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Abstract—The Boolean Satisfiability Problem (SAT) is the first
known NP-complete problem and has a very broad literature
focusing on it. It has been applied successfully to various real-
world problems, such as scheduling, planning and cryptogra-
phy. SAT problem feature extraction plays an essential role
in this field. SAT solvers are complex, fine-tuned systems that
exploit problem structure. The ability to represent/encode a
large SAT problem using a compact set of features has broad
practical use in instance classification, algorithm portfolios
and solver configuration. The performance of these techniques
relies on the ability of feature extraction to convey helpful
information. Researchers often craft these features “by hand”
to capture particular structures of the problem. Instead, in this
paper, we extract features using semi-supervised deep learning.
We train a Convolutional Autoencoder (AE) to compress the
SAT problem in a limited latent space and reconstruct it min-
imizing the reconstruction error. The latent space projection
should preserve much of the structural features of the problem.
We compare our approach to a set of features commonly
used for algorithm selection. Firstly, we train classifiers on the
projection to predict if the problems are satisfiable or not. If the
compression conveys valuable information, a classifier should
be able to take correct decisions. In the second experiment, we
check if the classifiers can identify the original problem that
was encoded as SAT. The empirical analysis shows that the
autoencoder is able to represent problem features in a limited
latent space efficiently, as well as convey more information
than current feature extraction methods.

1. Introduction

A SAT instance consists of a Boolean formula that
involves a set of Boolean variables connected by the logical
operators ”and”, ”or” and ”not”. The Propositional Boolean
Satisfiability problem consists of finding an assignment to
the variables such that the formula evaluates to true (sat-
isfiable instance) or proves that such an assignment does
not exist (unsatisfiable instance). SAT solvers are software
designed to take such instances and find a solution or prove
that one does not exist. Many studies have been dedicated to
developing new solving techniques and improving existing

ones. These solvers compete annually in the SAT compe-
tition [1] to test the state of the art in this discipline on
hard problem instances. These solvers use different solv-
ing techniques, such as Conflict-Driven Clause Learning
(CDCL), Look-Ahead SAT, and Stochastic Local Search.
In these competitions it is clear that no solver outperforms
all others on all problems; depending on the instance type,
their rank varies consistently. For example, CDCL solvers
are especially efficient in solving industrial SAT instances.
The reason behind this specialization is not yet clear. Due to
this, portfolio algorithms often perform best. A portfolio in
this setting is a collection of individual solvers that can be
selectively deployed depending on the type of instance that
has to be tackled. Portfolios deploy a multi-class classifier
on the instance features to select the best solver. This task
is called the Algorithm Selection Problem [2].

Another approach to tackle a SAT instance is to predict
the satisfiability as a classification problem using machine
learning. The first attempt in this field [3] uses features
extracted by a portfolio algorithm. Recently, the perva-
siveness of deep learning extended to this field as well.
The most relevant attempt is NeuroSAT [4], a graph deep
learning network that iteratively tries to classify a graphical
representation of the SAT instance. This approach can be
seen as a deep learning heuristic solver.

A fundamental component of these approaches is the
extraction of meaningful features from a SAT instance,
e.g. [5]. This task aims to represent a problem that involves
a high number of variables and clauses into a handful of
values preserving the relevant information on its structure
and properties. The features are generally statistical infor-
mation of the instance, e.g. the number of variables, clauses
or their ratio, or computed on different representations of the
problem, such as the graph encoding. The classic process of
extracting features mirrors the human view of the problem
structure. One of the reasons why it is hard to understand
the behaviour of the solvers on different types of problems
is that we are trying to see them from a human perspective.
Machine-automated feature extraction can reduce the human
bias on the problem description.

In this work, we present a semi-supervised deep learning
automated approach to extract features from SAT instances.



We train a convolutional autoencoder (AE) to compress and
reconstruct an instance minimizing the reconstruction error.
An AE is a deep network that takes the input and learns
to copy it, minimizing the differences between the original
and the network’s output. The particularity is that one of
the internal layers has a limited number of neurons, acting
as an information bottleneck. The AE learns to compress
the relevant information to fit through this bottleneck and
reconstruct them correctly. It can be decomposed into an en-
coder and a decoder; the encoder projects the input into the
latent space represented by the bottleneck, while the decoder
takes a point of the latent space and tries to reconstruct the
original instance. This can be seen as a lossy compression
technique. During the training phase, the AE learns to a low
dimensional representation of the input; if this representation
preserves the information, a classifier should be able to take
decisions on these features.

