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Abstract—Adapting a resolution refutation for SAT into a
Max-SAT resolution refutation without increasing considerably
the size of the refutation is an open question. This paper
contributes to this topic by introducing an algorithm, called
substitute generation, able to adapt any resolution refutation to
get a Max-SAT refutation using SAT oracles. This algorithm
is able to efficiently adapt k-stacked diamond patterns, whose
transformation is exponential in the literature.

Index Terms—Max-SAT, Resolution Refutation, Max-SAT Res-
olution

I. INTRODUCTION

Given a Boolean formula in Conjunctive Normal Form
(CNF), the Max-SAT problem consists in determining the
maximum (resp. minimum) number of clauses that it is possi-
ble to satisfy (resp. falsify) by an assignment of the variables,
while the SAT problem consists in verifying the existence of
an assignment which satisfies all the clauses in the formula. A
well-known proof system for Max-SAT is Max-SAT resolution
[21] which extends the resolution rule [27] used in the context
of SAT. Max-SAT resolution plays a prominent role in Max-
SAT as it is the most studied inference rule, both in theory
and practice [1], [8], [19], [21], [23].

In the context of SAT, an unsatisfiable formula can be
refuted with a sequence of resolution steps which leads to the
empty clause. However, while resolution adds the conclusion
to the formula, the Max-SAT resolution rule replaces the
premises by the conclusions. As such, switching from a read-
once resolution refutation, where each clause is used once,
to get a valid Max-SAT transformation deducing the empty
clause (referred to as Max-SAT refutation or simply max-
refutation as in [25]) is possible and well-known [12]. To this
aim, it is sufficient to replace each resolution step by a Max-
SAT resolution step. However, the adaptation of any resolution
refutation to get a valid max-refutation is an established
problem. Bonet et al. state that "it seems difficult to adapt a
classical resolution proof to get a Max-SAT resolution proof,
and it is an open question if this is possible without increasing
substantially the size of the proof" [21]. Recently, the split rule
was used to adapt any resolution refutation into a Max-SAT
refutation, but the proposed adaptation is exponential in the
worst case [25].

This paper attempts to contribute to this question by propos-
ing an algorithm, called substitute generation, which is able
to use any resolution refutation to compute a Max-SAT refu-

tation, i.e. a Max-SAT equivalence-preserving transformation
from an initial unsatisfiable formula to an equivalent one
containing an empty clause. The idea of this algorithm is
to follow the resolution steps of the resolution refutation, to
replace each of these steps by a Max-SAT resolution step,
and to apply it on the current formula. In the case of a non-
read-once resolution refutation, substitutes for missing clauses
consumed by Max-SAT resolution are generated by calling
a SAT oracle. This algorithm shows a remarkable efficiency
on diamond patterns which were shown exponential for the
adaptation in [25] but are linear using the substitute generation
algorithm.

This paper is organized as follows. Section II includes
some necessary definitions and notations. In Section III, we
introduce the substitute generation algorithm to adapt any
resolution refutation into a max-refutation. Section IV includes
a detailed example of algorithm’s execution. In Section V,
we study a particular pattern of resolution refutations whose
adaptation is exponential in [25] and we show that can be
linearly adapted using the substitute generation algorithm.
Finally, we conclude and discuss future work in Section VI

II. PRELIMINARIES
A. Definitions and Notations

Let X be the set of propositional variables. A literal [
is a variable z € X or its negation . A clause c is a
disjunction (or a set) of literals (I; V iz V ... V ;). A formula
in Conjunctive Normal Form (CNF) ¢ is a conjunction (or a
multiset) of clauses ¢ = ¢; A ca A ... A ¢, An assignment
I : X — {true, false} maps each variable to a boolean
value and can be represented as a set of literals. A literal
l is satisfied (resp. falsified) by an assignment I if | € [
(resp. | € I). A clause c is satisfied by an assignment I if
at least one of its literals is satisfied by I, otherwise it is
falsified by I. The empty clause [] contains zero literals and
is always falsified. A clause ¢ opposes a clause ¢’ if ¢ contains
a literal whose negation is in ¢/, i.e. 3l € ¢, | € ¢. A clause
c subsumes a clause ¢ if each literal of ¢ is a literal of ¢/, i.e.
Vi € ¢, I € ¢. We denote var(c) the variables appearing in
the clause c. A CNF formula ¢ is satisfied by an assignment
I, that we call model of ¢, if each clause ¢ € ¢ is satisfied
by I, otherwise it is falsified by I. Solving the Satisfiability
(SAT) problem consists in determining whether there exists an
assignment [ that satisfies a given CNF formula ¢. In the case



