c{xi1 ,xi2 , ...xim}with c∈N
requiring that at most c variables from X≤ are assigned TRUE.

Cardinality constraints have wide use in problem modeling since they enable bound-
ing various numeric values in inside the yes/no environment of Boolean formulae. This
is a significant contribution that brings SAT towards practical use in problem solving
[21].

Definition 1. (clique clustering). Given an undirected graph G= (V,E), a clique clus-
tering of G is a collection of subsets of vertices, C = {K ⊆ V} such that each C ∈ K
induces a complete sub-graph of G and each edge of G is covered by C , that is, ∀{u,v}∈
E(∃K ∈ C such that u,v ∈ K).

AMO Constraints in Efficient Representations of Mutex Networks 3

The concept of clique clustering can be naturally converted for mutex networks by
substituting of indices Boolean variables from X instead of V and the set of binary
clauses of Mk instead of E (that is, clause (¬xui ∨¬xvi) represents edge {ui,vi}).

2.1 Encodings of the At-Most-One Constraint

The At-Most-One constraint can be expressed by various encodings often using ad-
ditional auxiliary Boolean variables. The set of auxiliary variables is denoted A≤ in
this context. The basic encoding of AMO often called pairwise can simply use the
mutex network of size m·(m−1)

2 consisting of clauses
{
¬xui ∨¬xvi | ui,vi ∈ {i1, i2, ...,

im} ∧ ui < vi
}

. Even though this encodings supports achieving arc-consistency [20]
through unit propagation [11,14] it lacks any understanding of the global structure of
the constraint [28]. It has been experimentally shown that different encodings of the
At-Most-One constraint significantly outperform the pairwise encoding in a number of
benchmarks [22].

Binary Encoding The binary encoding [12] uses the idea of mapping m possible set-
tings of exactly one variable in set X≤ to TRUE to m possible different settings of bits in
a bit vector of length dlog2 me. The binary encoding uses dlog2 me auxiliary variables:
A≤ = {b1,b2, ...,bdlog2 me} to represent the bit vector. Whenever xi j is set to TRUE the
bit vector variables must be set following the binary encoding to represent value j in

the bit vector. Let b j
l =

{
bl if l-th bit of binary encoding of j is 1
¬bl if l-th bit of binary encoding of j is 0

Specifically we have the following formula to represent ≤1{xi j}m
j=1 using the binary

encoding:

(¬xi1 ∨b1
1)∧ (¬xi1 ∨b1

2)∧ ...∧ (¬xi1 ∨b1
dlog2 me)∧

(¬xi2 ∨b2
1)∧ (¬xi2 ∨b2

2)∧ ...∧ (¬xi2 ∨b2
dlog2 me)∧

...

(¬xim ∨bm
1)∧ (¬xim ∨bm

2)∧ ...∧ (¬xim ∨bm
dlog2 me)

Sequential Counter Encoding The sequential encoding [27] simulates calculation of
the number of Boolean variables set to TRUE by the circuit for calculating sums. The
calculation uses unary encoding of the partial sum. Intuitively, the calculation can be
regarded as a loop going across X≤. Each time a positively assigned variable in X≤ is
encountered, the partial sum is increased by one. This approach nicely works for general
cardinality constraint ≤c{xi1 ,xi2 , ...xim}. Enforcing the cardinality constarint can done
by bounding the partial sum by c. In the AMO case, the situation is much simpler. It is
sufficient to bound the partial sum by 1.

Technically we need to introduce an array of auxiliary variables S = {sl, j | l =
1,2, ...m+ 1; j = 1,2} representing partial sums for individual steps of the main loop

4 P. Surynek

using the unary calculation. The interpretation is that sl, j is TRUE if the sum of vari-
ables set to TRUE among {xi1 ,xi2 , ...,xil−1} is j. The following clauses carry out the
partial sums:

(¬xi1 ∨¬s1,1∧ s2,2)∧ (¬xi1 ∨ s1,1)∧ (xi1 ∨¬s1,1∧ s2,1)∧ (xi1 ∨¬s1,2∧ s2,2)∧
(¬xi2 ∨¬s2,1∧ s3,2)∧ (¬xi2 ∨ s2,1)∧ (xi2 ∨¬s2,1∧ s3,1)∧ (xi2 ∨¬s2,2∧ s3,2)∧

...

(¬xim ∨¬sm,1∧ sm+1,2)∧ (¬xim ∨ sm,1)∧ (xim ∨¬sm,1∧ sm+1,1)∧ (xim ∨¬sm,2∧ sm+1,2)

Finally, we need to enforce sm+1,2 to FALSE by introducing unit clause ¬sm+1,2 to
bound the last partial sum to at most one.

Product Encoding The product encoding [9] relies on the idea of assigning each vari-
able a point in a 2-dimensional array of Boolean variables and projecting this array to
one dimension. In both one dimensional projection it is required that at most one vari-
able is set to TRUE which implies that there is at most one in original variables set to
TRUE. In other words, if say two (or more) distinct variables from X≤ are set to TRUE
then at least in one of the two projections we can see two TRUE values because the two
variables must differ in at least one of their projections. Having two (or more) TRUE
values in any of the projections is however forbidden by the encoding.

More precisely we use the set of auxiliary variables A≤ = {p1, p2, ..., pd ,q1,q2, ...,
qd} representing the 2D array of Booleans where d = d

√
me represents the size of

projecting dimension. Each point from the 2D array is assigned to a distinct variable
from X≤, that is, following clauses are introduced in the encoding:

(¬xi1 ∨ p1)∧ (¬xi1 ∨q1)∧ (¬xi2 ∨ p1)∧ (¬xi2 ∨q2)∧
...∧ (¬xid ∨ p1)∧ (¬xid ∨qd)∧

(¬xid+1 ∨ p2)∧ (¬xid+1 ∨q1)∧ (¬xid+2 ∨ p2)∧ (¬xid+2 ∨q2)∧
...∧ (¬xi2d ∨ p2)∧ (¬xi2d ∨qd)∧

...

