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Abstract—In this paper, we are interested in proof systems
for Max-SAT and particularly in the construction of Max-
SAT equivalence-preserving transformations to infer information
from a given formula. To this end, we introduce the notion of
explainability and we provide a characterization for explainable
clauses and formulas. Furthermore, we introduce a new proof
system, called Explanation Calculus (ExC) and composed of
two rules: symmetric cut and expansion. We study the relation
between ExC and several existing proof systems. Then, we
introduce a new algorithm, called explanation algorithm, able
to construct an explanation in ExC for any clause or refute its
explainability and we extend it for formula explanations. Finally,
we use our results on explainability to provide proofs for the Max-
SAT problem with a new bound on the number of inference steps
in the proof, improving the bound obtained with the Max-SAT
resolution calculus.

Index Terms—Max-SAT, Proof Systems, Inference

I. INTRODUCTION

Given a Boolean formula in Conjunctive Normal Form
(CNF), the Max-SAT problem consists in determining the
maximum number of clauses that it is possible to satisfy by
an assignment of the variables. A well-known proof system
for Max-SAT is Max-SAT resolution [8], [9], [17] which is an
adaptation of the resolution rule [27] defined in the context of
the SAT problem. The Max-SAT resolution calculus is sound
and complete for the Max-SAT problem. Indeed, Max-SAT
resolution can transform, through successive applications, any
CNF formula φ to a satisfiable formula φ′ and a multiset of
empty clauses whose size is the optimum of φ. Lately, the
Max-SAT resolution system has been extended using the split
rule to improve its theoretical efficiency [20], [25], [7].

This paper also focuses on proof systems for Max-SAT.
We introduce the notion and characterization of explainable
clauses and formulas, i.e. clauses and formulas which can
be deduced from a given formula following a finite sequence
of transformations preserving Max-SAT equivalence. As Max-
SAT resolution is not inferentially complete, we define a new
proof system, called Explanation Calculus (ExC), composed
of the symmetric cut rule and a new rule which we refer to
as expansion. We also study the relation between ExC and
other relative proof systems. Then, using the characterization
of explainable clauses, we propose an algorithm, called the
explanation algorithm, able to build an explanation using ExC
rules for a given clause or refute its explainability. We prove
that this can be achieved in O(2n) inference steps, where
n is the number of variables in the formula. Then, using

the characterization of explainable formulas, we extend the
explanation algorithm to explain any formula or refute its
explainability with a proof size of at most O(m×2n) inference
steps, where m is the number of clauses in the formula. We
also use it to construct proofs for the (plain) Max-SAT problem
with the same upper bound. Consequently, we obtain a better
upper bound for proof sizes than the current known result
using the Max-SAT resolution calculus. Finally, we explain
how to adapt this result to weighted partial formulas.

This paper is organized as follows. Section II includes
some necessary definitions and notations and a brief overview
of proof systems for Max-SAT. In Section III, the notion
of explainable clauses and formulas is introduced and a
characterization for such clauses and formulas is established.
In Section IV, we introduce the Explanation Calculus (ExC)
and we study its relation with other proof systems. In Section
V, we introduce the explanation algorithm, able to construct
an explanation for any given clause or refute its existence
and we naturally extend it to explain formulas. In Section
VI, we use our results on explainability to construct proofs
for the Max-SAT problem and then we extend our results to
weighted partial formulas in Section VII. Finally, we conclude
and discuss future work in Section VIII.

II. PRELIMINARIES

A. Definitions and Notations

Let X be the set of propositional variables and n = |X|
the number of variables. A literal l is a variable x ∈ X or its
negation x. A clause c is a disjunction of literals (l1 ∨ l2 ∨
· · ·∨lk). A formula in Conjunctive Normal Form (CNF) φ is a
conjunction of clauses φ = c1 ∧ c2 ∧ · · · ∧ cm. An assignment
of variables I : X → {true, false} maps each variable to
a boolean value. A literal l is satisfied (resp. falsified) by an
assignment I if l ∈ I (resp. l ∈ I). A clause c is satisfied by
an assignment I if at least one of its literals is satisfied by I ,
otherwise it is falsified by I . The empty clause � contains zero
literals and is always falsified. A clause c subsumes a clause
c′ if each literal of c is a literal of c′, i.e. ∀l ∈ c, l ∈ c′.
A clause c opposes a clause c′ if c contains a literal whose
negation is in c′, i.e. ∃l ∈ c, l ∈ c′. We denote var(c) and
var(φ) the variables appearing respectively in the clause c and
the formula φ. A CNF formula φ is satisfied by an assignment
I , that we call model of φ, if each clause c ∈ φ is satisfied by
I , otherwise it is falsified by I . The cost of an assignment I ,
denoted costI(φ), is the number of clauses falsified by I . For a
given CNF formula φ, solving the Max-SAT problem consists



