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Abstract—Recently, text embedding techniques such as
Word2Vec and BERT have produced state-of-the-art results in a
wide variety of NLP tasks. As a result, traditional NLP features
frequently used in Information Extraction (IE) such as POS
tags, dependency relations and semantic types have received less
attention. In this paper, we investigate whether traditional NLP
features can be combined with word and sentence embeddings
to improve relation extraction. We have explored diverse feature
sets and different neural network architectures and evaluated our
models on a benchmark clinical text dataset. Our new models
significantly outperformed all the baselines on the same dataset.

Index Terms—Relation Extraction, IE, Clinical Text, BERT,
Word2Vec, Neural Networks, MIMIC-III, i2b2.

I. INTRODUCTION

Electronic Medical Record (EMR) is an electronic version
of a patient’s medical history that is maintained by healthcare
providers over time. Clinical text in EMR includes physicians’
notes, surgical records, discharge summaries and laboratory
reports. Clinical text contains valuable information about a pa-
tient’s conditions such as symptoms, diagnoses and treatments.
Hence identifying, extracting and mining this information
is of great importance to managing and improving patient
care. Manually inspecting large amount clinical text is labor-
intensive and time-consuming. Therefore, natural language
processing (NLP), which can automatically extract information
of interest from text is beneficial for clinical research and
applications. One of the fundamental tasks of clinical NLP
is extracting relations between medical concepts from texts
(e.g., extracting relations between diseases and treatments).
For example, in the sentence “Ibuprofen reduced inflammation
but likely caused heartburn”, “inflammation” was effectively
treated by “ibuprofen” and “heartburn” is an adverse event
caused by the same drug. Identifying these relations is im-
portant to understand how patients respond to treatments.
Therefore, automated extraction of relations between medical
concepts is essential for clinical decision making and patient
care.

Researchers have proposed various methods including rule-
based methods or supervised/unsupervised machine learning
methods (e.g., deep learning methods) to build effective rela-
tion extraction systems. In this study, we focus on building
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neural network models to extract relations from clinical text.
More specifically, we develop neural network models that
classify the relationship between two medical concepts in a
given sentence (e.g., between a treatment such as “ibuprofen”
and a medical problem such as “inflammation”) . We explore
multiple state-of-the-art neural network models such as Long
Short-Term Memory (LSTM), Convolutional Neural Network
(CNN), Residual Neural Network (ResNet) and Graph Con-
volutional Network (GCN) [1]–[3] to identify the best neural
network architecture for the given task.

Moreover, word/sentence embedding, a technique to auto-
matically learn dense vector representations for words and
sentences has proven to be effective for relation extrac-
tion [4], [5]. Recently dynamic/contextual word embedding
(e.g., BERT), where the embedding vector for each word
varies with its context has gained much popularity over static
word embedding (e.g., Word2Vec) where a fixed embedding
vector is learned for each word. While both contextual and
static embedding have produced impressive results on diverse
downstream NLP tasks, it is unclear whether they can be
combined effectively with typical syntactic and semantic fea-
tures commonly used in traditional relation extracting systems.
We specifically compare the effectiveness of BERT contextual
embedding with Word2Vec static embedding, especially when
they are combined with traditional syntactic and semantic
features in relation extraction.

We evaluate our models on a benchmark clinical text
dataset, the i2b2-2010 dataset [6] where we classify relations
between medical concepts.

The main contributions of our work can be summarized as
follows:
• We systematically investigate the effectiveness of different

neural network architectures in combining text embedding
(e.g., Word2Vec and BERT) with traditional syntactic and
semantic features for clinical relation extraction. Our best
model achieved a F-score of 0.88, which outperformed the
state-of-the art baselines on the same dataset by a large
margin.

• We compare the models using static word embedding
(e.g., Word2Vec) with models using contextual embedding
(e.g., BERT). Our results indicate that although BERT
contextual embedding on its own is very effective, models
combining BERT with traditional syntactic and semantic



features performed much worse than models combining
static Word2Vec embedding with traditional NLP features.