(¬xi(d−1)d+1 ∨ pd)∧ (¬xi(d−1)d+1 ∨q1)∧ (¬xi(d−1)d+2 ∨ pd)∧ (¬xid−1)d+2 ∨q2)∧

...∧ (¬xim ∨ pd)∧ (¬xim ∨qm−(d−1)d)

Let us note that if m is not a square of some d ∈ N then not all points in the 2D
Boolean array has assigned a variable from X≤. Also we note that is not required that
both projection dimensions are of the same size. A 2D array with different sizes of
both dimensions can be used as well: A≤ = {p1, p2, ..., pd1 ,q1, q2, ...,qd2} such that
d1 ·d2 ≥ m.

In addition to above clauses it needs to be ensured that at most one variable in
each projection is set to TRUE which can be done by introducing following AMO con-
straints: ≤1{p1, p2, ...pd} and ≤1{q1,q2, ...qd} that are of smaller size than the originally
encoded AMO so inductively any encoding can be used for them the product encoding
including.

AMO Constraints in Efficient Representations of Mutex Networks 5

Commander Encoding The commander encoding [18] partitions X≤ into disjoint sub-
sets Y1 = {y1

1, ...y
1
g1
}, Y2 = {y2

1, ...,y
2
g2
}, ... Yd = {yd

1 , ...,y
d
gd
}. For each group of variables

Yi we introduce an auxiliary commander variable ci. The interpretation is that ci set to
TRUE selects a candidate from group Yi. In other words, commander variables introduce
a hierarchical structure for selecting at most one variable from the original set X≤: at
most one commander variable can be set to TRUE while it permits to select at most one
variable from its group; no other variable in other groups can be set to TRUE. Following
clauses need to be introduces to carry out the encoding:

(¬c1∨ y1
1∨ y1

2∨ ...y1
g1
)∧ (¬c2∨ y2

1∨ y2
2∨ ...y2

g2
)∧ ...∧ (¬cd ∨ yd

1 ∨ yd
2 ∨ ...yd

gd
)

In addition to this following AMO constraints need to be introduced: ≤1{¬c1∨y1
1∨

y1
2∨ ...y1

g1
}, ≤1{¬c2∨y2

1∨y2
2∨ ...y2

g2
}, ..., ≤1{¬cd ∨yd

1 ∨yd
2 ∨ ...yd

gd
}. Finally, we need to

enforce that at most one commander variable is selected by: ≤1{c1∨ c2∨ ...cd}.
The number of groups partitioning X≤ is set to d = d

√
me which is a good compro-

mise between the number of groups and their size.

3 On-Line Clique Detection in Mutex Networks

We present here techniques for detecting cliques (complete sub-graph) in mutex net-
works. Having cliques detected on top of set of mutexes one can introduce AMO con-
straints using some more advanced encoding instead the set of mutex clauses. Finding
cliques in an undirected graph is well known NP-hard problem hence solving it exactly
is as hard as solving the original formula satisfiability problem. Therefore certain trade-
offs between the quality of cliques being discovered and complexity of the method must
be adopted.

We first present an exact exponential time/space algorithm for finding all possibly
overlapping cliques in the input mutex network. Then we will show how to relax the
algorithm to reduce its complexity to acceptable polynomial level while keeping its
original idea.

3.1 Exact Algorithm

The exact algorithm for clique detection in mutex network is presented using pseudo-
code as Algorithm 1. The algorithm relies on the idea of merging variables into clus-
ters while valued meta-edges between clusters are maintained. The meta-edge between
clusters corresponds to the set of edges interconnecting the two clusters. The value of
meta-edge is the number of edges connecting the clusters.

When new mutexes arrive to the mutex network the algorithm updates (increments)
the value of meta-edges between all pairs of clusters the mutex variables participate
in (line 8 in EXACT-CLIQUES). If this value of the meta-edge reaches the size of the
complete graph between the pair of cluster, the clusters are merged together to form a
new cluster (the original pair of clusters is maintained). This is done in the INCREMENT-
CLUSTER-LINK procedure.

6 P. Surynek

Algorithm 1: Exact clique detection algorithm.
1 EXACT-CLIQUES(Mk =

{
(¬xui ∨¬xvi) | ui,vi ∈ {1,2, ...,n} ∀k = 1,2, ...,k

}
)

2 let E(Kv,Ku) = 0 for any Ku,Kv ⊆ {1,2, ...,n}
3 for each i = 1,2, ...,n do
4 C ←{{i}}
5 for each (¬xui ∨¬xvi) ∈Mk do
6 for each Ku ∈ C such that ui ∈ Ku do
7 for each Kv ∈ C such that vi ∈ Kv do
8 INCREMENT-CLUSTER-LINK(Ku, Kv)

9 return C
10 INCREMENT-CLUSTER-LINK(Ku,Kv)
11 E(Ku,Kv)← E(Ku,Kv)+1
12 if E(Ku,Kv) = |Ku \ (Ku∩Kv)|× |Kv \ (Kv∩Kv)| then
13 for each K ∈ C such that E(K,Ku)> 0∨E(K,Kv)> 0 do
14 E(K,Ku∪Kv)← E(K,Ku)+E(K,Kv)−E(K,Ku∩Kv)

15 C ← C ∪{Ku∪Kv}

Without proof let us state that the EXACT-CLIQUES algorithm is sound and com-
plete and returns clique clustering of the input mutex network. All cliques contained in
the input mutex network are detected by the algorithm, that is, if a subset of variables
X ⊆ X≤ induces a clique of mutexes w.r.t. Mk then X ∈ C .

To provide deeper insight into how the algorithm proceeds we summarize its com-
plexity in the following proposition.

Proposition 1. (EXACT-CLIQUES complexity). The EXACT-CLIQUES algorithm for
mutex network Mk over set of variables X = {x1,x2, ...,xn} has the worst case time
complexity O(k ·23n) and the worst case space complexity O(22n).

Proof. Let us first calculate the complexity of the procedure for incrementing the num-
ber of links between a pair of clusters Ku and Kv (INCREMENT-CLUSTER-LINK). The
determining factor is updating the number of links of the newly created cluster with
existing clusters (lines 13-14). This consumes time of O(2n) since there is up to 2n

clusters that need to update their number of links towards the new cluster.
The dominating factor in the overall space complexity is the structure for keeping

the number of links between variable clusters represented by E . As the number of
clusters is at most 2n, the number of links connecting clusters is bounded by 22n. Hence
the overall space complexity of O(22n).