in determining the minimum number of falsified clauses in φ,
which is the optimum of φ denoted opt(φ) = min

I
costI(φ).

We define the equivalence in the sense of Max-SAT as follows:

Definition 1 (Max-SAT Equivalence). We say that two CNF
formulas φ and φ′ are Max-SAT-equivalent and we denote
φ ≡ φ′ if, for any assignment I : var(φ) ∪ var(φ′) →
{true, false}, we have costI(φ) = costI(φ

′).

B. Proof Systems for Max-SAT

In the last fifteen years, the study of inference rules for
Max-SAT has led to major results in Max-SAT theory and
solving. In particular, one of the first proof systems for Max-
SAT is based on an inference rule called Max-SAT resolution
[8], [9], [17], which is an extension of the resolution rule [27]
introduced in the context of the satisfiability problem. Max-
SAT resolution was shown to be sound for Max-SAT, i.e. it
preserves Max-SAT equivalence. Furthermore, it is complete
for the Max-SAT problem, i.e. it is sufficient to prove the
optimum cost of a given CNF formula. Indeed, using Max-
SAT resolution, we can exhibit a sequence of transformations
from a given formula φ to an equivalent formula containing a
satisfiable sub-formula and a multiset of empty clauses whose
size is equal to the optimum of φ.

Definition 2 (Max-SAT resolution rule [8], [9], [17]). Given
two clauses c1 = x∨a1∨· · ·∨as and c2 = x∨b1∨· · ·∨bt with
A = a1∨· · ·∨as and B = b1∨· · ·∨bt, the Max-SAT resolution
rule replaces c1 and c2 by a set of new clauses where c3 is the
resolvent clause and cc1, . . . , cct+s are compensation clauses:

c1 = x ∨A c2 = x ∨B
c3 = A ∨B

cc1 = x ∨A ∨ b1
cc2 = x ∨A ∨ b1 ∨ b2

. . .
cct = x ∨A ∨ b1 ∨ · · · ∨ bt−1 ∨ bt

cct+1 = x ∨B ∨ a1
cct+2 = x ∨B ∨ a1 ∨ a2

. . .
cct+s = x ∨B ∨ a1 ∨ · · · ∨ as−1 ∨ as

To construct complete proofs for the Max-SAT problem
using Max-SAT resolution, it is possible to use the saturation
algorithm [9]. The idea of this algorithm is to iteratively
choose a variable and apply Max-SAT resolution on every
pair of clauses c1 = x ∨ A and c2 = x ∨ B until they are all
opposed on at least one variable which is different from x. It
was proved that the saturation algorithms allows to generate
proofs for the Max-SAT problem in less than n × m × 2n

inference steps. The saturation algorithm is mainly interesting
for its theoretical result but it is also marginally used in Max-
SAT solvers [4].

Example 1. Given the formula φ = (x1 ∨ x3) ∧ (x1) ∧ (x1 ∨
x2)∧ (x2 ∨x3), the application of the saturation algorithm in
the lexicographic order proves that φ ≡ �∧ (x1 ∨ x2 ∨ x3)∧
(x1 ∨ x2 ∨ x3) and is represented in Figure 1.