II. RELATED WORK

[7] is the first to explore relation extraction between
medical concepts from clinical text. [7] defined six relation
types between diseases, tests and treatments. and trained six
different classifiers, one for each relation type. The system
employed diverse feature sets included surface features (e.g.,
distance), lexical features (e.g., lexical trigrams), and shallow
syntactic features (e.g., syntactic tree path). Based on this
study, the i2b2/VA Challenge [6] was launched in 2010. Simi-
lar to [7], most participants of the challenge employed feature
engineering and supervised machine learning. SVM was the
most commonly used classifier [8]–[15]. In addition, [16] used
a hybrid approach where SVM was used to predict classes with
a large number of instances and a rule-based approach was
used to predict classes with fewer samples. [17], [18] applied
bootstrapping on unlabeled data for training semi-supervised
models. Additionally, [17] addressed the imbalanced dataset
issue by downsampling the training set. A wide range of
hand crafted features were used in these systems including
context features, lexical features, syntactic features, as well as
semantic features extracted from external knowledge resources
such as UMLS, cTAKES, and Medline. Among them, [17],
[19] derived concept mapping and concept types based on
UMLS. [15], [17] employed Medline to calculate Pointwise
Mutual Information (PMI) between two concepts. GENIA1

was the most commonly used tool to generate Part of speech
(POS), phrase chunking and dependency tree features.

To avoid labor-intensive feature engineering, recently, re-
searchers have shifted their attention towards building relation
extraction systems using deep learning frameworks. Several
neural network based models have been proposed to extract
relations between medical concepts. Among them, [1] used
convolution neural network (CNN) to learn features automat-
ically with superior classifier performance. [20] proposed a
Segment Convolutional Neural Network (Seg-CNN) where re-
lations between two concepts are identified by simultaneously
learning separate representations for each text segment. [2],
[21] presented relation extraction systems based on the shortest
dependency path (SDP) generated from the dependency tree
of a sentence. Among them, [2] used LSTM for sentence
representation and CNN/LSTM to represent SDP. In contrast,
the system proposed by [21] takes only the words in SDP
as the input to LSTM. Commonly used features in these
systems are word representations, word types, POS tags, IOB
encoding of semantic concepts, relative distance, Chunk tags,
and dependency relations. While most of these works used
static word embedding such as Word2Vec, [22] evaluated the
performance of relation extraction model using multiple con-
textual embedding models such as bioelmo [23], BERT [24],
BioBERT [25], BlueBERT [22]. They however did not explore
how contextual embedding features can be combined with

1http://www.nactem.ac.uk/GENIA/tagger/

traditional NLP features to improve performance. [26] is the
first to combine BERT embeddings with traditional IOB tags.
It however did not explore whether BERT embeddings can
be effectively combined with other syntactic and semantic
features commonly used in relation extraction. Unlike [26],
which takes the BERT token embedding and uses it as the
input to LSTM, we used the sentence embedding from BERT
and combine it with the sequential representation of syntactic,
semantic and surface features learned by LSTM.

Despite a substantial body of research on relation extraction,
it is still an open question in terms of which neural network
architecture and feature sets may result in the best system.
To the best of our knowledge, there is no existing study that
systematically investigates the effectiveness of combining a
comprehensive set of traditional NLP features with BERT con-
textual embedding in neural network-based relation extraction.

III. SYSTEM DESCRIPTION

In this section, we describe the diverse feature sets as well
as multiple neural network architectures we have explored to
combine traditional NLP features with text embeddings for
clinical relation extraction.

A. Input Features

Word embedding: Given an input sentence S =
〈w1, w2, w3, ..., ..., wn〉, the word embedding of each word
wi ∈ S is defined as Ew(wi). To derive Ew(wi), we train
a Word2Vec model on the Medical Information Mart for
Intensive Care (MIMIC)-III clinical corpus [27] and the i2b2
dataset to ensure we generate good quality word features for
our target application domain.

To compare the effectiveness of static word embedding tech-
niques (e.g., Word2Vec) with the state-of-the-art contextual
word embedding techniques, we also included the embeddings
generated by BERT [24]. Here we used the embeddings
generated by ClinicalBert [28], a pre-trained BERT model in
the clinical domain. ClinicalBert is trained on the texts from
BookCorpus, English Wikipedia, biomedical articles from
PubMed and EMRs from the (MIMIC)-III dataset [27].

POS embedding: We derive the part of speech tag of each
word, POS(wi) using Stanford CoreNLP [29]. Then a POS
embedding for each word wi as Epos(wi) is learnt using a
Keras Embedding layer.