To calculate time complexity we need to observe that single variable can participate
in as many as 2n clusters. Hence line 8 in EXACT-CLIQUES where the number of links
between clusters is incremented can be executed as many as 22n times per one mutex
which gives altogether k · 22n execution across entire mutex network. Taking into ac-
count the O(2n) time required by the single link increment we obtain that the algorithm

AMO Constraints in Efficient Representations of Mutex Networks 7

Algorithm 2: Relaxed clique detection algorithm.
1 RELAXED-CLIQUES(Mk =

{
(¬xui ∨¬xvi) | ui,vi ∈ {1,2, ...,n} ∀k = 1,2, ...,k

}
)

2 let E(Kv,Ku) = 0 for any Ku,Kv ⊆ {1,2, ...,n}
3 for each i = 1,2, ...,n do
4 C ←{{i}}
5 for each (¬xui ∨¬xvi) ∈Mk do
6 K∗u ← argmaxKu∈C |ui∈Ku

|Ku|
7 K∗v ← argmaxKv∈C |vi∈Kv

|Kv|
8 INCREMENT-CLUSTER-LINK(K∗u , K∗v)
9 C ← C ∪{{ui,vi}}

10 return C

needs time O(k ·23n) steps in the worst case. �

The algorithm of such high complexity is impractical however our preliminary ex-
periments indicate that it can be well used for detecting cliques in small mutex net-
works.

Observe that the EXACT-CLIQUES algorithm can operate in an on-line mode where
new mutexes arrive piece by piece while the clique clustering is still kept up to date.
This is important in many applications such as planning where the SAT model of a
problem is often incrementally modified (that is new constraints including mutexes are
added) so we do not need to search for cliques from scratch but only update recent
changes

We will use the algorithm as a starting point for a relaxed version which will keep
the on-line functionality.

3.2 Relaxation of the Exact Algorithm

We relax the exact clique detection algorithm while keeping its high level structure of
merging the variable clusters. We do this by restricting the set of pair of clusters for
which merging attempt is made. Intuitively, as we aim on finding large cliques, it seems
to be promising to focus merging of large clusters together while smaller clusters are
omitted.

The method presented using pseudo-code in Algorithm 2 attempts to merge only the
largest pair of clusters. That is, for an arriving mutex (¬xui ∨¬xvi) we identify largest
cluster K∗u containing ui and similarly largest cluster K∗v containing vi (lines 6-7). The
attempt to merge clusters is done only for K∗u and K∗v .

Proposition 2. (RELAXED-CLIQUES complexity). The RELAXED-CLIQUES algorithm
for mutex network Mk over set of variables X = {x1,x2, ...,xn} has the worst case time
complexity O(k2) and the worst case space complexity O(k2).

Proof. We first need to observe that single mutex being processed Mk in the main loop
(lines 6-8) can give rise to at most new cluster of variables. Hence the total number

8 P. Surynek

of clusters is bounded by k. The remaining calculation of the complexity relies on this
bound (we assume that n < k). Incrementing the number of links between a pair of
clusters then takes k steps since we need to update connection of the new cluster towards
at most k existing clusters (lines 13-14 of INCREMENT-CLUSTER-LINK).

For each of k mutexes in input mutex network Mk we take the largest cluster in
which its variables participate and increment the number of links between the pair of
largest clusters. Assuming O(k) the worst case time complexity of incrementing the
main loop of RELAXED-CLIQUES (lines 5-8) yields time O(k2) altogether.

The worst case space complexity is determined by the need to represent number of
links between clusters E which can be done using space O(k2). �

It is a question now if such dramatic reduction of time and space complexity through
restricting the link incrementing only on largest clusters keeps ability of the algorithm
to detect cliques reasonably. The example show in Figure 1 illustrates that the restriction
on largest clusters does not compromise finding the clique.

C = {
 {1}, {2}, {3}, {4},
 {1,2}
}

E({1},{2}) = 1

2 1

3 4

C = {
 {1}, {2}, {3}, {4},
 {1,2}
}

E({1,2},{4}) = 1

2 1

3 4

C = {
 {1}, {2}, {3}, {4},
 {1,2},{3,4}
}

E({3},{4}) = 1

2 1

3 4

C = {
 {1}, {2}, {3}, {4},
 {1,2}, {3,4}
}

E({1,2},{3,4}) = 2

2 1

3 4

C = {
 {1}, {2}, {3}, {4},
 {1,2}, {3,4}
}

E({1,2},{3,4}) = 3

2 1

3 4

C = {
 {1}, {2}, {3}, {4},
 {1,2}, {3,4},
 {1,2,3,4}
}

E({1,2},{3,4}) = 4

2 1

3 4

(i) (ii) (iii)

(iv) (v) (vi)

Fig. 1. The process of clique clustering construction by the RELAXED-CLIQUES algorithm. Mu-
texes of a network consisting of single clique on 4 variables {x1,x2,x3,x4} are processed fol-
lowing the ordering: {1,2},{2,3},{3,4},{1,3},{2,3} and {1,4}. Eventually the original clique
covering all 4 variables is detected in step (vi).

An intuitive insight into how the relaxed clique clustering works suggests that it
is important to add mutexes participating in a single clique in a sequence not much
interrupted by additions of other mutexes. In such case, clusters have chance to grow to
cover the clique and do not grow outside the clique. Practical applications suggests that
this property is often the case since for example all objects related to given spatial slot
that are spatially excluded are processed in a single uninterrupted block.

3.3 The At-Most-One Constraint Substitution in Mutex Networks

After detecting cliques in mutex network we can convert the encoding so that instead
of the basic pair-wise representation of AMOs different encodings can be used. The

AMO Constraints in Efficient Representations of Mutex Networks 9

soundness of substitution of AMO constraints relies on the property of clique clustering
(proof omitted):

Proposition 3. Assume a clique clustering C of mutex network Mk. Representing each
clique C ∈ C using some encoding of the AMO constraint results in an equivalent in-
stance as that represented by Mk.

The equivalence here is defined as having identical set of satisfying assignments,
that is the set of satisfying assignments of conjucntion of AMOs for cliques is the same
as the set of satisfying assignment for the original set of mutexes Mk (auxiliary variables
are ignored).

Moreover it is easy to see that if there are cliques C′ ∈ CandC ∈ C such that C ⊆
C′ then it is sufficient to represent C′ using the AMO constraint to keep the above
equivalence valid.