where such an assignment exists, we say that ¢ is satisfiable,
otherwise we say that ¢ is unsatisfiable or inconsistent. The
cost of an assignment I, denoted cost(¢), is the number of
clauses falsified by /. The Maximum Satisfiability (Max-SAT)
problem is an optimization extension of SAT which, for a
given CNF formula ¢, consists in determining the maximum
number of clauses that can be satisfied by an assignment
of the variables. Equivalently, it consists in determining the
minimum number of clauses that each assignment must falsify,
ie. mIin costy(9).

B. Resolution Refutations in SAT

To certify that a CNF formula is satisfiable, it is sufficient
to simply exhibit a model of the formula. On the other hand,
to prove that a CNF formula is unsatisfiable, we need to
refute the existence of a model. To this end, we can exhibit a
SAT refutation which consists of a sequence of equivalence-
preserving transformations (in the sense of SAT as defined
below) starting from the formula and ultimately deducing an
empty clause.

Definition 1 (SAT Equivalence). Let ¢ and ¢’ be two CNF
Sformulas. We say that ¢ is equivalent (in the sense of SAT) to ¢’
if for any assignment I : var(¢p) Uvar(¢') — {true, false},
I is a model of ¢ if and only if I is a model of ¢'.

A well-known SAT refutation system is based on an infer-
ence rule for SAT called resolution [27]. Refutations in this
system are referred to as resolution refutations. The resolution
rule, defined below, deduces a clause called resolvent from
two opposed clauses which can be added to the formula while
preserving SAT equivalence. Resolution plays an important
role in the context of Conflict Driven Clause Learning (CDCL)
[22]. Furthermore, it was shown that CDCL can polynomially
simulate general resolution [24]. As showcased in Example 1,
a resolution refutation can be represented as a Directed Acyclic
Graph (DAG) whose nodes are clauses in the refutation either
having two or zero incoming arcs (resp. if they are resolvents
or clauses of the initial formula).

Definition 2 (Resolution [27]). Given two clauses c; = (xVA)
and co = (T V B), the resolution rule is defined as follows:
co=(xVA) co=(xVB)

C3 = (A \% B)

Example 1. We consider the CNF formula ¢ = (T1 V x3) A
(1) A (TT V 22) A (T2 V T3). A resolution refutation of ¢ is

represented as a DAG in Figure 1.

Many restricted classes of resolution refutations have been
studied in the literature namely linear resolution [20], unit
resolution [13], input resolution [13], regular resolution [28],
read-once resolution [14] and tree (or tree-like) resolution [2]
refutations among others. In particular, a resolution refutation
is tree-like if every intermediate clause, i.e. resolvent, is used
at most once in the refutation. It is known that the DPLL
algorithm [9] on unsatisfiable instances corresponds to tree
resolution refutations [11]. Similarly, a resolution refutation is

Fig. 1. Resolution refutation

read-once if each clause is used at most once in the refutation.
Clearly, read-once resolution refutations are also tree-like since
they form a restricted class of tree resolution refutations.
It was shown in [14] that there exists unsatisfiable CNF
formulas which cannot be refuted using read-once resolution.
A resolution is regular if every variable is resolved on at most
once in each branch of the DAG, i.e. path from a clause of the
initial formula to the empty clause. It was shown that CDCL
without restarts can polynomially simulate regular resolution
[7]. Finally, a resolution refutation is semi-tree-like if, for any
branch of the DAG, at most one clause is not read-once (i.e.
used several times as a premise of a resolution step).