IOB encoding: To encode whether each word
in S belongs to any of the target concepts, we
assign the IOB encoding IOB(wi) to each word.
There are a total of seven IOB tags in our system:
〈Itreatment, Itest, Iproblem, Btreatment, Btest, Bproblem, andO〉,
where the prefix B represents the beginning of a concept
(E.g., Btreatment represents the first word of a treatment

concept), and I indicates a word inside a concept (e.g.,
Itreatment represents an internal word of a treatment). The
tag O represents other words not related to any of the target
concepts. Thereafter, each IOB tag is transformed into an
IOB embedding Eiob(wi) using a Keras embedding layer in



our neural network architecture. Table I shows an example of
the IOB encoding of the words in a sentence.

Relative Distance: We employ a relative distance encoding
for each of the two concepts c1, c2 in a relation. We do this by
marking the positions of all the words in a target concept as
0. Every word to its right is assigned an incrementally higher
distance number and every word to its left is assigned an
incrementally lower number. We can calculate the embedding
of the relative positions as Er1(wi) and Er2(wi) with a Keras
embedding layer. Table I shows an example of the relative
distance encoding for the two concepts c1, c2 in a relation.

Concept Embedding: Concept embedding is generated by
taking the average of the embeddings of the words presented
in a concept. For example, the embedding of c2 is generated
by averaging the word embeddings of “left”, “”, “carotid”,
“ophthalmic” and “aneurysm”.

Dependency Tree: Dependency tree is represented as a
directed graph, with m nodes corresponding to each of the m
words in a sentence. Figure 1 shows the dependency tree for
an example sentence. We extract the dependency tree using
Stanford CoreNLP [29]. To create a fix sized data structure
irrespective of the length of the sentence and the depth of the
dependency tree, we converted the tree to an n×n adjacency
matrix, A, where n is a pre-determined fixed sentence length,
If there is a edge between wi and wj in the dependency tree,
then Aij = Aji = 1 and 0 otherwise. Following [30], we add
self-loop and normalization into the adjacency matrix as these
operations have shown to improve effectiveness. We add self
loop by Ã = (A + I) where I is an n × n identity matrix.
We then perform normalization for each row of Ã so that
Ãi = Ãi/di where di =

∑n
j=1Aij is the degree of the word

at the ith position in the graph.

B. Model Architecture:

Here we explore various commonly used neural network
architectures to combine diverse text embeddings with tra-
ditional syntactic, semantic and surface features: (i) Con-
volutional Neural Networks (CNN) [31] (ii) Graph Con-
volutional Networks (GCN) [32] (iii) Residual Networks
(ResNet) [33], and (iv) Bidirectional Long Short Term Mem-
ory (BiLSTM) [34] networks. Since some of the neural
network architectures such as CNN and BiLSTM are well-
known in the NLP community, here we focus on explaining
architectures that are less well-known (e.g.,GCN).

Figure 2a shows the architecture of the basic BiLSTM,
CNN, ResNet, 2b shows the architecture of GCN model
and 2c shows the architecture of an extended GCN model
with additional Concept Dependency Tree features. In general,
words in sentences, words in concepts, relative distances, POS
tags and IOB tags are first input into an embedding layer to
learn their embeddings. For CNN, ResNet and BiLSTM, the
embedding features are then concatenated and input to these
neural networks: E(wi) = Ew(wi)⊕ Epos(wi)⊕ Eiob(wi)⊕
Er1(wi) ⊕ Er2(wi) ⊕ Ãi, where ⊕ operator denotes a con-
catenation operation. Therefore, ECNN/ResNet/BiLSTM =

〈E(w1), E(w2), E(w3), ..., ..., E(wn)〉 forms our input fea-
tures for all words in a sentence. Typical neural network
architectures we explored include:

BiLSTM: Our system uses Bidirectional LSTM to aggre-
gate word-level features and generate sentence-level represen-
tations [34]. BiLSTM is able to learn the word order as well
as the long term dependency in a sentence. The advantage of
using BiLSTM is that we can leverage the information from
neighboring words at both sides. Input features to BiLSTM
model is as discussed above and the output of BiLSTM is
combined with concept embedding for relation classification.

CNN: CNN [31] is capable of learning local features such
as short phrases or recurring n-grams. Our system uses CNN
in a similar way to BiLSTM with the same input and output
combination.

ResNet: ResNet [33] provides the benefit of CNN while
reducing vanishing gradient problem in deep networks. The
input and output of ResNet remains the same as those for
CNN.

