
False Positive Detection and Prediction Quality
Estimation for LiDAR Point Cloud Segmentation

1st Pascal Colling
Department of Mathematics

University of Wuppertal, Germany
pascal.colling@uni-wuppertal.de

2nd Matthias Rottmann
Department of Mathematics

University of Wuppertal, Germany
rottmann@uni-wuppertal.de

4th Hanno Gottschalk
Department of Mathematics

University of Wuppertal, Germany
hanno.gottschalk@uni-wuppertal.de

3rd Lutz Roese-Koerner
Aptiv, Wuppertal, Germany
lutz.roese-koerner@aptiv.de

Abstract—We present a novel post-processing tool for semantic
segmentation of LiDAR point cloud data, called LidarMetaSeg,
which estimates the prediction quality segmentwise. For this
purpose we compute dispersion measures based on network
probability outputs as well as feature measures based on point
cloud input features and aggregate them on segment level. These
aggregated measures are used to train a meta classification model
to predict whether a predicted segment is a false positive or
not and a meta regression model to predict the segmentwise
intersection over union. Both models can then be applied to
semantic segmentation inferences without knowing the ground
truth. In our experiments we use different LiDAR segmentation
models and datasets and analyze the power of our method. We
show that our results outperform other standard approaches.

Index Terms—deep learning, lidar point cloud, semantic seg-
mentation, uncertainty quantification, automated driving

I. INTRODUCTION

In the field of automated driving, scene understanding is
essential. One possible solution for the semantic interpretation
of scenes captured by multiple sensor modalities is LiDAR
point cloud segmentation [1]–[4] (in the following LiDAR
segmentation for brevity) where each point of the point cloud
is assigned to a class of a given set. A segment is an area
of points of the same class. Compared to camera images, a
LiDAR point cloud is relatively sparse, but provides accurate
depth information. Furthermore, since the LiDAR sensor in
general is rotating, 360 degrees of the environment are consid-
ered. A summary for sensor modalities is given in [5]. In recent
years, the performance of LiDAR segmentation networks has
increased enormously [1]–[4], [6], but there are only few
works on uncertainty quantification [2]. In applications of
street scene understanding, safety and reliability of perception
systems are just as important as their accuracy. To tackle
this problem, we introduce a post-processing tool, called
LidarMetaSeg, which estimates the segmentwise (i.e., per con-
nected component of the predicted segmentation) prediction

H.G. and M.R. acknowledge financial support through the research consor-
tium bergisch.smart.mobility funded by the ministry for economy, innovation,
digitalization and energy (MWIDE) of the state North Rhine Westphalia under
the grant-no. DMR-1-2.

0 1

Fig. 1. A visualization of LidarMetaSeg containing the ground truth (bottom
left), the LiDAR segmentation (bottom right), the LiDAR segmentation quality
(top left) as the IoU of prediction and ground truth and its estimation obtained
by LidarMetaSeg (top right). The higher the IoU , the better the prediction
quality.

quality in terms of segmentwise intersection over union [7]
(IoU) of the LiDAR segmentation model, see also fig. 1.
This provides not only uncertainty quantification per predicted
segment but also an online assessment of prediction quality.

State-of-the-art LiDAR segmentation models are based on
deep neural networks and can be grouped into two main
approaches: projection-based (2D) and non-projection-based
(3D) networks, cf. [8]. Projection-based networks like [1], [2],
[9] use a spherical (2D) image representation of the point
cloud. The predicted semantic categories on the image are
thereafter reinserted along the spherical rays into the 3D point

ar
X

iv
:2

11
0.

15
68

1v
1

 [
cs

.C
V

]
 2

9
O

ct
 2

02
1

cloud. This may contain some post-processing steps, like the
k-nearest neighbor (kNN) approach, see [1]. Due to the repre-
sentation of point clouds as projected images, the networks
employed for LiDAR segmentation have architectures that
often resemble image segmentation architectures. The non-
projection-based networks, e.g. [3], [10], [11], process the
point cloud directly in 3D space with or without different 3D
representation approaches. For example, in [11], the network
operates on the 3D point cloud without introducing an addi-
tional representation while in [3] the authors perform a 3D
cylinder partition. A combination of a 2D and 3D representa-
tion of the point cloud is used in [4]. All current architectures,
using a 2D or 3D representation or a combination of both
provide the segmentation of the point cloud. Therefore, it is
also possible to output the probabilities, which is the only
prerequisite required for LidarMetaSeg.

Concerning uncertainty quantification in deep learning,
Bayesian approaches like Monte Carlo (MC) dropout [12]
are commonly used, e.g. in image-based object detection [13],
image segmentation [14] and also in LiDAR object detection
[15]. In object detection and instance segmentation, so called
scores containing (un)certainty information are used, while
this is not the case for semantic segmentation. The network
SalsaNext [2] is for LiDAR segmentation and makes use of
MC dropout to output the model (epistemic) and observation
(aleatoric) uncertainty.

In our method LidarMetaSeg we first project the point cloud
and the corresponding softmax probabilities of the network
to a spherical 2D image representation, which are then used
to compute different types of dispersion measures resulting
in different dispersion heatmaps. To estimate uncertainty on
segment level, we aggregate the dispersion measures with
respect to each predicted segment. The IoU is commonly
used to evaluate the performance of a segmentation model. For
each predicted segment, we compute its IoU with the ground
truth and call this segmentwise IoU . In our experiments we
observe a strong correlation of the segmentwise IoU with the
aggregated dispersion measures. Hence, we use the aggregated
dispersion measures with additional information from the point
cloud input to create a set of handcrafted features. The latter
are used in post-processing manner as input for training i) a
meta classification model to detect false positive segments,
i.e., if the IoU is equal or greater than 0 and ii) a meta
regression model to estimate the segmentwise IoU . Thus, we
not only have a pointwise uncertainty quantification, given by
the dispersion heatmaps, but also a false positive detection as
well as a segmentation quality estimation on segment level.