Example 2. We consider the refutation of ¢ in Example 1.
The refutation is tree-like and semi-tree-like but it is not read-
once since clause (x1) is used two times as a premise of a
resolution step. The refutation is also regular as every variable
is resolved on at most once in every branch of the DAG in
Figure 1.

C. Max-SAT Proofs

Several complete proof systems for Max-SAT were in-
troduced in the literature, namely the Max-SAT resolution
Calculus in [21] and the Clause Tableau Calculus in [18].
In particular, Max-SAT resolution, one of the first known
complete systems for Max-SAT, was inspired from resolution
[27]. The aim of complete Max-SAT systems is not to refute
the formula per se but to prove the Max-SAT optimum of
a given CNF formula, i.e. the minimum number of falsified
clauses. The formula is thus refuted as many times as its
optimum through equivalence-preserving transformations in
the sense of Max-SAT as defined below.

Definition 3 (Max-SAT Equivalence). Let ¢ and ¢' be two
CNF formulas. We say that ¢ is equivalent (in the sense of
Max-SAT) to ¢' if for any assignment I : var(¢)Uvar(¢') —
{true, false}, we have cost;(¢p) = costr(¢").

The Max-SAT resolution proof system relies on an inference
rule that extends resolution for Max-SAT. Other than the
resolvent clause, this rule, called Max-SAT resolution and
defined below, introduces new clauses referred to as compen-
sation clauses and essential to preserve Max-SAT equivalence.



As a sound and complete rule for Max-SAT [21], Max-SAT
resolution plays an important role in the context of Max-SAT
theory and solving. In particular, it is extensively used and
studied particularly in the context of Branch and Bound algo-
rithms for Max-SAT [1], [8], [15], [19] and more marginally
in the context of SAT-based ones [12], [23]. For a given
CNF formula, it is possible to generate a Max-SAT resolution
proof of its optimum by applying the saturation algorithm
[21] to deduce empty clauses. As showcased in Example 3, a
Max-SAT resolution proof can also be represented as a DAG
whose nodes are multisets of clauses either having two or zero
incoming arcs (resp. if they are clauses produced by a Max-
SAT resolution step or clauses of the initial formula). A Max-
SAT transformation consisting of a sequence of application of
Max-SAT rules and deducing the empty clause from a given
unsatisfiable formula is referred to as Max-SAT refutation or
simply max-refutation [25].

Definition 4 (Max-SAT resolution [5], [16], [21]). Given two
clauses c1 = vV A and co =TV B with A = a1 V ...V ag
and B = by V...V by. The Max-SAT resolution rule is defined
as follows:

cp=xzVA c=TVDB
¢ =AVB
ccp=xVAVDh

cco =V AV b Vby

cce =xVAVLV...Vb_1Vb
CCt41 :T\/B\/ail
cciy2o =TV BVaVay

cciys =TVBVa V.. Vas_1Va,

where ¢, is the resolvent clause and ccq,
pensation clauses.

«eey CCtyg AFE COM-

Remark 1. Unlike resolution, the Max-SAT resolution rule
replaces the premises by the conclusions.

Example 3. We consider the CNF formula from Example 1. A
hand-made Max-SAT resolution refutation of ¢ was proposed
in [21] and is represented in Figure 2.

1V x3 X1
NS
zs3
T VTg\

o V T3
T \/EVE\

TlV$2V$3

1‘71\/582

T3

/

O

Fig. 2. A hand-made Max-SAT resolution proof

Because of the specificity of Max-SAT resolution, which
replaces the premises by the conclusions, it is not easy to adapt
a resolution refutation to obtain a max-refutation. Indeed,
in resolution refutations, several resolution steps can share
the same premise, because the premises are not consumed
after the application of a resolution. On the other hand, the
premises of a Max-SAT resolution step are consumed after
its application. Consequently, the immediate adaptation of a
resolution refutation for Max-SAT is only possible if it is
read-once [12], which is the particular case where each clause
is used at most once as a premise of a resolution step [14].
Adapting any resolution refutation into a max-refutation with-
out substantially increasing its size was only recently shown
possible in [25] and [10] for particular cases of resolution.
The proposed adaptation relies on the split rule, defined below,
which intuitively allows to duplicate a clause by adding one
literal. The split rule has been widely studied in the context
of Max-SAT [6], [10], [17], [25], [26] and can particularly
be used to adapt tree-like regular resolution refutations by
iteratively fixing the non-read-once clauses, as showcased in
Example 4. The adaptation can also be extended to tree-like,
semi-tree-like and unrestricted resolution refutations, but with
the disadvantage that the size of the obtained max-refutation
in the case of unrestricted resolution can be exponential (refer
to Table I).