GCN: GCN [32] is an adaption of CNN for encoding
graphs. It operates directly on graph structures (e.g., an ad-
jacency matrix encoding a dependency tree). For a starting
node i and the ending node j in a graph, in an L-layer of
GCN, if we denote the input vector by h(l−1)

i and the output
vector for node i at the l-th layer by h(l)i , the graph convolution
operation can be defined as:

h
(l)
i = σ (

n∑
j=1

AijW
(l)h

(l−1)
j + bl) (1)

where, Aij is an adjacency matrix, W (l) is a weight
matrix, bl a bias term and σ a nonlinear function (e.g.,
RELU). Intuitively, during each graph convolution, each node
gathers and summarizes information from its neighboring
nodes in the graph. Therefore, the output of GCN is
a node representation, in our case word representation.
For GCN, the concatenation of embedding features are,
E(wi) = Ew(wi)⊕Epos(wi)⊕Eiob(wi)⊕Er1(wi)⊕Er2(wi)
and therefore for all the words in a sentence the input features
are EGCN = 〈E(w1), E(w2), E(w3), ..., ..., E(wn)〉 and
Adjajency matrix, Ã. Note that we do not concatenate Ãi in
the embedding features. The output of GCN is combined with
the concept embeddings of c1 and c2 for relation classification.

We also implement a variation of GCN model called GCN-
CDT (Figure 2b) to take full advantage of its ability to capture
information from its neighboring nodes in a graph. In addition
to the GCN for the entire sentence, in GCN-CDT we also feed
two concept embeddings as well as their concept dependency
trees (CDTs) to two additional GCNs. We extract a concept
dependency tree from each of the two concepts by following
the same method described in (section III-A) for a sentence
dependency tree.



Sentence, S She is status post [coiling]treatment with stent placement for [left carotid ophthalmic aneurysm]problem.
c1 coiling
c2 left carotid ophthalmic aneurysm

Relative Distance (c1) 〈−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9〉
Relative Distance (c2) 〈−9,−8,−7,−6,−5,−4,−3,−2,−1, 0, 0, 0, 0, 1〉

IOB Encoding 〈 O, O, O, O, Btreatment, O, O, O, O, Bproblem, Iproblem, Iproblem, Iproblem, O 〉

TABLE I: A Example of Relative Distance and IOB Encoding

Fig. 1: An Example of A Sentence Dependency Tree and POS Tags

(a) Model with CNN / RestNet / BiLSTM (b) Model with GCN (c) Model with GCN-CDT

Fig. 2: Model Architecture (E.L.=Embedding Layer, WS=words in sentence, WC1=words in concept1, WC2=words in concept2,
SDT=sentence dependency tree, CDT1=dependency tree of concept1, CDT2=dependency tree of concept2, RD=relative
distance, IOB=IOB tag)

IV. EXPERIMENTS

A. Dataset

For this study, we use the dataset from the 2010 i2b2/VA on
Natural Language Processing Challenges for Clinical Records.
This dataset contains discharge summary and progress report
from different healthcare providers. Our research focuses on
the relation extraction task which is to identify eight target
relations among 3 medical concepts such as treatments, prob-
lems and tests. The dataset used for relation extraction during
the 2010 i2b2/VA challenge includes a total of 394 training
reports, 477 test reports, and 877 un-annotated reports. After
the challenge however, only a part of the data was publicly
released. The dataset we downloaded from the i2b2 website
only includes 170 documents for training and 256 documents
for testing. Descriptions and statistics of the target relations
can be found in table II.

B. Baseline Systems

To select baselines, we consider systems that employ the
same number of training instances and define the classification
task with the the same granularity level as ours. So far, we
have found only two existing systems [1], [2] meeting these
criteria.

Baseline 1: [2] takes the entire sentence along with the
relative positions as the input and generates a sequential rep-
resentation of the input features using a BiLSTM. In addition,
it utilizes both CNN and BiLSTM to capture the syntactic
context of the two target entities using the shortest dependency
path between them. Finally the concatenation of the output
from these two modules are used by a fully connected layer
for classification. For word embedding, they used pre-trained
Word2Vec on the MIMIC-III corpus where all the concepts
were replaced with their concept types.