The idea of meta classification and regression to detect false
positives and to estimate the segmentwise prediction quality
was first introduced in the field of semantic segmentation
of images [16], called MetaSeg. The work presented in [17]
goes in a similar direction, but for brain tumor segmentation.
MetaSeg was further extended in other directions, i.e., for
controlled false negative reduction [18], for time dynamic
uncertainty estimates for video data [19], for taking resolution-
dependent uncertainties into account [20] and as part of an

active learning method [21]. Inspired by the possibility of
representing the point could as a 2D image, our method
LidarMetaSeg is an extension and further development of the
original work. Therefore MetaSeg [16] is the most related
work to our approach LidarMetaSeg, which up to now together
with SalsaNext [2] are the only works in the direction of
uncertainty quantification in LiDAR segmentation.

With MC dropout, SalsaNext follows a Bayesian approach
to quantifying the model and the observation uncertainty. The
uncertainty output is point-based and not segment-based, as
in our approach. Also for MC dropout, the model has to
infer one sample multiple times. LidarMetaSeg requires only a
single network inference and estimates uncertainties by means
of the network’s class probabilities. In a 2D representation,
these pixelwise uncertainty estimates can be viewed as uncer-
tainty heatmaps. From those heatmaps, we compute aggregated
uncertainties for each predicted segment, therefore clearly
going beyond the stage of pixelwise uncertainty estimation.
In contrast to MetaSeg for image segmentation, we not only
use the network’s output but also utilize information from the
point cloud input, such as the intensity and range features
provided for each point of the point cloud.

LidarMetaSeg is therefore a universal post-processing tool
that allows for the detection of false positive segments as well
as the estimation of segmentwise LiDAR segmentation quality.
Besides that, the present work is the first one to provide
uncertainty estimates on the level of predicted segments. We
evaluate our method on two different datasets, SemanticKITTI
[22] and nuScenes [23] and with three different network
architectures, two projection-based models RangeNet++ [1],
SalsaNext [2] and one non-projection-based model, Cylin-
der3D [3]. For meta classification, we achieve area under
receiver operating characteristic curve (AUROC) and area
under precision recall curve (AUPRC) [24] values of up to
91.16% and 74.35%, respectively. For the meta regression,
we achieve coefficient of determination R2 values of up to
66.69%. We show that our aggregated measures – in terms
of meta classification and regression – lead to a significant
performance gain in comparison to when only considering a
single uncertainty metric like the segmentwise entropy.

II. METHOD

LidarMetaSeg is a post-processing method for LiDAR se-
mantic segmentation to estimate the segmentwise prediction
quality. It consists of a meta classification and a meta re-
gression model that for each predicted segment classifies
whether it has an IoU equal to or greater than 0 with the
ground truth and predicts the segmentwise IoU with the
ground truth, respectively. The method works as follows: in
a preprocessing step we project each sample, i.e., the point
cloud, the corresponding network probabilities and the labels
into a spherical 2D image representation. In a next step and
based on the projected data, we compute dispersion measures
and other features like it is done for image data in [16], [18],
[20]. Afterwards we identify the segments of a given semantic
class and aggregate the pixelwise values from the previous step

on a segment level. In addition, we compute the IoU of each
predicted segment with the ground truth of the same class. This
results in a structured dataset, which consist of the coefficients
of the aggregated dispersion measures as well as additional
features and of the target variable – the IoU ∈ [0, 1] for the
task of meta regression or the binary variable IoU = 0, > 0
(IoU = 0 as indicator for a false positive) for the task of
meta classification – for each segment. We fit a classification
and a regression model to this dataset. In the end, we re-
project the meta classification and regression from the image
representation to the point cloud.

A. Preprocessing

A sample of input data for LidarMetaSeg is assumed to be
given on point cloud level and contains the following:

• point cloud p̃ ∈ Rm×4, p̃j = (xj , yj , zj , ij) with
xj , yj , zj ∈ R Cartesian coordinates and intensity ij ∈
R+ for j = 1, . . . ,m with m the number of points in the
LiDAR point cloud,

• ground truth / labels ỹ∗ ∈ Cm with C = {1, . . . , n} the
set of n given classes,

• probabilities ỹprob = f(p̃) ∈ Rm×n[0,1] of a LiDAR
segmentation network f , given as softmax probabilities,

• prediction ỹ = arg max
c∈C

ỹprob .

Typically, one is also interested in the range of a given
point in the point cloud, which is part of most LiDAR
segmentation networks’ input. Since the ego car is located
in the origin of the coordinate system, this quantity is given
by rj =

√
x2j + y2j + z2j for each p̃j .

The projection of a point cloud to a spherical 2D image
representation follows two steps: a transformation from Carte-
sian to spherical coordinates and then a transformation from
spherical to image coordinates. The spherical coordinates are
given as (rj , θj , ϕj) with range rj , polar angle θj and azimuth
angle ϕj . The transformation for the Cartesian to spherical
coordinates is given by

θj = arcsin

(
zj
rj

)
and ϕj = arctan

(
yj
xj

)
(1)

and rj for j = 1, . . . ,m. Based on the spherical coordinates
we get the image coordinates (u, v) with the equation

(
u

v

)
=

(
1
2

[
1− (ϕjπ

−1)
]
w[

1− (θj + fver+)f−1ver

]
h

)
(2)

with (w, h) the width and height of the image and fver =
fver+ + fver− the vertical field of view (FOV) of the LiDAR
sensor.