x1 ∨ x3 x1 x1 ∨ x2 x2 ∨ x3

x3
x1 ∨ x3

x2 ∨ x3
x1 ∨ x2 ∨ x3
x1 ∨ x2 ∨ x3 x3

�

Fig. 1. Max-SAT resolution proof

Since its introduction, Max-SAT resolution has played a
major role in Max-SAT theory and solving [6]. In particular,
it is extensively used in the context of Branch and Bound
algorithms (e.g. AHMAXSAT [2], MiniMaxSAT [13], AK-
MAXSAT [16], MAXSATZ [23], [21]) to transform incon-
sistent cores, mainly in the form of patterns [1], [18], [21].
Furthermore, the power of Max-SAT resolution and its impact
on unit propagation were also extensively studied in this
context [3], [10], [11]. Max-SAT resolution is also used in
Core-Guided algorithms to transform cores returned by SAT
solvers [24], [14]. In recent work, Max-SAT resolution was
augmented with other rules such as the split rule defined
below or the extension rule [19]. It was shown that the
addition of such rules to Max-SAT resolution can improve
its efficiency to generate shorter proofs for the Pigeonhole
problem [20], [19] or allow, given a resolution refutation for
SAT, to generate a Max-SAT refutation [25], [12], [26]. We
must also mention that other Max-SAT proof systems exist
like the Clause Tableau Calculus [22].

Definition 3 (Split). Given a clause c1 = (A) where A is a
disjunction of literals and a variable x, the split rule replaces
c1 by two clauses c2 = (x ∨A) and c3 = (x ∨A):

c1 = (A)
c2 = (x ∨A) c3 = (x ∨A)

In our work, we will mainly use a new proof system com-
posed of the symmetric cut (also called the Almost Common
Clause rule [5]) and the expansion rule (defined in Section
V). Since these rules are strongly related to the split rule and
Max-SAT resolution, we will mainly establish results for this
proof system and provide insights for other proof systems
using Max-SAT resolution instead of symmetric cut and/or
using split instead of expansion. The symmetric cut that we
define bellow is a special case of the Max-SAT resolution rule.

Definition 4 (Symmetric cut). Given two clauses c1 = x ∨A
and c2 = x ∨ A where A is a disjunction of literals, the
symmetric cut rule replaces c1 and c2 by c3 = (A):

c1 = (x ∨A) c2 = (x ∨A)
c3 = (A)



III. ON THE EXPLAINABILITY OF CLAUSES AND
FORMULAS

In this section, we define the notion of explainable clauses
and formulas. A clause is explainable if there exists a sequence
of equivalence-preserving transformations, called explanation,
that ensures the deduction of the given clause from an ini-
tial CNF formula. We start by giving the formal definition
of an explainable clause. Then, we present two results in
Propositions 1 and 2. The first establishes that subsumed
clauses are explainable while the second stipulates that clauses
which oppose every clause in the formula are unexplainable.
Furthermore, we establish a characterization of explainable
clauses in Theorem 1, a characterization that we will use later
to propose a construction algorithm for such clauses. Finally,
we generalize the notion of explainability on formulas and we
characterize such formulas in Theorem 2.

Definition 5 (Explainable clause). Let φ be a CNF formula
and c be a non-tautological clause, we say that c is explainable
in φ if there exists a CNF formula φ′ such that φ ≡ c ∧ φ′
otherwise we say that c is unexplainable in φ.

Intuitively, explainable clauses represent information that
can be deduced from a formula. If we exhibit an equivalence-
preserving transformation T from φ to c ∧ φ′, we say that T
is an explanation of c in φ. Such a transformation represents
the proof that the wanted information, i.e. a clause, can be
inferred soundly from the formula. Furthermore, note that, for
a CNF formula φ, any clause c ∈ φ is trivially explainable.

Definition 6 (Clause explanation). Let φ be a CNF formula
and c be an explainable clause in φ. An explanation of c in φ
is a Max-SAT equivalence-preserving transformation from φ
to c ∧ φ′ where φ′ is a CNF formula.

Now, we characterize explainable clauses in the following
propositions and theorem in order to provide, in Section V,
a method to construct explanations for such clauses or to
refute their explainability. Proposition 1 ensures that subsumed
clauses are explainable while Proposition 2 ensures that a
clause opposed to each clause in the formula is unexplainable.
These two simple results will pave the way for the characteri-
zation of explainable clauses in Theorem 1 which will be used
to construct clause explanations in Section V.

Proposition 1. Let φ be a CNF formula and c be a non-
tautological clause. If ∃c′ ∈ φ such that c′ subsumes c then c
is explainable in φ.