Definition 5 (Split rule). Given a clause ¢y = (A) where A is
a disjunction of literals and x a variable, the Max-SAT split
rule is defined as follows:

61:(14)
ca=(@xVA c3=(TVA

Remark 2. Like the Max-SAT resolution rule, the split rule
replaces the premise by the conclusions.

Resolution Refutation [ Size of the max-refutation

Read-once Linear [21], [12]
Tree-like regular Linear [25], [10]
Tree-like Linear [25], [10]
Semi-tree-like Linear [25]
Unrestricted Exponential [25]

TABLE I
ADAPTATION OF RESOLUTION REFUTATIONS FOR MAX-SAT

Example 4. We consider the regular tree resolution refutation
in Example 1 represented by the DAG in Figure 1. The clause
(21) is used two times as a premise of a resolution step. The
Jjunction point of the left and right branches leaving from (1)
eliminates variable x3. We apply the split rule on clause (x1)
to get (x1Vx3) and (x1VT3) and we replace (z1) by (x1Vx3)
and (x1 V T3) respectively on the left and right branches.
Finally, we replace all resolutions by Max-SAT resolutions to
obtain the complete max-refutation in Figure 3.
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Fig. 3. Adapting a tree-like (regular) resolution refutation for Max-SAT [25]

As the unrestricted case is exponential, we propose in this
paper an operational algorithm, called substitute generation, to
compute a max-refutation of any unsatisfiable formula using
an associated resolution refutation. We will see in Section V
that there exists some exponential cases for the adaptation in
[25] which are linear using the substitute generation algorithm.

III. THE SUBSTITUTE GENERATION ALGORITHM

Given an unsatisfiable formula ¢ and an associated reso-
lution refutation, we introduce in this section an algorithm,
called substitute generation, able to compute a max-refutation
of ¢ to transform it into a Max-SAT equivalent one containing
an empty clause. To this aim, we follow the resolution steps
of the resolution refutation and, for each resolution step, we
check if the premises are in the current formula. If they are, we
simply apply the Max-SAT resolution rule on these premises
like in the read-once case [12]. If one premise is missing,
we generate a substitute for it using a particular resolution
refutation computed through a SAT oracle [3], [4]. Indeed,
if we need to generate a missing clause ¢, it is possible
to propagate ¢ in the current formula and any resolution
refutation of the obtained formula can be easily adapted to
generate a clause subsuming ¢ and consequently to generate ¢
using the split rule. Hereafter, for a given unsatisfiable CNF
formula ¢ and a resolution refutation P = (ry,79,...,7s) of
¢, we denote M S(P) the projection of P in Max-SAT, i.e.
MS(P) = (mry,mry,...,mrs) where mr; is the application
of the Max-SAT resolution rule on the premise clauses of 7;
for i € {1,..,s}. Clearly, MS(P) is a valid max-refutation
of ¢ only if P is read-once. However, we will prove in
the following theorem that we are able to compute a max-
refutation of ¢ containing every inference steps of M S(P) in
the same order.

Theorem 1. Let ¢ be an unsatisfiable formula and P a
resolution refutation of ¢. There exists a max-refutation of ¢
containing every Max-SAT resolution step of MS(P) in the
same order.