In order to get an image representation where each point
correspond to one pixel and vice versa, we need the number
of channels, the angular resolution and the horizontal FOV
of the LiDAR sensor. To this end, we define the height h as
the number of channels and the width w as the quotient of

the horizontal FOV fhor (which is in general 360, since the
LiDAR sensor is rotating) and the angular resolution α, i.e.,

w =
fhor
α

. (3)

Thus, the image representation – using the explicit sensor
information – has as many entries or pixels as the point
cloud can have as maximum number of points. Unfortunately
there are still some technical reasons, due to which it can
happen that multiple points are projected to the same pixel,
e.g. ego-motion compensation or overlapping channel angles.
More details concerning such projection errors can be found in
[25]. With the projection proposed above this happens rarely
enough, so that this event is negligible.

Following the projection above, we denote the projected 2D
representation similar as before, but without ·̃, i.e.,
• image representation (of the point cloud p̃)
F = (F x, F y, F z, F i, F r), F ∈ Rw×h×5,

• ground truth / labels y∗ ∈ Cw×h,
• probabilities yprob ∈ Cw×h×n,
• prediction y ∈ Cw×h.

The proposed image projection yields a sparse image represen-
tation. However, our post-processing approach LidarMetaSeg
is based on connected components of the segmentation. In
order to identify connected components (segments) of pixels
in the 2D image resulting from the projection, we fill these
gaps by setting any empty entry l := (u, v) (entries without a
corresponding point in the point cloud) to a value of one of
its nearest neighbors that received a value from the projection.
An example of such a filled image representation is shown in
fig. 2, left panel. In the following we only consider the filled
image representations. We store the information which pixel
received its value via projection and which one via fill-in in a
binary mask of width w and height h denoted by δ where 1
represents a projected point and 0 a filled entry, i.e.,

δl =

{
1, l corresponds to a projected point,
0, else.

(4)

For simplicity, we refer the filled image representations F (that
are input quantities for the segmentation network) as feature
measures.

B. Dispersion Measures and Segmentwise Aggregation

First we define the dispersion and feature measures and
afterwards the segmentwise aggregation.

a) Dispersion and Feature Measures: Based on the
probabilities yprob ∈ [0, 1]w×h×n, we define the dispersion
measures entropy El, probability difference Dl and variation
ratio Vl at pixel position l = (u, v) as follows:

El = − 1

log(n)

n∑
c=1

yprobl,c log
(
yprobl,c

)
, (5)

Dl = 1−max
c1∈C

yprobl,c1
+ max
c2∈C\c1

yprobl,c2
, (6)

Vl = 1−max
c∈C

yprobl,c . (7)

1
10

0

a) Preprocessing b) Dispersion measures and aggregation

Fig. 2. Visual examples of our method LidarMetaSeg. The left panel shows
the preprocessing part: the ground truth (top left) and the prediction (top
right) of the point cloud as well as the corresponding sparse (middle) and
filled (bottom) image representations. The right panel visualizes a dispersion
heatmap, the segmentwise prediction quality and its estimation: the probability
difference heatmap of the prediction-based probabilities (top right), where
higher values correspond to higher uncertainty, in the middle the true (left)
and estimated (right) IoU adj values for the image representation and in the
bottom part the corresponding visualizations after the re-projection to the point
cloud. The prediction of the point cloud and the corresponding prediction
quality estimation is highlighted.

In addition, the feature measures coordinates, intensity and
range at position l are given by the image representation

F]l ,] ∈ {x, y, z, i, r}. (8)

For the sake of brevity, we define the set of dispersion and
features measures

M = {E,D, V, F x, F y, F z, F i, F r} (9)

omitting the index for the position l as this will follow from
the context. Note that, due to the position dependence, each
element of M can be considered as a heatmap.

b) Segmentwise Aggregation: For a given prediction y ∈
Cw×h, C = {1, . . . , n} and the corresponding ground truth
y∗ ∈ Cw×h, C = {1, . . . , n}, we denote Ky and Ky∗ the set
of connected components (segments) in the prediction and the
ground truth, respectively. A connected component k is a set
of pixels that are adjacent to each other and belong to the same
class, see also fig. 2, left panel. For each segment k ∈ Ky , we
define the following quantities. Additionally and in order to
count only the pixels with a corresponding point in the point
cloud, we introduce the restriction by the corresponding binary
mask δ with | · |δ .
• The interior kin = {(u, v) ∈ k : [u±1]×[v±1] ∈ k} ⊂ k,

i.e., a pixel l = (u, v) is an element of kin if all eight
neighboring pixels are an element of k,

• the boundary kbd = k \ kin,
• the pixel sizes S = |k|, Sin = |kin|, Sbd = |kbd|,
• the segment size in the point cloud SP = |k|δ .

Furthermore, we define the target variables IoU and the so
called adjusted IoU adj as follow:
• IoU : let Ky∗ |k be the set of all k′ ∈ Ky∗ that have non-

trivial intersection with k and whose class label equals
the predicted class for k, then

IoU (k) =
|k ∩K ′|δ
|k ∪K ′|δ

, K ′ =
⋃

k′∈Ky∗ |k

k′, (10)

• the adjusted IoU adj does not count pixels in the ground
truth segment that are not contained in the predicted
segments, but in other predicted segments of the same
class: let Q = {q ∈ Ky : q ∩K ′ 6= ∅}, then

IoU adj(k) =
|k ∩K ′|δ

|k ∪ (K ′ \Q)|δ
. (11)

In cases where a ground truth segment is covered by more
than one predicted segment of the same class, each predicted
segment would have a low IoU , while the predicted segments
represent the ground truth quite well. As a remedy, the adjusted
IoU adj was introduced in [16] to not punish this situation.
The adjusted IoU adj is more suitable for the task of meta
regression. For the meta classification it holds IoU = 0, >
0⇔ IoU adj = 0, > 0.