4 Experimental Evaluation

We evaluated the suggested approach of AMO substitution in mutex networks experi-
mentally. The approach can be used both in eager SAT encodings of problems where the
target formula is first constructed in advance and then consulted with the SAT solver as
well as in the lazy setup where the target formula is constructed incrementally piece by
piece and the SAT solver is consulted multiple times during the process of construction
[19].

4.1 Benchmarks and Setup

The experimental evaluation is based on the GLUCOSE 3.0 SAT solver [4] which has
been used as a library linked to the testing program. The test itself is implemented in
C++ 1.

The AMO substituion is implemented for all discussed encodings: binary, sequen-
tial, product, and commander encodings while the pair-wise is kept as the baseline
encoding for reference comparison. We divided the experiments in three tests:

(i) evaluation of AMO substitution in random mutex formulae and
(ii) evaluation of clique detection in random mutex network

(iii) evaluation of AMO substitution in standard SAT benchmarks consisting of difficult
instances [1]

1 To enable reproducibility of presented results we provide the source code and supporting
experimental data on the author’s website:http://users.fit.cvut.cz/surynpav/research/ mutex-
AMO2020. The source code of presented algorithms is also available in author’s Git repos-
itory: http://github.com/surynek/mutEX.

http://users.fit.cvut.cz/surynpav/research/mutexAMO2020
http://users.fit.cvut.cz/surynpav/research/mutexAMO2020
http://github.com/surynek/mutEX

10 P. Surynek

4.2 Comparison of Mutex Network Representations Using AMOs

In all tests we compared representation mutex network using detected AMO constraints
and the base-line representation where mutexes are kept in their original form as pair-
wise encoding. The test runs in three phases:

1. Clique clustering. This phase processes the input SAT instance in CNF that is
ether generated synthetically or read from the input file. All clauses from the input
representing mutexes (clauses of the form (¬x∨¬y)) are treated as being part of
mutex network Mk and are not declared to the SAT solver; other clauses, that is
those of higher arity than 2 and those not representing mutual exclusion of TRUE
assignment to a pair of variables are directly declared to the SAT solver. Mk consist-
ing of collected mutexes is processed by the RELAXED-CLIQUES algorithm which
produces clique clustering C .

2. AMO encoding phase. The clique clustering C is converted to actual AMO en-
coding so that the resulting formula is equivalent to the original one. We start from
largest cliques in C and continue down to cliques of size 3. Each clique C ∈ C is
checked if it is subsumed by any larger already processed clique. If not then C is
encoded using selected AMO encoding and resulting clauses are recorded. If C is
subsumed by some C′ ∈ C then C is simply ignored as its meaning is already cap-
tured by C′. The remaining clique of size 2 (simple mutual exclusions) are declared
as clauses if they assumed they are not subsumed by any larger clique.

3. SAT solving phase. This phase corresponds to consulting the SAT solver with en-
coded instance. Encoded clauses are all declared to the SAT solver and the solver
is started using its default setting.

In the SAT solving phase, various performance characteristics of the SAT solver
were measured such as runtime. The SAT solver has been given the time limit of 8000
seconds (approx. 2 hours 13 minutes). Preliminary experiments indicate that the runtime
of the clique clustering and AMO encoding phases is negligible, hence there is no time
limit of these phases. 2.

Random Mutex Formulae A random mutex formula is characterized by tree param-
eters: N, the number of variables, D, the size of disjunctive clauses, and p, the prob-
ability of a mutex. The formula is denoted mutex-net(N,D, p). The formula is simply
constructed by declaring N Boolean variables. Then each of possible N·(N−1)

2 mutexes
is added with probability of p. Such a formula is trivially satisfiable by setting all vari-
ables to FALSE. To make the formula more interesting we divide the set variables into
dN

De disjoint subsets consisting of D variables (the last group may consist of fewer vari-
ables).

Mutex formulae tend to be relatively easy except setting of p in certain narrow
analogy of phases transition region. Runtime comparison for different encodings of
detected AMO constraints on mutex formulae are presented in Figures 2 and 3 showing
results for mutex-net(256,8,0.121) and mutex-net(256,12,0.205) respectively.

2 All runtime measurements were done a system with a Ryzen 7 3GHz CPU cores and 32GB
RAM running under Ubuntu Linux 19.

AMO Constraints in Efficient Representations of Mutex Networks 11

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

0 20 40 60

R
u

n
ti

m
e

 im
p

ro
ve

m
e

n
t

(s
ec

o
n

d
s)

Instance

Absolute Improvement
mutex-net(256,8,0.121)

sequential product binary command

0,1

1

10

0 20 40 60

Im
p

ro
ve

m
en

t
ra

ti
o

Instance

Relative Improvement
mutex-net(256,8,0.121)

sequential

product

binary

command

Fig. 2. Absolute and relative improvement by AMOs using various encodings in random mutex
network with N = 256 variables, disjunctions of size D= 8, and probability of mutexes p= 0.121
(higher plot means better performance).

The probability of mutexes p is selected to belong to the phase transition region;
60 random instances were generated for each parameter setting. The detected AMOs
are encoded using all discussed encodings and compared to the baseline representation
using the pair-wise encoding.

The sorted absolute and relative differences from the runtime of the base-line pair-
wise encoding is shown. Generally, we cannot say there is universal improvement across
all tested instances. Often the performance worsens with using the AMO constraints.
The improvement is however in some cases up to 50% compared to the runtime of
the pair-wise encoding. We can also observe that using the commander and sequential
encodings often results in worsening of performance. On the other hand the binary
encoding and the product encoding tend to improve the situation.

Comparing the two classes of random mutex formulae we can observe that AMO
substitution yields better results on mutex-net(256,8,0.121) while on mutex-net(256,
12,0.205) worse performance after AMO substitution occur more frequently.

It is important to note that random mutex formulae are not especially suitable for
finding large cliques. We used these instances to test the potential of AMO substitution
under not very promising circumstances. The size of cliques identified in this experi-
ments is usually 3 or 4 rarely 5. Still such small discovered cliques are shown to have
potential for the AMO substitution.