Proof. We set P = (ri1,79,..,7s) and MS(P) =
(mry, mra, ..., mrs). For each resolution step r; (¢ € {1,..,s})
applied on premises c; or co, we apply the Max-SAT resolution

step mr; if both clauses are in the current formula. When a
clause c is not in the current formula, we generate a substitute
for this clause using the following method. Let ¢z be the
formula obtained from ¢ after the propagation of each literal
in {l |1 € c} ¢pe is unsatisfiable because ¢ is. As ¢z is
unsatisfiable, there exists a sequence of resolution steps R
(a resolution refutation) from ¢z to [. If we replace each
clause of this refutation by its version before propagation in
¢, we obtain a sequence of resolution steps from ¢ to a
clause subsuming c. We prove by induction on the number
of variables used as a pivot of a least one resolution step
in R that there exists a sequence of Max-SAT equivalence-
preserving transformations from ¢ to an equivalent containing
c
o If the number of variables used in the resolution refutation
is 0, then R contains 0 resolution steps so there exists
an empty clause [J € ¢z and consequently there exists a
clause ¢; € ¢ subsuming c. By the equivalence ¢, = (¢;V
1) A(cs VI VI A A(cs VI V... Vg1 VL) Ac, we obtain
a Max-SAT equivalent of ¢ containing ¢ with a finite
sequence of split steps. If there is only one variable x in
the resolution refutation, then R contains one resolution
step on (z) and (T) deducing the empty clause O and
it is possible to generate c¢ by applying one Max-SAT
resolution step on the same clauses and then applying a
finite sequence of split steps starting from [J to get an
equivalent containing c.
e Let £ > 1, suppose that the property is true for each
k' < k and let R be a resolution refutation on k variables.

- If R is read-once, we replace each resolution step
by a Max-SAT resolution step and we obtain a finite
transformation generating a clause cs subsuming c.
Then, we apply a finite sequence of split steps
starting from cs to get an equivalent containing c.

— If R is not read-once, we apply the same method
as in the read-once case but with one difference.
As R is not read-once, it is possible that we have
to apply a Max-SAT resolution step on a missing
premise. By induction, we generate a substitute for
this premise after propagating its opposite literals.
Each recursion uses a new resolution refutation with
at least one less variable and therefore each substitute
generation is finite (the number of variables is strictly
decreasing). We have at most 2|R| substitutes to
generate so the complete transformation to get a
clause ¢; € ¢ subsuming c is finite. Then, we apply a
finite sequence of split steps to get c and we obtain a
complete transformation generating ¢ which is finite.

Consequently, given a premise c¢ of a resolution step mr;,
we are able to generate a substitute for this clause without
consuming the other premise. We are hence sure to iteratively
apply every step of MS(P) and the complete computed
transformation is a finite max-refutation of ¢ containing each
step of M S(P) in the same order. [ |

The procedure given in the proof of Theorem 1 can be



described under the form of an algorithm, which we refer to
as substitute generation and which is described below (see
Algorithm 1). It uses a sub-procedure, described in Algorithm
2, to generate a substitute for any missing clause. We use the
following notations:

« substitute_generation_algorithm(¢, P) denotes the appli-
cation of the substitute generation algorithm (Algorithm
1) on the formula ¢ and on the sequence of resolution
steps P.

« generate_substitute(c, ¢) launches the sub-procedure (Al-
gorithm 2) which generates a substitute for clause ¢ from
the current formula ¢.

o T.T’ denotes the concatenation of the max-refutations 7'
and T’.

o apply_Max-SAT _resolution(cy, co2, ¢) applies the Max-
SAT resolution rule on clauses ¢; and ¢, which are in
the formula ¢ and returns the transformed formula.

o deduce_by_split(c, ¢/, ¢) uses several split steps on clause
¢’ in the current formula ¢ to deduce clause ¢ and returns
the transformed formula.

« propagate(¢, ¢) propagates the literals in {l | [ € ¢} and
returns the simplified formula.

« compute_resolution_refutation(¢) computes and returns a
resolution refutation on the unsatisfiable formula ¢ using
a SAT oracle

« cancel_propagation(¢, ¢, P) cancels the propagation of
literals {/ | I € ¢} in the current formula ¢ and modifies
the resolution refutation (which becomes a sequence
of resolution steps not necessarily deducing the empty
clause).

o find_subsuming_clause(c, ¢) returns a clause ¢’ € ¢
which subsumes c.