Based on the previous definitions, we define the dispersion
and feature measures:
• the mean µ and variance υ metrics

µM] := µ(M]) =
1

S]

∑
l∈k]

Ml (12)

υM] := υ(M]) = µ(M2
])− µ(M])

2 (13)

for] ∈ { , in, bd} and M ∈M,
• the relative sizes S̄ = S/Sbd, S̄in = Sin/Sbd,
• the relative mean and variance metrics

τM̄ = τMS̄ (14)
τM̄in = τMS̄in (15)

for τ ∈ {µ, υ} and M ∈M,
• the ratio of the neighborhood’s correct predictions of each

class

Nc =
1

|knb|
∑
l∈kbd

1{c=yl} ∀c ∈ C (16)

with knb the set of k neighbors, i.e., knb = {l′ ∈ [u ±
1]× [v ± 1] ⊂ w × h : (u, v) ∈ k, l′ /∈ k},

• the mean class probabilities

Pc =
1

S

∑
l∈k

yprobl,c ∀c ∈ C. (17)

Typically, the dispersion measures El, Dl, Vl are large for
l ∈ kbd. This motivates the separate treatment of interior
and boundary measures. Furthermore we observe a correlation
between fractal segment shapes and a bad or wrong prediction,
which motivates the relative sizes S̄, S̄in. In summary, we
have 86 + 2n metrics: the (relative) mean and variance met-
rics τM, τMin, τMbd, τM̄ , τM̄in ∀τ ∈ {µ, υ}, ∀M ∈ M,
the (relative) size metrics S, Sin, Sbd, S̄, S̄in,SP as well as
Nc, Pc ∀c ∈ C. An example of the pixelwise dispersion
measures as well as the segmentwise IoU adj values and its
prediction is shown in fig. 2, right panel.

With the exception of the segmentwise IoU and IoU adj

values, all quantities defined above can be computed without
the knowledge of the ground truth.

III. NUMERICAL EXPERIMENTS

For numerical experiments we used two datasets: Se-
manticKITTI [22] and nuScenes [23]. For meta classification
and regression we deploy XGBoost [26]. Other classification
and regression methods like linear / logistic regression, neural
networks of tree based ensemble methods [27] are also pos-
sible. However, as shown in [19], XGBoost leads to the best
results. Due to the reason mentioned in the previous section,
the target variable for the meta regression (and classification)
is the adjusted IoU adj.

First, we describe the settings of the experiments for both
datasets and evaluate the results for the false positive detection
and the segmentwise prediction quality estimation when using
all metrics presented in the previous section. Afterwards we
conduct an analysis of the metrics and the meta classification
model.

A. SemanticKITTI

The SemanticKITTI dataset [22] contains street scenes from
and around Karlsruhe, Germany. It provides 11 sequences
with about 23K samples for training and validation, consisting
of 19 classes. The data is recorded with a Velodyne HDL-
64E LiDAR sensor, which has 64 channels and a (horizontal)
angular resolution of 0.08°. Furthermore the data is recorded
and annotated with 10 frames per second (fps) and each
point cloud contains about 120K points. The authors of the
dataset recommend to use all sequences to train the LiDAR
segmentation model, except sequence 08, which should be
used for validation.

For the experiments we used three pretrained LiDAR
segmentation models, two projection-based models, i.e.,
RangeNet++ [1] and SalsaNext [2], and one non-projection-
based model, i.e., Cylinder3D [3], which followed the rec-
ommended data split. For RangeNet++ and SalsaNext, the
softmax probabilities are given for the 2D image representation
prediction. As we assume that softmax probabilities are given
for the point cloud, we consider this representation as the
starting point and re-project the softmax probabilities to the
point cloud.

After the re-projection from the 2D image representation
prediction to the point cloud, both models have an additional
kNN post-processing step to clean the point cloud from
undesired discretization and inference artifacts [1], which may
results in changing the semantic class of a few points. To take
this post-processing step into account, we set the values of the
cleaned points in the corresponding softmax probabilities of
the point cloud to 1 and all other values to 0. Therefore the
softmax condition (the sum of all probability values of a point
is equal to 1 and all values are between 0 and 1) is met and the
adjusted prediction is equal to the argmax of the probabilities.
We do not expect other approaches to significantly change the
results since we aggregate our dispersion measures and the
number of modified points is small.

Following our method, the image representation of the point
cloud data is of size (w, h) = (4500, 64), cf. (3).

Most deep learning models tend to overfit. Therefore we
only use samples for LidarMetaSeg, which are not part of the
training data of the segmentation network, as overfitted models
affects the dispersion measures. Thus, we only use sequence
08 for our experiments. Computing the connected components
and metrics yields approx. 3.4M segments for each network.
Most of the segments are very small. Therefore we follow
a similar segment exclusion rule as in MetaSeg [16], where
segments with empty interior, Sin = 0, are excluded. Here,
we exclude segments consisting of less than 10 LiDAR points,
i.e., SP < 10, also shown in gray color in fig. 2. Hence, we
reduce the number of segments to approx. 0.45M but we retain
99% of the data measured in terms of the number of points.
We tested the dependence of our results under variation of the
exclusion size SP . The results were very similar to the results
we present in the following.

For training and validation of LidarMetaSeg we split se-
quence 08 and the corresponding connected components and
metrics into 10 disjoint sub-sequences. These sub-sequences
are used for a 10-fold cross validation. A cross validation
over all samples would yield highly correlated training and
validation splits as all sequences are recorded with 10 fps. The
results for the meta classification and regression are given in
table I. For all three models we achieve a validation accuracy
between 85.50% and 88.37%, see row ‘ACC LMS’ (short
for LidarMetaSeg). The accuracy of random guessing (‘ACC
naive baseline’) is between 78.42% and 84.53% which directly
amounts to percentage of segments with an IoU adj > 0.