Proof. We suppose that ∃c′ ∈ φ, c′ subsumes c. Therefore,
we have c = c′ ∨ A where A = a1 ∨ a2 ∨ · · · ∨ an. Let
φ2 =

∧
1≤i≤n(c′∨(

∨
1≤j<i aj)∨ai). We prove that c′ ≡ φ2∧c.

For any assignment I , we have two possible cases:
• Either I satisfies c′ in which case there exists a literal
l ∈ c′ which is satisfied by I . Since this literal is in every
clause of φ2 ∧ c, we have costI(φ2 ∧ c) = 0 = costI(c

′).
• Or, I falsifies c′ in which case, one and exactly one clause

of φ2 ∧ c is falsified. Indeed, we consider the assignment

of variables var(a1), ..., var(an) in I . By construction,
exactly one clause of φ2∧ c contains a clause opposed to
each assignment of variables var(a1), ..., var(an) in I .
This clause is falsified by I while the others are satisfied.
Therefore, we have costI(φ2 ∧ c) = 1 = costI(c

′).
Consequently, we have φ ≡ (φ\{c′})∧c′ ≡ (φ\{c′})∧φ2∧c ≡
φ′ ∧ c where φ′ = (φ \ {c′}) ∧ φ2. We conclude that c is
explainable in φ. �

Proposition 2. Let φ be a CNF formula and c be a non-
tautological clause. If ∀c′ ∈ φ, c′ opposes c, then c is
unexplainable in φ.

Proof. We suppose that ∀c′ ∈ φ, c′ opposes c. We consider
the assignment I = {l | l ∈ c}. Clearly, if every clause
in φ opposes c, I is a model of φ. Consequently, we have
costI(φ) = 0. And, by definition of I , c is falsified by I .
Therefore, we have costI(c) = 1 and for each formula φ′,
costI(c∧φ′) > costI(φ). We conclude that c is unexplainable
in φ. �

Theorem 1. Let φ be a CNF formula and c be a non-
tautological clause. c is explainable in φ if and only if ∃c′ ∈ φ
such that c′ doesn’t oppose c and ∀x /∈ var(c), c∨x and c∨x
are both explainable in φ.

Proof. First, suppose that c is explainable in φ, i.e. there exists
a CNF formula φ′ such that φ ≡ φ′ ∧ c. By contraposition of
Proposition 2, ∃c′ ∈ φ such that c′ doesn’t oppose c. Now, let
x /∈ var(c) and I be an assignment. As costI(c) = costI((c∨
x) ∧ (c ∨ x)) [20], we have, φ′ ∧ c ≡ φ′ ∧ (c ∨ x) ∧ (c ∨ x)
and we conclude that ∀x /∈ var(c), c ∨ x and c ∨ x are both
explainable in φ.

Conversely, suppose that ∃c′ ∈ φ, c′ doesn’t oppose c and
that ∀x /∈ var(c), c ∨ x and c ∨ x are explainable in φ. We
have two possible cases:
• Either @x /∈ var(c), i.e. c contains all variables of φ.

Also, we know that c′ doesn’t oppose c and, therefore, c′

subsumes c. Finally, we deduce that c is explainable in
φ by Proposition 1.

• Else, we consider the CNF formula M such that ∀
assignment I , the clause (

∨
l∈I l) is duplicated costI(φ)

times in M . By definition of M , for any assignment
I , we have costI(φ) = costI(M) and thus φ ≡ M .
Intuitively, M is the maximal formula equivalent to φ.
Similarly, we consider the maximal equivalent formulas
for (c ∨ x) and (c ∨ x). We denote M1 (resp. M2)
the CNF formula such that ∀ assignment I , the clause
(
∨
l∈I l) is duplicated costI(c ∨ x) (resp. costI(c ∨ x))

times in M1 (resp. M2). By definition of M1 (resp. M2),
we have M1 ≡ (c ∨ x) (resp. M2 ≡ (c ∨ x)). Since
(c ∨ x) (resp. (c ∨ x)) is explainable in φ, we have
M1 ⊆ M (resp. M2 ⊆ M ). Furthermore, as (c ∨ x)
opposes (c ∨ x), we have M1 ∩ M2 = ∅. We deduce
that φ ≡ M ≡ (M \ (M1 ∪ M2)) ∧ M1 ∧ M2 ≡
(M \(M1∪M2))∧(c∨x)∧(c∨x) ≡ (M \(M1∪M2))∧c.
Therefore, c is explainable in φ.