Algorithm 1 Substitute Generation Algorithm

Require: unsatisfiable CNF formula ¢, resolution refutation
P of ¢
Ensure: (¢',T) where T is a max-refutation of ¢ and ¢’ the
result of application of T on ¢
1: T+ 0
2: for all resolution step of P on clauses ¢; and ¢y do
if ¢1 ¢ ¢ then
(¢,T") < generate_substitute(cy, ¢)
T+ T.T
end if
if co ¢ ¢ then
(¢, T") + generate_substitute(ca, ¢)
T+ T.1T'
10:  end if
11: (¢, T") < apply_Max-SAT_resolution(cy, ¢a, ¢)
122 T+ TT
13: end for
14: return (¢, T)

[95]

R AN

Algorithm 2 Sub-procedure: generate_substitute

Require: clause ¢, unsatisfiable CNF formula ¢
Ensure: (¢, 7) where T is a Max-SAT equivalence-
preserving transformation from ¢ to ¢’ containing ¢

1: if 3¢’ € ¢, ¢ subsumes ¢ then
2: ¢, T + deduce_by_split(c, ¢/, ¢)
3:  return (¢, T)
4: end if

5: ¢ < propagate(c, ¢)

6: P < compute_resolution_refutation(¢)

7: (¢, P) « cancel_propagation(c, ¢, P)

8: (¢, T) + substitute_generation_algorithm(¢, P)

9: if ¢ ¢ ¢ then

10: ¢ < find_subsuming_clause(c, ¢)

11: ¢, T < deduce_by_split(c, ¢/, ¢)

122 T+« TT

13: end if

14: return (¢, T)

In the next section, we apply the substitute generation
algorithm on a non-read-once resolution refutation.

IV. ILLUSTRATION EXAMPLE

In this section, we use the substitute generation algorithm to
transform the formula ¢ = (Z1Va3)A(x1)AN(TTVZ2)A(T2VT3)
using the associated resolution refutation in Figure 1.

Notice that this resolution refutation is ambiguous. Indeed,
resolution steps are partially ordered while we need a full or-
der. To apply the substitute generation algorithm, we arbitrarily
choose a full order presented in Table II. The application of
the substitute generation algorithm is summarized in Table II
and in Figure 6 and we provide further details hereafter.

A. First resolution step

The first resolution step is on clauses (Z7 V x3) and (x1)
which are in the current formula. We can therefore apply the
Max-SAT resolution rule on these clauses and replace them
by clauses (z3) and (x7 V Z3). The current formula is now
¢ =(TTVa) ATz VTI3) A (x3) A (21 VT3).

B. Second resolution step

The second resolution step is on clauses (z1) and (ZT1Vx3).

1) Generation of substitute for (x1): We must generate a
substitute for (x1) because it is not in the current formula. To
this aim, we propagate 1, we compute a resolution refutation
on the obtained formula and we cancel the propagation to get
a sequence of resolution steps generating clause (1) (Figure
4). Then, we replace each resolution step by a Max-SAT
resolution and we apply it to the current formula.

Remark 3. We could have obtained a non-read-once resolu-
tion refutation in which case we would have to generate other
substitutes for the current refutation.

Remark 4. We could have obtained a transformation deduc-
ing a clause subsuming the substitute in which case we would
have to apply the split rule after the transformation to obtain
the substitute.



Step Initial Resolution Substitute Generation Algorithm Current Formula

1 (T Vx3) A (z1) = (x3) (@1 V x3) A(z1) = (x3) A (21 VT3) (TTVa2) AN(T2VT3) A (23) A (21 VT3)
2 (1) A (ZTT V z2) — (22) Substitute generation for clause (x1) (Figure 4)

(z3) A (21 VT3) = (1) A (T V 23)

Substitute for (1) has been generated

(:131) A (HV wg) — (22) A (1’1 \/@) (@Vﬁ) A (Tlv :Eg) \% (wg) A (Il \/TQ)
3 (z2) A (T2 VT3) — (T3) (z2) A (T2 VT3) — (T3) A (22 V 23) (TTVa3) A(z1 VT2) A (T3) A (22 V 23)
4 (z3) A (x3) = O Substitute generation for clause (z3) (Figure 5)