For each method, the accuracy values correspond to a
single decision threshold. In contrast to that, the AUROC and
AUPRC are obtained by varying the decision threshold of the
classification output. The AUROC essentially measures the
overlap of distributions corresponding to negative and positive
samples; this score does not place more emphasis on one class
over the other in case of class imbalance. The ACC of random
guessing indicates the class imbalance: about 80% of the
segments have an IoU adj > 0 and 20% of the segments have
an IoU adj = 0, i.e., they are false positives. The underlying
precision recall curve of the AUPRC ignores true negatives and
emphasizes the detection of the positive class (false positives).

Using the metrics of the previous section (LMS) for the
meta classification yields AUROC values above 90% and
AUPRC up to 74.35%. For the meta regression we achieve
R2 values between 61.57− 66.69%. Fig. 3 depicts the quality
of predicting the IoU adj. A visualization of estimating the
IoU adj is shown in fig. 2 and in the supplementary video1.

B. NuScenes

The nuScenes dataset [23] contains street scenes from two
cities, Boston (US) and Singapore. It provides 700 sequences
for training and 150 sequences for validation. Each sequence
contains about 40 samples which amounts to a total of 34K
key frames. The dataset has 16 classes and is recorded and
annotated with 2 fps. The LiDAR sensor has 32 channels and

1https://youtu.be/907jJSRgHUk

https://youtu.be/907jJSRgHUk

TABLE I
RESULTS FOR META CLASSIFICATION AND REGRESSION, AVERAGED OVER 10 RUNS. THE NUMBERS IN THE BRACKETS DENOTE STANDARD DEVIATIONS
OF THE COMPUTED MEAN VALUES. THE BEST RESULTS IN TERMS OF ACC, AUROC, AUPRC AND R2 ON THE VALIDATION DATA ARE HIGHLIGHTED.

SemanticKITTI nuScenes
RangeNet++ SalsaNext Cylinder3D Cylinder3D

training validation training validation training validation training validation

Classification IoU adj = 0, > 0

A
C

C

LMS 92.26%(±0.25%) 85.50%(±3.12%) 92.43%(±0.21%) 86.26%(±2.75%) 92.97%(±0.21%) 88.37%(±2.89%) 92.96%(±0.08%) 91.00%(±0.60%)

LMS w/o features 90.64%(±0.30%) 85.10%(±3.21%) 90.77%(±0.23%) 86.02%(±2.86%) 91.68%(±0.27%) 88.22%(±2.93%) 92.31%(±0.13%) 90.62%(±1.16%)

Entropy 79.37%(±0.37%) 79.21%(±3.17%) 80.14%(±0.33%) 80.06%(±2.75%) 85.35%(±0.30%) 85.24%(±2.78%) 89.91%(±0.14%) 89.86%(±1.17%)

LMS ∪ MCDO 92.48%(±0.20%) 86.26%(±2.78%)

naive baseline 78.42% 79.36% 84.53% 89.85%

A
U

R
O

C

LMS 97.19%(±0.12%) 90.58%(±1.89%) 97.22%(±0.10%) 91.16%(±1.75%) 96.86%(±0.10%) 90.78%(±2.36%) 94.81%(±0.10%) 90.05%(±1.11%)

LMS w/o features 95.97%(±0.13%) 89.85%(±1.96%) 95.95%(±0.10%) 90.81%(±1.80%) 95.52%(±0.18%) 90.57%(±2.46%) 93.47%(±0.10%) 89.09%(±1.29%)

Entropy 81.45%(±0.22%) 79.21%(±3.17%) 80.74%(±0.31%) 80.84%(±2.35%) 83.52%(±0.34%) 83.80%(±2.91%) 82.83%(±0.18%) 82.81%(±1.44%)

LMS ∪ MCDO 97.25%(±0.09%) 91.17%(±1.75%)

A
U

PR
C

LMS 91.29%(±0.23%) 73.47%(±2.52%) 90.98%(±0.25%) 74.35%(±2.69%) 86.09%(±0.31%) 64.54%(±5.38%) 70.82%(±0.54%) 50.25%(±2.97%)

LMS w/o features 87.73%(±0.20%) 72.00%(±2.67%) 87.34%(±0.27%) 73.70%(±2.91%) 81.11%(±0.51%) 64.29%(±5.38%) 65.49%(±0.42%) 48.26%(±3.31%)

Entropy 49.16%(±0.59%) 48.48%(±5.75%) 48.16%(±0.61%) 48.24%(±5.99%) 47.25%(±0.48%) 47.91%(±4.53%) 35.16%(±0.33%) 35.29%(±2.88%)

LMS ∪ MCDO 91.04%(±0.04%) 74.39%(±2.62%)

Regression IoU adj

R
2

LMS 79.34%(±0.19%) 66.69%(±2.06%) 78.19%(±0.16%) 66.08%(±2.23%) 74.04%(±0.31%) 61.57%(±2.94%) 57.93%(±0.37%) 48.84%(±1.81%)

LMS w/o features 75.78%(±0.18%) 64.91%(±1.87%) 74.91%(±0.18%) 65.31%(±2.21%) 70.78%(±0.30%) 61.51%(±2.96%) 54.73%(±0.19%) 47.62%(±1.64%)

Entropy 51.45%(±0.37%) 50.88%(±2.74%) 48.54%(±0.57%) 48.21%(±4.25%) 50.90%(±0.45%) 50.30%(±3.27%) 39.51%(±0.28%) 39.33%(±2.57%)

LMS ∪ MCDO 78.26%(±0.14%) 66.13%(±2.27%)

Fig. 3. True IoU adj vs predicted IoU adj for RangeNet++, SalsaNext,
Cylinder3D on SemanticKITTI as well as Cylinder3D on nuScenes, from
left to right.

an angular resolution of 0.33°. Every point cloud contains
roughly 35K points. For our experiments we used the pre-
trained Cylinder3D with the recommended data split. We did
not test RangeNet++ and SalsaNext since the corresponding
pretrained models are not available.