Baseline 2: [1] employs a convolutional neural network



Relation Type Train Report Test Report Total

Treatment improve or cure medical problem (TrIP) 51 152 203
Treatment worsen medical problem (TrWP) 24 109 133
Treatment caused medical problems (TrCP) 184 342 526
Treatment administered medical problem (TrAP) 885 1732 2617
Treatment was not administered because of medical problem (TrNAP) 62 112 174
Test reveal medical problem (TeRP) 993 2060 3053
Test conducted to investigate medical problem (TeCP) 166 338 504
Medical problem indicates medical problems (PIP) 755 1448 2203
No Relation (None) 7111 12821 19932

TABLE II: Statistics of the relation extraction dataset from the 2010 i2b2/VA challenge

with 6 discrete word features as the input: (i) a word itself, (ii)
distance from the first concept, (iii) distance from the second
concept, (iv) POS tags, (v) chunk tag of the word and (vi)
concept types. For word embedding, they used pre-trained
word vectors trained on Pubmed articles using Word2Vec. The
authors did not include three infrequent classes (TrWP, TrIP,
TrNAP) along with their instances. Therefore, for the sake
of fair comparison, we also calculate the F1 score with the
support of 6 class.

C. Experiment Setting

In this section we provide the implementation details of each
of the models. To implement the CNN model, we use 7 one-
dimensional convolution layers with kernel size 128 and filter
size 3; each layer is followed by a Batch Normalization [35]
layer and a ReLU activation function. The ResNet model
shares the same kernels, filter size, normalisation and activa-
tion function as those of the CNN model. The difference being
the first convolution layer is followed by 3 ResNet blocks
where each block consists of two convolution layers with a
shortcut connection going across each block. The BiLSTM
model is implemented with 2 stacked bidirectional LSTM
layers with 128 cells in each layer, each using the tanh(·)
activation function. The GCN model is constructed with 2
graph convolution layers, each containing 128 units. For all
the models, we use two fully connected layers before the
softmax layer with 128 and 64 neurons respectively. We use
the Adam optimizer [36] with a 0.001 learning rate for all
the models. We use a batch size of 256, with 10% word-level
dropout and 10% recurrent dropout in training BiLSTM. For
CNN, ResNet and GCN, we use a batch size of 32 with 10%
dropout rate. To avoid over-fitting, we employ 10% dropout in
the fully connected layer. The word embeddings and concept
embeddings are initialized using 100-dimensional Word2Vec
pretrained on Mimic-III and i2b2 datasets. The embedding
layers for POS, IOB encoding, Relative Positions are 20, 5,
50 respectively and randomly initialized. For relative position
embedding, we use a specialized Position Embedding layer2

that maps integers (negative, positive, zero) to a embedding
space. We implement all our models using Keras3 with a

2https://github.com/CyberZHG/keras-pos-embd
3https://keras.io/

Tensorflow4 backend. As this is a relatively small corpus, we
combine the training and testing data and perform a 5-fold
cross-validation in our experiments.

D. Performance Evaluation

In this section, we evaluate (i) the effectiveness of different
neural network architectures, (ii) the effectiveness of different
feature sets, and (iii) the effectiveness of static versus contex-
tual text embedding.

1) Effectiveness of Different Architectures: To investigate
the effectiveness of different neural network architectures, we
include all the features (e.g., words, relative distances, POS
tags, IOB tags, concept embedding and dependency tree) in
all the models (e.g., BiLSTM, CNN, GCN, and ResNet).
We calculate per class (9 class) and weighted F1 score and
compared the results with the two baselines. As shown in
Table III, the CNN model outperforms both baselines [1],
[2] by 7% and 12% based on the weighted F1 score.Since
the basic CNN architecture achieved better performance than
the two baselines, we also investigated whether incorporating
residual connections into CNN can further enhance the result
as they have been shown to improve the learning capacity of
convolutional models [37]. We noticed that not only ResNet
achieved much higher F1 score over the two baselines (12%
and 16% respectively), the per class F1 scores are also better or
close to the baselines. We next apply GCN as it might be able
to better utilize the dependency tree information through its
built-in learnable node representation scheme. However, GCN
provides only 6% and 9% improvement over the two baselines.
We hypothesised that the dependency tree of the full sentence
may be too noisy as only a portion of the dependency tree is
directly related to the relations between two target concepts. To
verify our hypothesis, we add the concept-specific dependency
relations to the model (in addition to the dependency tree of
the whole sentence). This effort is proven to be fruitful as the
GCN-CDT model not only improves the weighted F1 score
by 9% and 14% over the two baselines, the class specific F1
scores for PIP, TeRP have improved significantly as well.