2. Literature review

We survey the relevant literature. We focus on feature
extraction techniques for SAT instances and SAT/UNSAT
classification. Finally, we briefly present some successful
example of AE used in feature extraction.

In their seminal paper, Mitchell et al. [6] show a strong
correlation between the hardness of a SAT instance and its
ratio between the number of variables and clauses. Building
on that work, researchers have attempted to extract from
SAT problems a number of features that measure, with
increasing precision, their empirical hardness and, therefore,
how likely a solver will be able to evaluate its satisfiability
within a meaningful runtime. Nudelman et al. [7] introduced
84 features that can be calculated from SAT instances. These
characteristics can be split into nine categories: problem
size, variable-clause-graph, variable graph, clause graph,
balance, proximity to Horn formulae, LP-based, DPLL-
probing, and local search probing. One of the first works that
uses these features to build an effective empirical hardness
model was SATzilla-07 [8]. The model is used then to
construct a per-instance algorithm portfolio that automati-
cally selects among different SAT solvers to minimize the
runtime of the solver on the instance. Malitzky et al. [9]
proposed a new systematic approach for calculating features
that do not require hand-crafted structural features to guide
the selection of the algorithm. They define these as latent
features stemming from matrix decomposition. By feeding
those to a linear model, they reach performance comparable
to modern algorithm portfolios. Moreover, the information
gathered from the latent features can help researchers extract
only the necessary features that would guide the algorithm
selection. Their projection differs from the work presented
herein since they start from the features pre-computed by
other approaches, while our AE takes the SAT instance as
input. Finally, two recent papers by Ansótegui et al. [5] and
Matos Alfonso et al. [10] propose two new sets of features
that further improve the choice for a specific algorithm to
solve specific SAT instances. In the first, they concentrate
specifically on structural characteristics of industrial samples

(i.e. scale-free structure, community structure, and self-
similar structure). They then train a classifier that assesses
the effectiveness of these new sets of features compared
to previously introduced SAT features sets. The second
presents three new features based on the structural informa-
tion of the formula and the consideration AND-gates as well
as exactly-one constraints. Likewise, they use these features
to train a random forest algorithm that guides the selection
of the appropriate SAT solver configuration.

As shown previously, Boolean Satisfiability can be ap-
proached and aided through machine learning and deep
learning methods. One of the first examples of using these
techniques is demonstrated in a 2008 paper by Devlin et
al. [3]. They use multiple machine learning classifiers to
directly predict SAT instance satisfiability by training them
on the same features used by the SATzilla algorithm port-
folio. Another important paper was published by Grozea et
al. in 2014 [11]. They employ machine learning models to
correctly predict branches during the search for a solution
for 3-SAT instances. They find that in over 90% of the
test cases using a machine learning heuristic-enhanced SAT
solver reduces by at most 1/3 the number of branchings that
the algorithm performed during search. In 2017 Wu [12]
suggests an improvement to the runtime of the MiniSAT
solver. By utilising a logistic regression model to predict
the satisfiability of Boolean formulae with a certain number
of fixed variables, he applies the learned model to secure
a preferable initial value for each Boolean variable using a
Monte-Carlo approach. The prediction algorithm manages
to guess 78% of the backbones correctly. This approach
reduces the number conflicts in the search for a solution,
therefore improving the runtime. However, the total runtime
needs to consider the preprocessing phase in which the
logistic regression model is trained. Consequently, it is not
not able to outperform overall the vanilla Minisat. In a
2016 paper [13], Loreggia et al. investigate a new approach
using deep learning to select the preferred algorithm for
solving specific SAT and CSP instances. After encoding
the ASCII representation of the problem into a black and
white image, they trained a deep convolutional neural net-
work to classify between different solvers. This is based
on the (strong) assumption that only a specific solver can
assess the satisfiability with one particular runtime. They
observe that on a test set, the network is able to predict
the correct algorithm with over 90% accuracy. In a 2017
paper [14], Bunz et al. implement, for the first time, a deep
learning algorithm to predict the satisfiability of instances.
After providing a graphical representation of conjunctive
normal forms stemming from a hand-generated random 3-
SAT dataset, they feed the representation directly to a graph
neural network. They manage to achieve over 65% accuracy
on the testing set without any previous feature extraction.
Finally, a 2018 paper [?], [4] by Selsam et al. introduces
Neurosat, a message parsing neural network that learns to
provide a solution to SAT instances by only being trained
to predict their satisfiability. While this approach cannot yet
outperform state of the art SAT solvers, it is able to scale
efficiently with the size of the problem and handle instances