The image projection is of size (w, h) = (1090, 32).
Computing the connected components for all samples of
the 150 validation sequences yields approx. 1.5M segments.
Excluding all small segments containing less than 10 points,
i.e., SP < 10, reduces that number to 0.34M. Still, we
retain 99% of the data in terms of points. We performed 10-
fold cross validation where we always took 90% of the 150
sequences, i.e., 135 sequences, for training and the remaining
10%, i.e., 15 sequences for validation of the meta models.
The results are presented in table I. 89.85% of all segments
have an IoU adj > 0. With the meta classification we achieve
an accuracy of 91.00%, AUROC of 90.00% and AUPRC of
50.25%, see ‘LMS’ rows. For the meta regression we achieve
R2 = 49.19% for the validation data. The quality of predicting
the IoU adj is shown in fig. 3.

C. Metric Selection

So far, we have presented results based on all metrics from
section II, indicated by LMS in table I. In order to analyze

the impact of the metrics to the performance, we repeated the
experiments for multiple sets of metrics.

a) Feature Measures: First, we tested the performance
of the meta classification and regression model without the
feature measures, i.e., the metrics based on the point cloud
input features, see row ‘LMS w/o features’. The performance
in terms of ACC, AUROC, AUPRC and R2 for all experiments
are up to 2 percentage points (pp.) lower compared to when
incorporating feature measures.

b) Entropy: Since the entropy is commonly used in
uncertainty quantification, we tested all experiments with
only using the mean entropy µE, see ‘Entropy’ rows. The
performance for the meta classification is up to 12 pp. lower
compared to LMS, for the meta regression R2 decreases by
up to 18 pp.

c) Bayesian Uncertainties: The projection-based Sal-
saNext model follows a Bayesian approach as already men-
tioned in section I: the LiDAR model provides a model
(epistemic) and observation (aleatoric) uncertainty output for
the point cloud’s 2D image representation prediction, esti-
mated by MC dropout (MCDO). To get these uncertainties we
followed the procedure in [2]. This ends up in epistemic epi l
and aleatoric alel uncertainty values for each pixel position
l. We compute the same aggregated measures as for the
measures M ∈M. Adding these new metrics to the previous
metrics LMS is refereed to as LMS ∪ MCDO. The additional
Bayesian uncertainties do not improve the meta classification
and regression performance significantly, see table I. We have
not tested SalsaNext on nuScenes since the pretrained model
is not available. For comparability of results, we only used
publicly available pretrained models.

d) Greedy Heuristic: Inspired by fordward-stepwise se-
lection for linear regression, we analyze different subsets of
metrics by performing a greedy heuristic: we start with an
empty set of metrics and iteratively add a single metric that
maximally improves the performance – ACC for the false pos-

TABLE II
METRIC SELECTION USING A GREEDY METHOD THAT IN EACH STEP ADDS ONE METRIC THAT MAXIMIZES THE META CLASSIFICATION / REGRESSION

PERFORMANCE IN TERMS OF ACC / R2 IN %. ALL RESULTS, SEMANTICKITTI (TOP) AND NUSCENES (BOTTOM) ARE CALCULATED ON THE DATASET’S
METRICS’ VALIDATION SET.

Se
m

an
tic

K
IT

T
I

number of metrics 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 124

RangeNet++
ACC 81.13 82.56 83.35 83.69 83.96 84.22 84.40 84.62 84.78 84.91 85.01 85.09 85.09 85.18 85.25 85.50

Added µV P16 υF̄ z
in P14 P13 υF̄ y P15 µF r

bd µF i υF z N1 P11 υF i µDbd P1 all
R2 56.74 58.20 59.01 59.87 60.72 61.57 62.07 62.69 63.24 63.70 64.06 64.43 64.72 64.91 65.15 66.69

Added µV P14 P16 P17 P15 P9 υF y
bd υF̄ z µF i P13 P3 υFx µF r N18 SP all

SalsaNext
ACC 82.05 83.49 84.10 84.70 84.93 85.16 85.35 85.52 85.65 85.76 85.86 85.96 85.96 86.03 86.11 86.26

Added µV P16 P15 P14 υF y
bd P13 µD̄ υF z N1 P12 µV̄ z

in P10 P11 υF i
bd υFx all

R2 56.18 58.56 59.59 60.71 61.67 62.35 62.87 63.36 63.77 64.11 64.40 64.62 64.86 65.02 65.21 66.08

Added µD P14 P17 P15 P13 υF r υF z P12 P1 P9 P2 µV̄ i υF y N10 µV̄ z all
Cylinder3D

ACC 86.13 86.76 87.19 87.41 87.60 87.75 87.84 87.93 88.02 88.08 88.17 88.26 88.26 88.29 88.33 88.37

Added µD P15 υF̄ r P17 P11 υD P13 P10 υF̄ z N1 SP µF r
bd N15 P14 µF i all

R2 53.10 54.54 55.71 56.76 57.64 58.36 58.90 59.31 59.68 60.03 60.32 60.66 60.95 61.12 61.33 61.57

Added P14 µEbd P17 P15 SP υF̄x υF i P6 υF y N9 P12 υD P13 P5 S all

nu
Sc

en
es

number of metrics 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 118

Cylinder3D
ACC 90.06 90.27 90.44 90.53 90.61 90.67 90.73 90.8 90.85 90.87 90.89 90.91 90.91 90.93 90.95 91.00