4.3 Clique Detection in Random Mutex Networks

We also evaluated the performance of the relaxed clique detection separately from the
SAT solving process. We focused on the size of cliques detected by the algorithm in

12 P. Surynek

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0 10 20 30 40 50

R
u

n
ti

m
e

 im
p

ro
ve

m
e

n
t

(s
ec

o
n

d
s)

Instance

Absolute Improvement
mutex-net(256,12,0.205)

sequential product binary command

0,6

0,8

1

1,2

1,4

0 10 20 30 40 50

Im
p

ro
ve

m
en

t
ra

ti
o

Instance

Relative Improvement
mutex-net(256,12,0.205)

sequential

product

binary

command

Fig. 3. Absolute and relative improvement by AMOs using various encodings in random mutex
network with N = 256 variables, disjunctions of size D = 12, and probability of mutexes p =
0.205.

this test. Random mutex networks mutex-net(N,D, p) as defined in the previous section
were used. The difference from the previous tests is that we take into account only the
mutex clauses from mutex-net(N,D, p) while larger disjunctions (those of size D) are
ignored.

1
6

2
,9

3

4
8

7
,6

6

2
3

,8
7

2

6
,9

1

7
,4

9

1
,3

7

0
,0

3

0
,0

1

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A
ve

ra
ge

 n
u

m
b

e
r

o
f

cl
iq

u
es

Clique size

Histogram mutex-net(256,8,0.121)
No Clique | Original Ordering

4
7

8
,3

4

1
8

1
,4

5

4
4

,5
4

2

7
,4

4

1
6

,7
6

2

,2
4

0

,4
4

0

,2
3

0

,0
7

0

,0
1

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A
ve

ra
ge

 n
u

m
b

e
r

o
f

cl
iq

u
es

Clique size

Histogram mutex-net(256,8,0.121)
No Clique | Random Ordering

Fig. 4. A histogram showing distribution of sizes of detected cliques in mutex-net(256,8,0.121)
where no cliques are explicitely introduced.

AMO Constraints in Efficient Representations of Mutex Networks 13

Since the RELAXED-CLIQUES algorithm is sensitive to the ordering in which new
mutexes arrive into the mutex network, the test is divided in two cases. In the first case,
mutexes arrive in the lexicographic ordering of pairs indices of mutex variables - we
refer to this case as an original ordering. In the second case, mutexes are permuted ran-
domly - we refer to this case as a random ordering. Results for mutex-net(256,8,0.121)
and mutex-net(256,12,0.205) whose parameters are selected to belong to the afore-
mentioned phase transition are shown in Figures 4 and 5. The figures shows histogram
of clique sizes across 100 randomly generated mutex-net(N,D, p). Each of the figures
shows results for the original (left part) and random ordering (right part) of the arrival
of mutexes into the mutex network.

1

2
9

,2
7

5

1
1

,5
6

5

1
,3

9

6
8

,7

3
4

,8

1
1

,6
7

0

,8
5

0

,4
6

0

,2
2

0

,1
6

0
,0

1

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A
ve

ra
ge

 n
u

m
b

e
r

o
f

cl
iq

u
es

Clique size

Histogram mutex-net(256,12,0.205)
No Clique | Original Ordering

4
5

2
,1

1

1
6

8
,2

4

0
,7

9

2
8

,4
1

2

8
,5

2

6
,7

1

1
,8

6

1
,5

1

0
,8

5

0
,0

9

0
,0

4

0
,0

4

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A
ve

ra
ge

 n
u

m
b

e
r

o
f

cl
iq

u
es

Clique size

Histogram mutex-net(256,12,0.205)
No Clique | Random Ordering

Fig. 5. A histogram showing distribution of sizes of detected cliques in mutex-net(256,12,0.205)
where no cliques are explicitly introduced.

It can be observed in both types of mutex networks that most of cliques are rela-
tively small of sizes 3 or 4. Rarely a larger clique can be discovered - cliques of sizes
up to 7 or 8 can be discovered. Moreover, the results clearly indicate that ordering of
arrival of mutexes has a significant impact on what cliques are eventually discovered.
Most of discovered cliques are of size 4 if the original ordering is used while most of
cliques is of size 3 in the case of random ordering which can be again observed in both
mutex-net(256,8,0.121) and mutex-net(256, 12,0.205) . On the other hand random
ordering provides opportunity for a larger clique to grow.

The explanation for this behavior is that the original (lexicographic) ordering sup-
ports the growth of clique cluster around a variable that is shared across a sub-sequence
of mutexes within the input mutex sequence. Such opportunity is less likely to oc-
cur when the ordering of mutexes in completely random. The explanation of detecting
larger cliques with random ordering is that clusters in such case are more evenly dis-
tributed hence the chance of merging a pair large clusters is higher.

14 P. Surynek

1
3

0
,3

4
4

6
,4

5

3
1

,1
7

4
6

,6
2

2
5

,6
3

8
,4

3

0
,9

4

0
,9

5

0
,2

8

0
,0

5

0
,0

7

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A
ve

ra
ge

 n
u

m
b

e
r

o
f

cl
iq

u
es

Clique size

Histogram mutex-netC(256,8,0.121)
Hidden Cliques | Original Ordering

4
3

8
,6

7

1
4

9
,4

5

3
7

,4
3

2
7

,0
4

2
4

,0
3

7
,8

4

2
,8

5

1
,6

3

0
,5

8

0
,1

8

0
,0

2

0
,0

2

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A
ve

ra
ge

 n
u

m
b

e
r

o
f

cl
iq

u
es

Clique size

Histogram mutex-netC(256,8,0.121)
Hidden Cliques | Random Ordering

Fig. 6. A histogram showing distribution of sizes of detected cliques in mutex-net(256,8,0.121)
where hidden cliques of size 8 are present.

The next test is focused on evaluation of discovering large cliques in random mutex
networks. We use mutex-net(N,D, p) as a basis but parameter D is used for generat-
ing cliques. Instead of introducing a disjunction of size D a clique of mutexes of size
D is introduced. The clique can be regarded as hidden in the mutex network. The re-
sulting network will be denoted mutex-netC(N,D, p). Again we use the following se-
tups: mutex-netC(256,8,0.121) and mutex-netC(256,12,0.205) - the results are shown
in Figures 6 and 7. The original ordering corresponds first to adding mutexes randomly
followed by adding cliques 3. The random ordering adds all mutexes from random phase
and from cliques in a random order.

We can see in the results that clique of larger size can be detected in the networks
compared to the case with no hidden cliques. However original cliques can be hardly
recovered all. In mutex-netC(256,8,0.121) we can recover approximately 8 in 32 hid-
den cliques of size 8 when the original ordering is used. When the random ordering is
used the chance is slightly lower. In mutex-netC(256,12,0.205) only 1 clique of size 12
can be recovered from 20 such cliques hidden in the network.