with completely different structures from the ones it is
trained on. Feature extraction is one of the many applications
of AEs. Dong et al. [15] provide a structured description of
the technique and a comprehensive review of their literature.
The non-linear projection computed by an AE is widely used
to compress data efficiently into a low-dimensionality latent
space that can be considered a set of features of the original
data. For example, in a 2011 paper [16], Masci et al. use
stacked convolutional autoencoders to extract biologically
plausible features of samples from two famous datasets,
MNIST and CIFAR-10. Then these features are used to train
a convolutional neural network that performs an efficient
classification. Liang et. al. [17] survey the literature in text
feature extraction techniques based on deep learning. This
technique is currently employed in many other fields, like
semiconductor manufacturing [18], sensory robotics [19],
radar data analysis [20], etc. The surveyed literature shows
the research interest for the task presented in this paper and
the potential that the AE shows in similar tasks in different
domains.

3. Encoding

Conjunctive normal form (CNF) is the instance format
used by the vast majority of the solvers. A CNF is composed
of a conjunction of clauses. Each clause is a disjunction of
literals. A literal is the occurrence of a variable negated
or not. All SAT problems can be transformed into CNF
formulas in linear time with only a linear increase in the
formula size [21]. The DIMACS CNF format is the stan-
dard, however, it is not well suited for an AE. Different
approaches have been introduced, such as transforming it
into an image [13] or using a graph representation [14]. The
network has to output a multi-class classification. One-hot
encoding is the general approach for such problems.

Our approach transforms a CNF into an equivalent bi-
nary array. Given a CNF with C clauses and V variables,
we encode each clause i as an array of binary variables xi.
For each variable j, xi2j = 1 if j appears in clause i, and
xi2j+1 = 1 if j appears negated in that clause, otherwise they
take value 0. Thereby each CNF can be encoded in 2CV
binary variables. We fixed a maximum number of clauses
and variables encoding all instances according to those sizes
to make input size constant.

3.1. Symmetry breaking

A drawback of CNF formulas is that they are subjected
to different invariances. These symmetries make the network
learning process harder since the network needs to learn
that different inputs might encode an equivalent state of the
problem. Graph representation removes some of these sym-
metries [22]. Invariances are particularly detrimental in our
case due to the loss computation. A reconstructed instance
that represents the same problem but with variables and
clauses that are permuted has a really high reconstruction
loss. In our case, we considered an ordering that reduces
the invariances of our encoding.

Many operations can change the CNF without affecting
its satisfiability. We tackled them in the following way:

• Variable negation, for example, negating all the oc-
currences of a given variable. For each variable, the
normal literal has to appear at least as much as the
negated one.

• Permuting variables, for example swapping all the
occurrences of variable j = 1 with variable j =
2. We ordered them by the number of the literal
appearances. The first variable is the one that appears
the most in the formula. Ties are broken considering
the variable with the minimum amount of negated
literals.

• Permuting literals in a clause, changing the order of
the literals in a clause does not affect the solution.
Our encoding is not affected by this symmetry.

• Permuting clauses, for example, swapping the first
clause with the second one. We order the clauses by
their cardinality (number of literals appearing in the
clause). Ties are broken considering the literal with
the lower index.

While this approach does not resolve some invariances com-
pletely, it allows a network to learn patterns. For example,
the variable that appears the most appears negated in a
clause with a variable that rarely appears.

3.2. Dataset

The main reason for generating the dataset is the ne-
cessity for a sizeable number of instances with diverse
structures that are well balanced between SAT and UN-
SAT. Deep learning solution quality strongly depends on
the quantity and how representative the training dataset.
Moreover, the use of deep learning algorithms and the binary
encoding presented in the previous section makes handling
large instances quite complicated in terms of memory usage;
therefore, a reduced number of variables and clauses was
required. To the best of our knowledge, no publicly avail-
able dataset is satisfying these constraints, so we opted for
generating one. Creating a generator for problem instances
that have the structure and computational properties that are
more similar to real-world instances has been an ongoing
challenge [23]. The dataset used in the empirical section of
this paper is generated using CNFgen [24]. This tool pro-
duces propositional formulas in the CNF DIMACS format
that can be used as a benchmark for SAT solvers. It features
several formula families (e.g. pigeonhole principle, ordering
principle, k-coloring, etc.) as well as several formula trans-
formations and the possibility of producing formulas directly
from graph structures.