Added µD µV̄ r P9 P16 µFx
bd υF r P12 P4 υĒ µV̄ i N11 P15 µF z

bd P3 υF z
bd all

R2 40.88 43.25 44.27 45.14 45.79 46.32 46.80 47.16 47.4 47.62 47.79 48.02 48.1 48.24 48.33 48.84

Added µVbd P16 υF̄ r P3 P13 µF r P4 µF z µF y
bd µF i

bd N14 N10 υF z P10 P1 all

1 3 5 7 9 11 13 15
0.81
0.83
0.85
0.87
0.89

AC
C

1 3 5 7 9 11 13 15
0.53
0.56
0.59
0.62
0.65

R²

0.0 0.2 0.4 0.6 0.8 1.0
Number metrics

0.0

0.2

0.4

0.6

0.8

1.0
Rangenet++ SalsaNext Cylinder3D

Fig. 4. Performance of the meta classification (left) and the meta regression
(right) model on SemanticKITTI depending of the number of metrics, which
are selected by the greedy approach.

itive detection and R2 for the prediction quality estimation. We
performed this greedy heuristic for both, meta classification
and meta regression. The results in terms of ACC and R2

are shown in fig. 4 (only for SemanticKITTI) and in table II.
For the meta classification, we observe a comparatively big
accuracy gain during adding the first 5 metrics, then the
accuracy increases rather moderately. For the meta regression,
this performance gain in terms of R2 spreads wider across
the first 10 iterations, before the improvement per iteration
becomes moderate. Furthermore the results show that a small
subset of metrics is sufficient for good models. We achieve
nearly the same performance for both tasks with 15 metrics
selected by the greedy heuristic compared to when using
all metrics (LMS). Considering table II, the mean variation
ratio µV and the mean probability difference µD in most
cases constitute the initial choices. Furthermore, the mean
probabilities Pi, i ∈ C, are also frequently subject to early
incorporation.

D. Confidence Calibration

The false positive detection is based on a meta classification
model, which classifies whether the predicted IoU adj is equal
or greater than 0. In order to demonstrate the reliability of
the classification model, we show that the confidences are

well calibrated. Confidence scores are called calibrated, if
the confidence is representative for the probability of correct
classification, cf. [28].

The meta classification model estimates for each pre-
dicted segment the probability of being false positive, i.e.,
IoU adj = 0. We group the probabilities for all meta clas-
sified segments of the validation data into 10 interval bins
(0.0, 0.1], (0.1, 0.2], . . . , (0.9, 1.0]. The accuracy of a bin is
the relative amount of true predictions; the confidence of a
bin is the mean of its probabilities. The closer the accuracy
and the confidence are to each other, the more reliable is the
corresponding classification model. This is visualized in a so-
called reliability diagram. For the evaluation of calibration, we
define the maximum calibration errors (MCE) as the maximum
absolute difference between the accuracy and the confidence
over all bins and the expected calibration errors (ECE) as a
weighted average of the bins’ difference between accuracy and
confidence, where the weights are proportional to the number
of elements per bin. Further details are given in [28].

The reliability diagrams and the MCE as well as the ECE for
all previously discussed meta classification models are shown
in fig. 5. The smaller the gaps, i.e., the closer the outputs are
to the diagonal, the more reliable and well calibrated is the
model. The MCE and ECE are between 5.26 – 10.68 and 0.62
– 1.63, respectively. The results indicate well calibrated and
reliable meta classification models.

IV. CONCLUSION

In this work we presented our method LidarMetaSeg for
segmentwise false positive detection and prediction quality
estimation of LiDAR point cloud segmentation. We have
shown that the more of our hand-crafted aggregated metrics
we incorporate, the better the results get. This holds for
all considered evaluation metrics – ACC, AUROC, AUPRC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
MCE = 5.53
ECE = 1.49

0.0 0.2 0.4 0.6 0.8 1.0

MCE = 5.26
ECE = 1.63

0.0 0.2 0.4 0.6 0.8 1.0

MCE = 8.70
ECE = 1.31

0.0 0.2 0.4 0.6 0.8 1.0

MCE = 10.68
ECE = 0.62

0.0 0.2 0.4 0.6 0.8 1.0Confidence
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Outputs Gap

Fig. 5. Reliability diagrams with MCE and ECE for the meta classification
model: RangeNet++, SalsaNext, Cylinder3D on SemanticKITTI as well as
Cylinder3D on nuScenes, from left to right.

and R2. Furthermore, the results show that adding Bayesian
uncertainties (epistemic and aleatoric ones approximated by
MC dropout) on top of our dispersion measures based on
the softmax probabilities neither improves meta classification
nor meta regression performance. We have demonstrated the
effectiveness of the method on street scene scenarios and are
positive that this method can be adapted to other LiDAR
segmentation tasks and applications, e.g. indoor segmentation
or panoptic segmentation.

REFERENCES

[1] Andres Milioto, Ignacio Vizzo, Jens Behley, and Cyrill Stachniss.
Rangenet++: Fast and accurate lidar semantic segmentation. In 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 4213–4220. IEEE, 2019.

[2] Tiago Cortinhal, George Tzelepis, and Eren Erdal Aksoy. Salsanext:
Fast, uncertainty-aware semantic segmentation of lidar point clouds for
autonomous driving. arXiv preprint arXiv:2003.03653, 2020.

[3] Hui Zhou, Xinge Zhu, Xiao Song, Yuexin Ma, Zhe Wang, Hongsheng
Li, and Dahua Lin. Cylinder3d: An effective 3d framework for driving-
scene lidar semantic segmentation. arXiv preprint arXiv:2008.01550,
2020.