(1 VZ3) A (TTV x3) — (Tz V 23) A (%1 V T3 V T3)
AETV 22 V 73)
(T2 Va3) A (z2 Vx3) — (z3)
Substitute for (z3) has been generated
(z3) A (T3) = O (z1 VT VI3) A (TT Ve Vo) AO

TABLE I
EXECUTION OF THE SUBSTITUTE GENERATION ALGORITHM

2 VT3

3 73 Propagation of z1 canceled 3
1
NS NS
g 1

Fig. 4. Sequence of resolution steps to generate substitute for (z1)

1V Ty T T2 x1V ZTo 1V X3 T2V T3

\ - / Propagation of 3 canceled \ /
x

T V X3

2\D \x3

Fig. 5. Sequence of resolution steps to generate substitute for (x3)

1 Vs T 1V xo To VT3
~r "
T3 ———=3 11 —
T VT3 TV T3 \
— Z2
T3 V a3 T VI3 —
m1v5vN -
— 3
T1 VoV I3 T3 T3V T3
a

Fig. 6. Adaptation of a resolution refutation for Max-SAT using the substitute generation algorithm



2) First resolution step (second level): The first and unique
resolution step to obtain the substitute is on clauses (z3) and
(z1 V T3), which are in the current formula. We can therefore
apply the Max-SAT resolution rule on these clauses and
replace them by clauses (1) and (71 V x3). The substitute for
clause (z1) has now been generated and the current formula
is now ¢ = (T V 22) A (T2 V T3) A (21) A (T1 V 23).

3) Back-up at level I and end of the second resolution step:
The two clauses (z1) and (Z1 V x2) are now in the current
formula. We can therefore apply the Max-SAT resolution on
these clauses and replace them by clauses (z3) and (21 V T3).
The current formula is now ¢ = (T2 VZ3) A (TTVa3) V (22) A
(.I 1V TQ)

C. Third resolution step

The third resolution step is on clauses (z2) and (T3 V T3),
which are in the current formula. We can therefore apply the
Max-SAT resolution rule on these clauses and replace them
by clauses (Z3) and (22 V x3). The current formula is now
¢ =(TrVasz)A(x1 VIz) A (T3) A (22 V 3).

D. Fourth resolution step

The fourth resolution step is on clauses (z3) and (Z3).

1) Generation of substitute for (x3): We must generate a
substitute for (x3) because it is not in the current formula. To
this aim, we propagate 3, we compute a resolution refutation
on the obtained formula and we cancel the propagation to get
a sequence of resolution steps generating clause (x3) (Figure
5). Then, we replace each resolution step by a Max-SAT
resolution and we apply it to the current formula.

2) First resolution step (second level): The first resolution
step to obtain the substitute is on clauses (z1 V Zz) and (Z71 V
x3), which are in the current formula. We can therefore apply
the Max-SAT resolution rule on these clauses and replace them
by clauses (T3 V x3), (1 VT2 VT3) and (1 V 22 V x3). The
current formula is now ¢ = (T3) A (z2 V x3) A (T2 V x3) A
(x1 VI3 VT3) A (T V 22 V 23).

3) Second resolution step (second level): The second reso-
lution step to obtain the substitute is on clauses (T2 V x3)
and (2 V x3), which are in the current formula. We can
therefore apply the Max-SAT resolution rule on these clauses
and replace them by the clause (x3). The substitute for clause
(x3) has now been generated and the current formula is now
¢ = (Tg) A (ZEl \/TQVE) A (1‘71\/.%2 \/1‘3) AN (1‘3)

4) Back-up at level 1 and end of the fourth resolution step:
The two clauses (z3) and (T3) are now in the current formula.
We can therefore apply Max-SAT resolution on these clauses
and replace them by the empty clause L. The current formula
isnow ¢ = (21 VT2 VT3) A (TT V22 V g) AL

E. End of the execution and summary

The execution of the substitute generation algorithm is over.
It allowed to use the resolution refutation in Figure 1 to
transform the formula ¢ = (T7Va3)A(z1)A(T1VE2)A(T2VT3)
into a Max-SAT-equivalent formula ¢’ = (21 V T3 V T3) A
(1 V x2 V x3) A O containing an empty clause. The full

transformation is summarized in Figure 6. The green area
highlights the generation of a substitute for (1) while the
blue one emphasises the generation of a substitute for (x3).