The explanation for the observed behavior is that mutex-netC(256,8,0.121) is not
as densely populated by random mutexes so there is still chance that the clique cluster
grows around originally hidden cliques. This contrasts to the mutex-netC(256,12,0.205)
where two factors decrease chances to find the hidden cliques. First, these cliques are
larger hence more successful steps are needed to detect them and second, the cliques are
more overlaid by random mutexes. Hence harder to be detected by the relaxed clique
algorithm. Despite not discovering all hidden cliques we cannot say the algorithm to be
unsuccessful as it can find many smaller cliques and occasionally even larger ones.

3 Adding cliques as first would lead to their exact discovery as by example in Figure 1. Adding
random mutexes before leads to hiding the cliques in the network.

AMO Constraints in Efficient Representations of Mutex Networks 15

1
1

9
,9

1

4
7

6
,8

5

4
6

,9
5

6
3

,1
1

3
7

,6
4

1
8

,9
9

5
,2

3

3
,8

2

2
,2

4

1
,4

6

0
,4

2

0
,0

8

0
,0

3

0
,0

4

0
,0

2

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A
ve

ra
ge

 n
u

m
b

e
r

o
f

cl
iq

u
es

Clique size

Histogram mutex-netC(256,12,0.205)
Hidden Cliques | Original Ordering

4
3

0
,3

2

1
5

0
,5

4
3

4
,9

3

2
4

,9
5

2
7

,2
7

9
,6

3

4
,3

8

3
,7

1
,9

4

0
,8

4

0
,2

4

0
,0

4

0
,0

5

0
,0

4

0
,0

1

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A
ve

ra
ge

 n
u

m
b

e
r

o
f

cl
iq

u
es

Clique size

Histogram mutex-netC(256,12,0.205)
Hidden Cliques | Random Ordering

Fig. 7. A histogram showing distribution of sizes of detected cliques in mutex-net(256,12,0.205)
where hidden cliques of size 12 are present.

Classical Benchmarks The third test is focused on SAT solving of hard instances with
relatively large mutex cliques hidden inside. The aim of this experiment is to verify if
the RELAXED-CLIQUES algorithm is able to detect large enough mutex cliques so that
their substituion by the AMO constraints results in a significant performance gain of
the SAT solving phase.

We used standard benchmarks encoding the pigeon hole principle (denoted hole)
where the question is whether K + 1 pigeons can be placed in K holes so that no two
of them share a hole. This problem is known to be difficult for SAT solvers when the
direct encoding is used [28]. In the direct encoding, there are variables x j

i encoding that
i-th pigeon is placed in the j-th hole and a mutex network is introduced on top of these
variables. Similarly various circuit routing problems are known to define difficult SAT
instances containing cliques in their mutex networks [1] (denoted chnl and S3). Cir-
cuit routing problems often encode sub-problems similar to the pigeon hole principle.
Finally, Quasi Group (qg) instances encode construction of Latin squares [3].

Runtime results are presented in Tables 1 and 2. We test the original ordering of
mutexes and the random ordering. The former directly corresponds to the ordering of
clauses in the input instance while the latter takes random permutation of mutex clauses
in the input instance and performs relaxed clique detection with respect to this random
permutation.

It can be observed for the original ordering that significant performance improve-
ment is achieved for hole and chnl instances where the base-line pair-wise encoding
often exceeds runtime of 1000 seconds while all encodings of the AMO constraint lead
to runtimes in terms of seconds. The most significant improvement is achieved by us-
ing the commander encoding. This is quite surprising as in random mutex formulae
the commander encoding has the worst performance. We need however to take into ac-

16 P. Surynek

ID

Pigeon Hole (seconds) – original ordering

Pair Wise Sequential Product Binary Command
Clique
cluster

hole6 0.01 0.01 0.01 0.01 0.01 <0.01

hole7 0.06 0.01 0.02 0.01 0.01 <0.01

hole8 1.49 0.04 0.03 0.05 0.04 0.01

hole9 16.56 0.12 0.13 0.24 0.07 0.01

hole10 359.13 0.85 0.51 1.05 0.19 0.02

hole11 3488.19 1.11 2.20 3.85 0.77 0.02

ID

Quasi Group (seconds) – original ordering

Pair Wise Sequential Product Binary Command
Clique
cluster

qg1-8 0.34 0.27 0.27 0.21 0.11 <0.01

qg2-8 0.53 1.26 0.20 0.53 0.18 <0.01

qg3-9 2.25 1.66 2.39 2.01 2.46 0.02

qg5-13 4.73 3.78 2.45 2.66 2.58 0.04

qg6-12 0.85 1.25 0.67 0.65 0.61 0.04

qg7-13 0.13 0.18 0.18 0.12 0.08 0.01

ID

Pigeon Hole (seconds) – random ordering

Pair
Wise

Sequential Product Binary Command
Clique
cluster

hole6 0.01 0.01 0.01 0.01 0.01 <0.01

hole7 0.06 0.16 0.14 0.11 0.15 <0.01

hole8 1.49 0.91 0.57 1.28 0.11 0.01

hole9 16.56 3.97 5.27 1.35 1.47 0.01

hole10 359.13 424.90 300.55 596.19 9.07 0.02

hole11 3488.19 4748.95 4238.59 4600.02 260.59 0.02

ID

Quasi Group (seconds) – random ordering

Pair Wise Sequential Product Binary Command
Clique
cluster

qg1-8 0.34 1.52 1.42 0.34 1.85 <0.01

qg2-8 0.53 1.65 1.06 1.09 0.99 <0.01

qg3-9 2.25 0.18 0.14 0.15 0.20 0.02

qg5-13 4.73 7.20 5.02 4.21 8.32 0.04

qg6-12 0.85 1.08 0.81 1.81 1.83 0.04

qg7-13 0.13 0.08 0.08 0.04 0.17 0.01

Table 1. Runtime results for instances encoding the Pigeon hole priciple and Quasi group com-
pletion [3].

count that the size of cliques in hole and chnl instances is much larger (more than 10
variables) than in random mutex networks.