[4] Jianyun Xu, Ruixiang Zhang, Jian Dou, Yushi Zhu, Jie Sun, and Shiliang
Pu. Rpvnet: A deep and efficient range-point-voxel fusion network for
lidar point cloud segmentation. arXiv preprint arXiv:2103.12978, 2021.

[5] Zhangjing Wang, Yu Wu, and Qingqing Niu. Multi-sensor fusion in
automated driving: A survey. IEEE Access, 8:2847–2868, 2019.

[6] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet:
Deep learning on point sets for 3d classification and segmentation. In
Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 652–660, 2017.

[7] Paul Jaccard. The distribution of the flora in the alpine zone. 1. New
phytologist, 11(2):37–50, 1912.

[8] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu, and Mo-
hammed Bennamoun. Deep learning for 3d point clouds: A survey.
IEEE transactions on pattern analysis and machine intelligence, 2020.

[9] Chenfeng Xu, Bichen Wu, Zining Wang, Wei Zhan, Peter Vajda, Kurt
Keutzer, and Masayoshi Tomizuka. Squeezesegv3: Spatially-adaptive
convolution for efficient point-cloud segmentation. In European Con-
ference on Computer Vision, pages 1–19. Springer, 2020.

[10] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++:
Deep hierarchical feature learning on point sets in a metric space. arXiv
preprint arXiv:1706.02413, 2017.

[11] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz
Marcotegui, François Goulette, and Leonidas J Guibas. Kpconv: Flexible
and deformable convolution for point clouds. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 6411–
6420, 2019.

[12] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approxima-
tion: Representing model uncertainty in deep learning. In international
conference on machine learning, pages 1050–1059. PMLR, 2016.

[13] Onur Ozdemir, Benjamin Woodward, and Andrew A Berlin. Prop-
agating uncertainty in multi-stage bayesian convolutional neural net-
works with application to pulmonary nodule detection. arXiv preprint
arXiv:1712.00497, 2017.

[14] Alex Kendall, Vijay Badrinarayanan, and Roberto Cipolla. Bayesian
segnet: Model uncertainty in deep convolutional encoder-decoder ar-
chitectures for scene understanding. arXiv preprint arXiv:1511.02680,
2015.

[15] Di Feng, Lars Rosenbaum, and Klaus Dietmayer. Towards safe au-
tonomous driving: Capture uncertainty in the deep neural network for
lidar 3d vehicle detection. In 2018 21st International Conference
on Intelligent Transportation Systems (ITSC), pages 3266–3273. IEEE,
2018.

[16] Matthias Rottmann, Pascal Colling, Thomas Paul Hack, Robin Chan,
Fabian Hüger, Peter Schlicht, and Hanno Gottschalk. Prediction error
meta classification in semantic segmentation: Detection via aggregated
dispersion measures of softmax probabilities. In 2020 International Joint
Conference on Neural Networks (IJCNN), pages 1–9. IEEE, 2020.

[17] Abhijit Guha Roy, Sailesh Conjeti, Nassir Navab, and Christian
Wachinger. Inherent brain segmentation quality control from fully
convnet monte carlo sampling. In International Conference on Medical
Image Computing and Computer-Assisted Intervention, pages 664–672.
Springer, 2018.

[18] Robin Chan, Matthias Rottmann, Fabian Hüger, Peter Schlicht, and
Hanno Gottschalk. Controlled false negative reduction of minority
classes in semantic segmentation. 2020.

[19] Kira Maag, Matthias Rottmann, and Hanno Gottschalk. Time-dynamic
estimates of the reliability of deep semantic segmentation networks. In
2020 IEEE International Conference on Tools with Artificial Intelligence
(ICTAI), 2020.

[20] Matthias Rottmann and Marius Schubert. Uncertainty measures and
prediction quality rating for the semantic segmentation of nested multi
resolution street scene images. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, pages 0–0,
2019.

[21] Pascal Colling., Lutz Roese-Koerner., Hanno Gottschalk., and Matthias
Rottmann. Metabox+: A new region based active learning method
for semantic segmentation using priority maps. In Proceedings of the
10th International Conference on Pattern Recognition Applications and
Methods - Volume 1: ICPRAM,, pages 51–62. INSTICC, SciTePress,
2021.

[22] Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven
Behnke, Cyrill Stachniss, and Jurgen Gall. Semantickitti: A dataset
for semantic scene understanding of lidar sequences. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages
9297–9307, 2019.

[23] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin
Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar
Beijbom. nuscenes: A multimodal dataset for autonomous driving.
In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 11621–11631, 2020.

[24] Jesse Davis and Mark Goadrich. The relationship between precision-
recall and roc curves. In Proceedings of the 23rd international confer-
ence on Machine learning, pages 233–240, 2006.

[25] Larissa T Triess, David Peter, Christoph B Rist, and J Marius Zöllner.
Scan-based semantic segmentation of lidar point clouds: An experimen-
tal study. In 2020 IEEE Intelligent Vehicles Symposium (IV), pages
1116–1121. IEEE, 2020.

[26] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting
system. In Proceedings of the 22nd acm sigkdd international conference
on knowledge discovery and data mining, pages 785–794, 2016.

[27] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. The elements
of statistical learning, volume 1. Springer series in statistics New York,
2001.

[28] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On
calibration of modern neural networks. In International Conference on
Machine Learning, pages 1321–1330. PMLR, 2017.

	I Introduction
	II Method
	II-A Preprocessing
	II-B Dispersion Measures and Segmentwise Aggregation

	III Numerical Experiments
	III-A SemanticKITTI
	III-B NuScenes
	III-C Metric Selection
	III-D Confidence Calibration

	IV Conclusion
	References