Two datasets were assembled. The first one, which we
will later refer to as the training dataset, consists of 3000
instances uniformly distributed in eight types, mainly stem-
ming from graph structures. Of these 3000 instances, 1562
are proven unsatisfiable and 1438 satisfiable beforehand
using the Glucose SAT solver [25]. This set is used to train
the AE in order to to find the optimal representation in the
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Figure 1: Distribution of the different SAT instances for the
training dataset and testing dataset

latent space. The learned embedding is then used to train a
machine learning classifier to predict both the satisfiability
and the instance type.

A second dataset, for testing, is generated to assess
how well the autoencoder performs on previously unseen
instances. This set consists of 1737 instances divided into
12 classes. Out of those 12 classes, 8 are of the same type
used for the training dataset, while the remaining 5 are new
types of instances. As previously, we determine the satisfi-
ability of the instances using the Glucose solver, resulting
in 1035 unsatisfiable samples and 702 satisfiable samples.
In the empirical experiments, the training set is used as a
whole, while the test set is considered both as a whole and
divided between previously seen and new instance types.
This separation aims to analyse the ability of the AE to
generalise to unseen data structures. The distribution of both
datasets is shown in Figure 1.

4. Method

The deep learning algorithm chosen for the feature ex-
traction is a Convolutional Autoencoder (AE) [26]. It is a
type of feed-forward neural network architecture that lever-
ages the technique of representation learning. Specifically,
the network is composed of two branches that function as
an encoder-decoder pair. At the conjunction, a bottleneck
is present to obtain a compressed knowledge representation
of the input. The bottleneck compression can be referred
to as a latent space of lower dimensionality into which the
input is projected. This technique is based on the assumption
that the input data has a structure that can be efficiently
learned and used in its reduced form to reproduce the input.
Indeed, the task of an AE is to generate an output that is a

reconstruction of the original input. The reconstruction loss
measures how well the original input has been reproduced
in the output from the latent space. In this case, the chosen
reconstruction loss was the binary-crossentropy [27]; this
loss considers every binary variable of the encoding as a
binary classification task. This choice is possible due to the
binary encoding of the input presented in the previous sec-
tion. Before feeding the input into the network, it undergoes
the encoding and symmetry breaking process.

Using convolutional layers offers many advantages over
a dense AE. These layers are widely used in image and
signal processing. They can recognize patterns even when
their position is moved around the input. We can use them to
learn literals and clause patterns. Convolutional layers can
process bigger inputs compared to fully connected layers.
Finally, it can focus the scope of a literal to the clause
it is part of. In previous works using convolutional neural
networks, such as [13], a window includes literals from
consecutive clauses, learning patterns on those.

The encoder part of the network takes the input and
projects it into the latent space. It starts with a convolutional
layer with a single filter that encodes a literal, with windows
of size 2 that do not overlap. This layer converts each literal
to a single value. We prefer this approach over using a three-
valued encoding for each variable in each clause (such as 0
for non-present, 1 for present, and 2 for present and negated)
because this encoding would imply different errors in the
case of the case misclassification. The second convolutional
layer has non-overlapping windows with a size equal to the
maximum number of variables. Each window covers all the
literals involved in a clause without overlapping to literals in
other clauses. The advantage is that it can learn patterns at
clause level, e.g. clauses that involve the most used variables
all negated. Finally, we deploy a set of convolutional layers.
Using a series of convolutional layers helps to learn higher-
level patterns, and it generally outperforms both in training
times and performances a single layer with more filters. The
encoder ends with a short series of fully connected layers,
the last one with a number of neurons equal to the latent
space size.

These layers, with the exception of the final one, are fol-
lowed by dropout [28] and batch-normalization [29] layers.
These make the algorithm less sensitive to overfitting, reduce
the internal covariant shift and allow a higher learning rate
without the possibility of gradient explosion or vanish.

The decoder mirrors the encoder structure with trans-
posed convolutions. We select a latent space of size δ =
{8, 16, 24, 32, 40}. The optimizer Adam [30] is used to
speed up the back-propagation. The initial learning rate is set
to 10−4 with a decay of 10−5. Finally, the Rectified Linear
Unit [31] is chosen as the activation function. Figure 2
shows the entire structure of the AE implemented and used
in the experiments.