In qg and S3 instances, the performance gain with the original ordering is less sig-
nificant however using AMO substitution generally leads to better performance. The
best runtime is almost in all cases achieved by some AMO encoding other than the
pair-wise. If we compare individual encodings then the commander encoding and the
binary encoding seem to provide the most consistent results. This is more in line with
observations for random mutex networks where the binary encoding performs as best.

The results for random ordering of mutexes show generally worse performance of
AMO substitution. The random ordering often leads to finding other cliques than those
originally encoded in the input instance. Although the original clique covering is not
detected, still relatively large cliques can be discovered. The performance gain, despite
being less impressive than for the original ordering, can still be worthwhile.

We attribute the relatively good performance of AMO substitution in these classical
benchmarks to two factors. First, the instances are difficult and hence there is room to
improve the runtime (it is usually not good to use AMO substitution in quickly solvable
instances as in such cases the overhead of clique clustering could play a role). Second,
cliques in these instances are relatively large which gives chance the AMO encodings
to significantly differ from the pair-wise encoding.

5 Related Work

Currently there seems to be a gap between works dealing with encodings of cardinality
constraints and their automated detection. The notable exception is [8] where methods
for automated rediscovering previously encoded AMOs using different encodings is
presented. The difference from our work is that we are trying to detect AMOs in on-

AMO Constraints in Efficient Representations of Mutex Networks 17

ID

CHNL (seconds) – original ordering

Pair wise Sequential Product Binary Command
Clique
cluster

chnl10-11 515.24 0.62 0.56 3.51 0.26 0.01

chnl10-12 684.66 1.26 0.51 1.27 0.36 0.01

chnl10-13 945.08 0.63 0.73 1.28 0.31 0.02

chnl11-12 3149.47 1.73 0.78 8.91 0.77 0.02

chnl11-13 2589.76 2.36 0.97 6.33 1.16 0.02

chnl11-20 >8000.00 2.76 4.05 10.82 5.59 0.03

ID

S3 (seconds) – original ordering

Pair
wise

Sequential Product Binary Command
Clique
cluster

s3-3-3-1 0.04 0.08 0.34 0.11 0.43 0.01

s3-3-3-3 0.49 0.35 0.33 0.29 0.09 0.02

s3-3-3-4 0.92 0.17 0.07 0.13 0.37 0.01

s3-3-3-8 0.37 0.06 0.11 0.31 0.48 0.02

s3-3-3-10 0.58 0.37 0.54 0.25 0.81 0.03

ID

CHNL (seconds) – random ordering

Pair wise
Sequen-

tial
Product Binary Command

Clique
cluster

chnl10-11 515.24 244.57 238.54 175.18 23.08 0.01

chnl10-12 684.66 61.60 126.72 226.43 17.82 0.01

chnl10-13 945.08 803.63 1083.69 888.48 153.13 0.02

chnl11-12 3149.47 2092.57 3648.75 1632.64 3801.56 0.02

chnl11-13 2589.76 >8000.00 5222.13 >8000.00 319.72 0.02

chnl11-20 >8000.00 >8000.00 >8000.00 7893.84 1834.13 0.03

ID

S3 (seconds) – random ordering

Pair
wise

Sequential Product Binary Command
Clique
cluster

s3-3-3-1 0.04 0.29 0.19 0.17 0.25 0.01

s3-3-3-3 0.49 0.57 0.30 0.08 0.31 0.02

s3-3-3-4 0.92 0.44 0.46 0.44 0.65 0.01

s3-3-3-8 0.37 0.20 0.87 0.23 0.27 0.02

s3-3-3-10 0.58 0.25 0.87 0.38 0.26 0.03

Table 2. Runtime results for instances encoding the Channel routing and the Global routing
instnaces [1].

line mode and do not assume explicit presence of the AMO constraints in the encoding
- even partial presence is valuable.

Various works deal with efficient encodings of cardinality constraints and specially
at-most-one constraints [26,5,27]. The common effort is to find compact encoding
(small size) that provides good support of unit propagation. As mentioned in [24] good
propagation is often supported in direct encodings while small size is supported by log-
arithmic (log-space) encodings. Both factors are represented in our selection of AMO
encodings.

Special focus on different encodings of the AMO constraint is given in [22]. More
encodings such as the ladder encoding and the bimander encoding are discussed and
evaluated in this work. The difference from our work is that AMO constraints are iden-
tified in the mutex network manually. Automated detection of cliques in mutex network
is done in [28] where a greedy algorithm is presented. The limitation of the greedy algo-
rithm is that it is applicable in unsatisfiable case only where it can detect unsatisfiability
by counting arguments without solving the formula. In the satisfiable case however, the
method is not able to infer any new information.

6 Conclusion

We presented a method for on-line automated detection of At-Most-One constraints in
mutex networks. Our AMO substitution method consists of a clique detection algorithm
that is based on growing clusters that represent cliques. Any time a new mutex arrives,
clique clusters are attempted to merge together to form a larger cluster, that is, a larger
clique. The second major part of the AMO substitution method is encoding of detected
cliques in mutex network as AMO constraints using one of the existent encodings.

18 P. Surynek

We implemented the proposed method and performed experimental evaluation which
indicates that even in random mutex networks containing small cliques, using more ad-
vanced encodings of the AMO constraint for automatically detected cliques has a po-
tential to improve solving runtime. In hard instances containing large mutex cliques the
method brings significant improvement in orders of magnitude. Moreover the clique de-
tection and AMO encoding has negligible overhead according to our tests. Additional
tests show that our method is able to find relatively large cliques even if the ordering of
arriving mutexes is completely random (that is, mutexes forming a signle clique do not
arrive together).

Future work include investigation of generalized mutex networks in which not only
mutual exclusion between Boolean variables is considered but also mutual exclusion
between literals. Hence any binary clause in such view will be treated as a mutex and
included in the mutex network. While at the level of clique detection and AMO en-
coding the approach will not differ significantly. Different performance results may be
expected.

Acknowledgement

This research has been supported by GAČR - the Czech Science Foundation, grant
registration number 19-17966S.