V. SUBSTITUTION AND DIAMOND PATTERNS

In this section, we study a set of resolution refutations,
called k-stacked diamond patterns, whose adaptation is ex-
ponential in [25] but linear using the substitute generation
algorithm.

Definition 6 (Diamond pattern). Let A be a disjunction of
literals and let © ¢ var(A) and y ¢ var(A) two distinct
variables. We define the diamond pattern (x,y,A) as the
sequence of resolutions represented in Figure 7.

TVy zVA TVY

~ . N\

yV A gV A

A
Fig. 7. Diamond pattern (z,y, A)

O

Fig. 8. Simplified representation of a diamond pattern

We can represent this pattern by a diamond as in Figure
8. Notice that in particular, the diamond pattern (z,y, ) is
a resolution refutation. Now, imagine that the topmost clause
of (x,y,0) is derived through another diamond pattern. We
iterate the same reasoning to define a k-stacked diamonds
pattern as follows:

Definition 7 (k-stacked diamond pattern). Let k > 1 be a
natural number and let x; and y; where 1 < ¢ < k be
distinct variables. A k-stacked diamond pattern is formed by
k diamond patterns (x;,y;, A;) where 1 < i < k such that
Ay =0and A; = (x1 V-V x;_1) for 1 < i < k. Each
diamond (x;,y;, A;) is stacked on top of (vi—1,Yi—1,Ai—1)
such that the last conclusion of the former is the topmost
central premise of the latter.

A k-stacked diamond pattern is represented as a stack of
diamonds as shown in Figure 9 for £ = 3. Clearly, k-
stacked diamond are resolution refutations as they deduce

Fig. 9. Simplified representation of a 3-stacked diamond pattern



the empty clause [J. In particular, when k£ > 2, the size
of a k-stacked diamond P is |P| = 3k while the size of
the computed max-refutation by the adaptation in [25] is at
least 2¥~1 which is exponential in the size of P. However,
the substitute generation algorithm is able to compute a max-
refutation of size 5k < 2|P|, which is linear in the size of P.
Indeed, it is able to adapt any diamond pattern for Max-SAT
using at most 5 Max-SAT resolution steps, as we can see in
Figure 10. Consequently, the substitute generation algorithm
will iteratively adapt each diamond pattern using 5 Max-SAT
resolution steps and the size of the full adaptation is 5k Max-
SAT resolution steps and is therefore linear.

TVy zVA

—

Fig. 10. Adaptation of the diamond pattern (x,y, A) using the substitute
generation algorithm

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an algorithm, called substitute
generation, to compute a max-refutation of a given formula
using an associated resolution refutation. This max-refutation
allows to transform any inconsistent formula into a Max-
SAT equivalent formula containing an empty clause. We also
showed that k-stacked diamond patterns, whose adaptation is
exponential in [25], can be linearly adapted using the substitute
generation algorithm.

Future work include an empirical comparison between the
substitute generation algorithm and the adaptation proposed in
[25]. It could also be interesting to merge these approaches,
by applying the existing adaptation on linear cases and the
proposed algorithm in the exponential case. As the existing
adaptation has been recently applied to generate certificates
for the Max-SAT problem [26], the substitute generation
algorithm can also be used for the same application. Finally,
we can see both in the example of Section IV summarized
in Figure 6 and in the diamond pattern in Figure 10 a kind
of backtrack to generate a substitute, i.e. the algorithm may
cancel the previous inference steps to generate a substitute.
Consequently, it would be interesting to study a variation of
the substitute generation algorithm which is not applied on
the whole resolution refutation, but just on a branch in the
refutation.
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