Before the choosing of the optimal parameters and the
AE structure, a large hyperparametrisation was conducted.
We trained all the networks for multiple days on three
NVIDIA Quadro RTX 8000 graphic cards.
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Figure 2: Convolutional Autoencoder consisting of encoder
(right) and decoder (left). The encoder features 3 convolu-
tional layers, followed by 2 fully connected layers. It also
features dropout and batch normalization layers after the
second and third convolutional layers and the first dense
layer. The decoder mirrors the encoder structure, with trans-
pose convolutions instead. For the convolutional layers, the
number of filters and window sizes are specified, for the
dense layer the number of neurons. The reconstruction loss
L(x̃, x) quantifies the quality of the reconstruction and is
minimized during training.

5. Experimental results

The empirical evaluation aims to compare the features
extracted using the approach presented in this paper to the
widely used SatZilla features [8]. SATZilla is a portfolio
SAT solver that for each instance selects the solver based
on a set of 127 features that includes different aspects of the
problem: size, graph, balance and timing features. Of this
set of features we ignored the timing/probing ones that are
solver dependent and not specific of the CNF. The goal of a
compression/feature extraction solution is to preserve/extract
relevant information. To assess the importance of the infor-
mation extracted a common approach is to train a classifier
on the features; if a classifier achieves a high accuracy it
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Figure 3: SAT/UNSAT classification accuracy (training set).

means that the features extract enough information to take
a correct decision. Firstly, we check if the features can be
used for the binary classification of the satisfiability of the
problem. In a second experiment, we build a classifier that
is able to recognize the type of graph problem encoded. We
use the dataset presented in Section 3.2. We train the AE
using an 80/20 validation split on the train dataset; we then
use it to extract the features of both train and test set. Since
SATZilla does not have a training phase its deployment
is equivalent on the train and test set. We presents the
results of XGBoost [32] as classifier. Then, the average
accuracy is computed over 10 shuffles of 10 cross validation.
We also analyse the performance on the training set. The
AE is optimised for the instance compression, not for the
classification task; comparing its performances with the test
set we can understand how well the features generalise to
unseen structures.

5.1. SAT/UNSAT classification

In this experiment, we try to predict the satisfiability of a
problem based on the extracted features. This task is widely
studied in the literature, see Section 2. We project all the
instances of the dataset into increasing size latent spaces,
δ = {8, 16, 24, 32, 40}. The goal is to test the ability of
the approach to compress the instance structure. We train
AEs for the different δ values on the training set. For
the SATZilla features, we compress them using principal
component analysis (PCA) to reduce their cardinality.

Figure 3 and Figure 4 show the results of our experiment
on the train and the test set, respectively. The orange dotted
line is the accuracy achieved by using the full SATZilla
features set. The AE outperforms the best SATZilla in the
training set even when compressing the SAT instance to
just eight features, while in the test set that contains also
different types of problems is comparable. When projecting
to 40 dimensions the gap between the two increases.
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Figure 4: SAT/UNSAT classification accuracy (test set).

Figure 5 shows the confusion matrices for the best and
worse feature extraction settings of the two approaches on
the test set. It is clear that the PCA compression of the
SATZilla features reduces the ability of the classifier to rec-
ognize the UNSAT instances. For the AE, when increasing
the dimension of the latent space the accuracy improves
similarly in both classes. We have similar results in the
training set, where the best AE classify all the SAT instances
correctly and makes mistakes in just a few UNSAT ones.
To evaluate if our approach can generalise to new types of
instances we divided the test set in instance types that are
present in the training set as well, and the ones that are not.
As Figure 6 shows, the AE outperforms SATZilla in both
cases. The new instances are likely harder to classify since
both of them have worse performances, but this could be
due to the smaller size of the dataset as well.

To understand if these differences are statistically sig-
nificant, we study the performances of the best solutions of
the two approaches using the Bayesian classifier comparison
presented in [33]. This analysis allows us to compute the
posterior probability of a classifier being better than the
other and the probability of them being equivalent from a
practical point of view (1% accuracy of difference). Fig-
ure 7 shows the results. The AE approach has the 96.73%
probability to be better than SATZilla in SAT/UNSAT clas-
sification on the test set, and the 3.27% of being practically
equivalent. For the sake of brevity, we omitted the plot
computed on the training set where the AE has a 99.99%
probability of being practically better than the competitor.