Finally, we employed the BiLSTM model to learn a sequen-
tial representation of the input features to capture the long
term dependency between them. As we can see, the BiLSTM

4https://www.tensorflow.org/



Model Name No Relation PIP TeCP TeRP TrAP TrCP TrIP TrNAP TrWP
9 Class

F1 Score
6 Class

F1 Score

Baseline1 [2] N/A 0.6333 0.6117 0.8444 0.7974 0.6213 0.6159 0.4227 0.4457 0.7434 N/A
Baseline2 [1] N/A 0.6492 0.5056 0.8125 0.6923 0.5644 N/A N/A N/A N/A 0.7116

CNN 0.9010 0.7514 0.1903 0.7572 0.6493 0.2870 0 0.0110 0 0.8136 0.8280
GCN 0.8964 0.6597 0.2095 0.8113 0.6619 0.2199 0 0 0 0.8094 0.8094

GCN-CDT 0.9032 0.7129 0.4692 0.8144 0.7096 0.5111 0.3686 0.2867 0.1011 0.8369 0.8469
ResNet 0.9165 0.7504 0.5977 0.8378 0.7728 0.5978 0.4167 0.3564 0.3302 0.8624 0.8710

BiLSTM 0.9275 0.7896 0.6437 0.8685 0.8057 0.6320 0.5000 0.4025 0.2262 0.8808 0.8894

Support 19932 2203 504 3053 2617 526 203 174 133 29345 28835

TABLE III: Overall System Performance

model is the best model outperforming all the other model
architectures and achieving 14% and 18% improvements over
the two baselines.

In the following, we investigate the effectiveness of different
feature sets using BiLSTM, the best model we identified
earlier.

2) Feature Effectiveness: To investigate the contribution of
each feature type on the relation extraction task, we conducted
additional studies.

First we train a BiLSTM model, our best performing model,
with each of the individual feature set separately. Table IV
shows the results. Among the features, word embedding from
Word2Vec seems to perform the best (F1=0.6974), followed by
Relative Distance (F1=0.6449), IOB Encoding (F1=0.6173),
POS Tags (F1=0.5986), Concept embedding (F1=0.5528) and
Dependency Tree (F1=0.5495).

Since it is difficult to test all the possible feature com-
binations, we add each feature one by one based on their
ranks shown in Table IV until all the features are added.
As shown in Table V, adding Relative Distances after word
embedding produces the most significant score boost (15%)
followed by IOB encoding (3%). Adding POS Tags and
Concept embeddings however does not seem to help. Finally,
adding dependency relations improves the final F1 score by
1%.

Based on this experiment, word embedding, relative posi-
tion, IOB encoding and dependency relation all seem to help
relation extraction. In contrast, the information encoded in
POS tags and Concept embeddings do not seem to be very
useful.

Feature F1 Score Rank

Word2Vec 0.6974 1
relative distance 0.6449 2
IOB encoding 0.6173 3
POS tag 0.5986 4
concept 0.5528 5
dependency tree 0.5495 6

TABLE IV: Feature Ranking in BiLSTM Model

3) Effectiveness of Different Text Embeddings: In this sec-
tion, we compare the effectiveness of different text embedding
techniques especially between a traditional static embedding

Added Features F1 Score Impact

Word2Vec 0.6974 N/A
+ relative distance 0.8429 0.1455
+ IOB Encoding 0.8766 0.0337
+ POS tag 0.8759 -0.0007
+ concept 0.8709 -0.005
+ dependency tree 0.8808 0.0099

TABLE V: Impact of Word2Vec Feature Addition in BiLSTM
Model

Added Features F1-score Impact

BERT 0.7447 N/A
+ relative distance 0.7706 0.0259
+ IOB Encoding 0.7668 -0.0038
+ POS tag 0.7694 0.0026
+ concept 0.7647 -0.0047
+ dependency tree 0.7646 - 0.0001

TABLE VI: Impact of Feature Addition to BERTcombinedL-
STM

Added Features F1 Measure Impact

Doc2Vec 0.5622 N/A
+ relative distance 0.6548 0.0926
+ IOB 0.7730 0.1182
+ POS tag 0.8198 0.0468
+ concept 0.8066 -0.0132
+ dependency tree 0.8249 0.0183

TABLE VII: Impact of Doc2Vec Feature Addition to BiLSTM
Model

technique such as Word2Vec with a state-of-the-art contextual
embedding technique such as BERT. We also test whether they
can be combined effectively with other features to improve the
performance of relation extraction.