References

1. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult instances of boolean
satisfiability in the presence of symmetry. IEEE Trans. on CAD of Integrated Circuits and
Systems 22(9), 1117–1137 (2003)

2. Aloul, F.A., Zahidi, S.Z.H., Al-Farra, A., Al-Roh, B., Al-Rawi, B.: Solving the employee
timetabling problem using advanced SAT & ILP techniques. JCP 8(4), 851–858 (2013)

3. Ansótegui, C., del Val, A., Dotú, I., Fernández, C., Manyà, F.: Modeling choices in quasi-
group completion: SAT vs. CSP. In: McGuinness, D.L., Ferguson, G. (eds.) Proceedings of
the Nineteenth National Conference on Artificial Intelligence, Sixteenth Conference on In-
novative Applications of Artificial Intelligence, July 25-29, 2004, San Jose, California, USA.
pp. 137–142. AAAI Press / The MIT Press (2004)

4. Audemard, G., Lagniez, J., Simon, L.: Improving glucose for incremental SAT solving with
assumptions: Application to MUS extraction. In: SAT. pp. 309–317 (2013)

5. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality constraints. In:
CP. pp. 108–122 (2003)

6. Barahona, P., Hölldobler, S., Nguyen, V.: Efficient sat-encoding of linear CSP constraints.
In: International Symposium on Artificial Intelligence and Mathematics, ISAIM 2014, Fort
Lauderdale, FL, USA, January 6-8, 2014 (2014)

7. Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability. IOS
Press (2009)

8. Biere, A., Berre, D.L., Lonca, E., Manthey, N.: Detecting cardinality constraints in CNF. In:
Sinz, C., Egly, U. (eds.) Theory and Applications of Satisfiability Testing - SAT 2014 - 17th
International Conference, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 14-17, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8561, pp.
285–301. Springer (2014)

AMO Constraints in Efficient Representations of Mutex Networks 19

9. Chen, J.: A new sat encoding of the at-most-one constraint. In: Proceedings of the Tenth
International Workshop of Constraint Modelling and Reformulation (2010)

10. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the 3rd An-
nual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio,
USA. pp. 151–158. ACM (1971)

11. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability of proposi-
tional horn formulae. J. Log. Program. 1(3), 267–284 (1984)

12. Frisch, A.M., Peugniez, T.J., Doggett, A.J., Nightingale, P.: Solving non-boolean satisfiabil-
ity problems with stochastic local search: A comparison of encodings. J. Autom. Reasoning
35(1-3), 143–179 (2005)

13. Froleyks, N.C., Balyo, T., Schreiber, D.: PASAR - planning as satisfiability with abstrac-
tion refinement. In: Proceedings of the Twelfth International Symposium on Combinatorial
Search, SOCS 2019, Napa, California, 16-17 July 2019. pp. 70–78. AAAI Press (2019)

14. Gent, I.P.: Arc consistency in SAT. In: van Harmelen, F. (ed.) Proceedings of the 15th Eure-
opean Conference on Artificial Intelligence, ECAI’2002, Lyon, France, July 2002. pp. 121–
125. IOS Press (2002)

15. Gent, I.P., Walsh, T.: The satisfiability constraint gap. Artif. Intell. 81(1-2), 59–80 (1996)
16. Kautz, H.A., Selman, B.: Pushing the envelope: Planning, propositional logic and stochastic

search. In: Proceedings of AAAI 1996. pp. 1194–1201 (1996)
17. Kautz, H.A., Selman, B.: Unifying sat-based and graph-based planning. In: Proceedings of

IJCAI 1999. pp. 318–325 (1999)
18. Klieber, W., Kwon, G.: Efficient cnf encoding for selecting 1 from n objects. In: Proceedings

of the Fourth Workshop on Constraint in Formal Verification (CFV (2007)
19. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View, Second

Edition. Texts in Theoretical Computer Science. An EATCS Series, Springer (2016)
20. Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118 (1977)
21. Marques-Silva, J.: Practical applications of boolean satisfiability. In: 2008 9th International

Workshop on Discrete Event Systems. pp. 74–80 (2008)
22. Nguyen, V., Mai, S.T.: A new method to encode the at-most-one constraint into SAT. In: Pro-

ceedings of the Sixth International Symposium on Information and Communication Technol-
ogy, Hue City, Vietnam, December 3-4, 2015. pp. 46–53. ACM (2015)

23. Pandey, B., Rintanen, J.: Planning for partial observability by SAT and graph constraints.
In: Proceedings of the Twenty-Eighth International Conference on Automated Planning and
Scheduling, ICAPS 2018, Delft, The Netherlands, June 24-29, 2018. pp. 190–198. AAAI
Press (2018)

24. Petke, J.: Bridging Constraint Satisfaction and Boolean Satisfiability. Artificial Intelligence:
Foundations, Theory, and Algorithms, Springer (2015)

25. Rintanen, J.: Engineering efficient planners with SAT. In: ECAI 2012 - 20th European Con-
ference on Artificial Intelligence. Including Prestigious Applications of Artificial Intelli-
gence (PAIS-2012) System Demonstrations Track, Montpellier, France, August 27-31 , 2012.
Frontiers in Artificial Intelligence and Applications, vol. 242, pp. 684–689. IOS Press (2012)

26. Silva, J., Lynce, I.: Towards robust CNF encodings of cardinality constraints. In: CP. pp.
483–497 (2007)

27. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: CP (2005)
28. Surynek, P.: Solving difficult SAT instances using greedy clique decomposition. In: Miguel,

I., Ruml, W. (eds.) Abstraction, Reformulation, and Approximation, 7th International Sym-
posium, SARA 2007, Whistler, Canada, July 18-21, 2007, Proceedings. Lecture Notes in
Computer Science, vol. 4612, pp. 359–374. Springer (2007)

29. Surynek, P.: A sat-based approach to cooperative path-finding using all-different constraints.
In: Proceedings of the Fifth Annual Symposium on Combinatorial Search, SOCS 2012, Ni-
agara Falls, Ontario, Canada, July 19-21, 2012. AAAI Press (2012)

20 P. Surynek

30. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Structures in Con-
structive Mathematics and Mathematical Logic pp. 115–125 (1968)

31. Walsh, T.: SAT v CSP. In: Principles and Practice of Constraint Programming - CP 2000, 6th
International Conference, Singapore, September 18-21, 2000, Proceedings. Lecture Notes in
Computer Science, vol. 1894, pp. 441–456. Springer (2000)

32. Walsh, T.: SAT vs CSP: a commentary. CoRR abs/1910.00128 (2019), http://arxiv.org/abs/
1910.00128

http://arxiv.org/abs/1910.00128
http://arxiv.org/abs/1910.00128

	At-Most-One Constraints inEfficient Representations of Mutex Networks