The algorithm presented in this work computes features
that preserve the instance satisfiability information in a
better way compared to the existing approaches. Increasing
the compression level marginally affect the performances of
the AE, but it has a consistent impact on the SATZilla fea-
tures. The ability to extend these results to unseen instances
with different structure (originated from different problems)
shows the generalization abilities of SATZilla features.
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(a) AE - Latent Dimension: 8
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Figure 5: Confusion matrices for the test set using different
dimension of the latent space for the AE and SATZilla. TU
and TS are respectively the true UNSAT and the true SAT
label, while PU and PS are the predicted values.
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Figure 6: Confusion matrices for the test set split into two
groups: the first with similar types of instances of the ones
used to train the AE, the second with new types of instances.

5.2. Instance classification

One of the most efficient approaches to solve SAT
instances is using portfolio solvers. These solvers use a
collection of normal SAT solvers and select a specific one



TABLE 1: instance classification accuracy

Training set Test set - Old Test set - New Test set - Full
Instance Type Autoencoder SATZilla Autoencoder SATZilla Autoencoder SATZilla Autoencoder SATZilla

cliquecoloring 73 95 58 76 - - 58 91

count - - - - 50 67 50 64

kclique 86 97 73 80 - - 67 89

kcolor 95 100 67 86 - - 79 93

matching - - - - 86 75 96 87

op - - - - 100 88 100 80

parity - - - - 98 91 98 87

peb 93 100 90 100 - - 96 100

php 80 95 97 100 - - 89 100

ram 100 100 100 100 - - 100 100

stone 97 97 100 97 - - 88 89

subsetcard 50 38 65 63 - - 93 85

tseitin - - - - 75 100 75 97

Average 85.9 93.4 86.1 94.3 82.6 91.8 84.5 93.3

Figure 7: Posterior distribution of the comparison between
AE 40 features and SATZilla full feature set. rope is the
region of practical equivalence.

depending on the instance. SATZilla features are designed
for this purpose, while AE features aim to represent the
whole instance in a limited projected space. In this experi-
ment, we tried to identify the original problem class encoded
as a CNF instance using the classes presented in [24]. We
used the same features extracted in the previous experiment.

Table 1 shows the classification accuracy divided by
class for the AE with 40 latent dimensions and the com-
plete set of SATZilla features. The classes not present on
the set are left empty. We analyse the test set complete,
and divided between old and new instance types. SATZilla
outperforms the AE in this task. We assume this is because
some instances have similar structures but differ for some
statistical features. For example, the AE struggles to dis-
tinguish the graph-based problems (cliquecoloring, kclique,

kcolor). Likely, these problems have similar structures, and
their differences are not well represented in the projected
space. For some instances, the AE has better performances;
for the training set in subset-cardinality, and for the test set
in matching, op, parity. SATZilla features are better for iden-
tifying the type of instance. We believe that these problems
are better represented by the compression approach we use.

6. Conclusions

In this paper, we presented a new automated approach to
extract features from a SAT instance. In our approach, the
features are learned by an unsupervised neural network and
not crafted by a human. To do so, we used a convolutional
autoencoder designed to compress and reconstruct the SAT
instance minimizing the reconstruction error. To minimize
this error, the compressed space (latent projection) has to
preserve the information on the original instance. The deep
neural network exploits a CNF encoding in binary variables
and a symmetries breaking approach we introduced.

The empirical study shows that our approach can pre-
serve the instance information to allow a classifier to predict
the satisfiability of the problem and the type of instance.
Compared to the state of the art, our approach can convey
more information in a limited feature space. The difference
between the two approaches is statistically significant and
relevant from a practitioner point of view. SATZilla features
outperform the presented approach on instance type clas-
sification. However, the results show that the information
conveyed by the AE can help to identify types of instances
in which the statistical features struggles.

Our approach has performance relevant for practitioners.
However, its applicability is still limited by the overhead it
introduces. The encoding increases the space required by
a CNF and, for large instances, the time required to train
the network. This problem is common in the vast majority



of deep learning approaches in SAT solving, such as the
famous NeuroSAT. They allow us to obtain a different point
of view of this well-studied problem.

Our work opens a variety of research questions. A deep
analysis of the latent space can correlate its dimensions to
the artificial features, this might allow us to discover blind
spots in the statistical features currently in use. We plan
to improve the results further by introducing reconstruction
error losses tailor-made for SAT instances. Another aspect
we want to cover is creating a set that comprises both
human-designed and deep learning computed features to
encode different aspects of the SAT instances. Finally we
intend to investigate the possibility of using deep learning
generative models such as variational autoencoders.
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