To combine BERT contextual embedding with other fea-
tures, we have two options: (a) early fusion: we can combine
BERT embedding with other features at the word/token level
and then use BiLSTM to learn a sequential representation
of all the word features. With this strategy, feature fusion
occurs at the word level. (b) late fusion: we can combine the
sentence representation learned by BERT with the sequential
representation of all the other features learned by BiLSTM.
With this strategy, feature fusion occurs at the sentence level.



(a) BERTcombinedLSTM (b) Doc2Vec with LSTM

Fig. 3: Model Architecture with Late Fusion (E.L.=Embedding Layer, WS=words in sentence, WC1=words in concept1,
WC2=words in concept2, SDT=sentence dependency tree, RD=relative distance, IOB=IOB tag)

Previous research suggested that using BERT sentence em-
bedding for classification is more effective than using BERT
word/token embedding and then input them to a LSTM to gen-
erate a sentence embedding [26]. As BERT already captures
long term dependency between words in a sentence, it could
be redundant to use LSTM to capture contextual information
again. For this reason in our model shown in Figure 3a,
we adopted a late fusion strategy where we directly use the
sentence embedding learnt by BERT and combine it with a
sequential representation of other word-level features (POS
tag, relative distances, IOB encoding and dependency tree
information) learnt by LSTM. In addition, we learn concept
embeddings by averaging the embeddings of the tokens in each
concept. Finally all the representations are merged together
and passed through a fully connected layer for classification.
In this model all the existing BERT parameters as well as
the new parameters in BiLSTM are fine-tuned during relation
classification.

As shown in table VI, BERT sentence embedding on its own
is the most effective feature for relation extraction (F1=0.7447
versus Word2Vec F1=0.6974). This result highlights the power
of BERT in capturing the semantics of a sentence. Adding
other features to BERT embedding however provides only 2%
improvement of the F1 score. In contrast, adding the same
features to static Word2Vec embedding has resulted in a 18%
increase in performance. The performance of the full model
with the BERT sentence embedding (F1=0.7646) is 11.6%
lower than that with Word2Vec embedding (F1=0.8808). This
result is quite surprising as it implies that there is some
incompatibility between BERT and other traditional NLP
features which prevents them from being combined effectively.
In contrast, static word embeddings (e.g., Word2Vec) do not
seem to suffer from the same problem.

One possible explanation could be because the late fusion

strategy we adopted to combine BERT embeddings with other
features, which is different from the early fusion strategy
we used to combine Word2Vec embeddings. To test this
hypothesis, instead of merging word embedding with other
word-level features before inputting to BiLSTM, we first
adopted Doc2Vec (D2V) [38] which employs an embedding
learning method similar to Word2Vec to learn sentence embed-
dings. Similar to Word2Vec, our D2V model was trained on
the Medical Information Mart for Intensive Care (MIMIC)-
III clinical corpus [27] and the i2b2 dataset. As shown in
Figure 3b, we adopt late fusion to combine Doc2Vec-based
sentence embedding with the output of BiLSTM.

As shown in Table VII, Doc2Vec-based sentence embedding
on its own (F1=0.5622) is much worse than either BERT
sentence embedding (F1=0.7447) or Word2Vec (F1=0.6974).
When combining Doc2Vec with other features however, the
performance improvement is 26%, which is the highest among
all the text embedding models. The full model with Doc2Vec
embeddings (F1=0.8249) also outperformed the model with
BERT embeddings (F1=0.7646) by (6%). Since the model with
Doc2Vec also adopts a late fusion strategy, late fusion may not
directly cause the poor performance of BERT models.

In summary, if used alone, BERT embedding is the best for
relation extraction. However, Word2Vec-based static embed-
ding works the best when combined with other NLP features.
In contrast, models with BERT sentence embedding worked
poorly, which is surprising.

V. CONCLUSIONS

In this research, we investigate how different neural network
architectures (e.g., BiLSTM, CNN, ResNet, GCN) and diverse
features sets (e.g., BERT contextual embedding, Word2Vec
static embedding, POS, dependency relations, IOB encoding,
surface position) can be used in relation extraction from



clinical texts. Our experiment results demonstrate that BiL-
STM model with static Word2Vec embedding plus traditional
syntactic and semantic features is most effective for such a
task. It significantly outperformed two baselines on the same
dataset. Although contextual embedding learned by BERT on
its own is very effective, it performed poorly when combined
with other traditional NLP features. More investigations are
needed to understand why.
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