We conclude that c is explainable in φ if and only if ∃c′ ∈
φ, c′ doesn’t oppose c and ∀x /∈ var(c), c ∨ x and c ∨ x are
both explainable in φ. �

Next, we extend the notion of explainability to formulas.
Notice that explaining a CNF formula φ2 in a formula φ1
can be seen as inferring φ2 from φ1. Consequently, two CNF
formulas φ1 and φ2 are Max-SAT-equivalent if both formulas
are mutually explainable.

Definition 7 (Explainable formula). Let φ1 and φ2 be two
CNF formulas, we say that φ2 is explainable in φ1 if there
exists a CNF formula φ′ such that φ1 ≡ φ2 ∧ φ′, otherwise
we say that φ2 is unexplainable in φ1.

Definition 8 (Formula explanation). Let φ1 and φ2 be two
CNF formulas such that φ2 is explainable in φ1. An ex-
planation of φ2 in φ1 is a Max-SAT equivalence-preserving
transformation from φ1 to φ2∧φ′ where φ′ is a CNF formula.

Intuitively, explaining a formula seems to be more difficult
than explaining a clause. Indeed, if two clauses c1 and c2 are
both explainable in a CNF formula, this does not ensure that
c1 ∧ c2 is explainable too. However, we prove the following
result to ensure that explaining a formula can be achieved by
iteratively explaining each of its clauses.

Theorem 2. Let φ1 and φ2 = c1 ∧ ... ∧ cm be two CNF
formulas, φ2 is explainable in φ1 if and only if there exists a
sequence of CNF formulas 〈φ′1, ..., φ′m〉 such that:
• There exists an explanation of c1 from φ1 to φ′1.
• ∀i ∈ {2, ...,m}, there exists an explanation of ci from

(φ′i−1\{ci−1}) to φ′i.

Proof. Assume that φ2 is explainable in φ1. We set φ′1 = φ2
and ∀i ∈ {2, ...,m}, φ′i = φ′i−1\{ci−1}.

Conversely, by transitivity of ≡, we have φ1 ≡ φ2 ∧
(φ′m\{cm}) and we conclude that φ2 is explainable in φ1. �

As shown in Theorem 2, any method able to explain
clauses can also be used to explain formulas. In Section
V, we will propose an algorithm based on Theorem 1 to
construct explanations. Then, this algorithm will be easily
extended to formulas using the result established in Theorem
2. Inferential completeness [20] is strongly related to the
notion of explanation. Naturally, a proof system is inferentially
complete if it is possible to provide an explanation using its
rules for every explainable clause. As stated in Proposition 3
below, Max-SAT resolution is not inferentially complete. We
will therefore use a new proof system for explanation, called
the Explanation Calculus (ExC), that we will define in the next
section.

Proposition 3. [20] Max-SAT resolution is not inferentially
complete.

IV. THE EXPLANATION CALCULUS

To achieve clause and formula explanation, we introduce, in
this section, a new system called Explanation Calculus (ExC).
This system is composed of two rules: the symmetric cut

rule and the expansion rule. The expansion rule is defined
below and can be considered as a Max-SAT adaptation of the
weakening rule used in the context of SAT which replaces a
clause by another subsuming it. Clearly, the weakening rule
is not sound for Max-SAT and, in order to weaken a clause,
it is necessary to introduce compensation clauses (similarly
to Max-SAT resolution) to preserve Max-SAT equivalence.
Expansion is also closely related to the split rule as we will
show in Proposition 5. The motivation behind introducing
the expansion rule is the result established in Proposition 1.
Indeed, in its proof, we implicitly use expansion in order to
prove the explainability of subsumed clauses. This result will
be later explicitly stated in Proposition 10 in which we prove
that the expansion rule suffices to build an explanation for
subsumed clauses.

Definition 9 (Expansion). Given a clause c = (A) where A
is a disjunction of literals and B = b1∨ ...∨bk, the expansion
rule applied on c and B replaces c by a set of new clauses:

c1 = (A)

cc1 = (A ∨ b1)

cc2 = (A ∨ b1 ∨ b2)
...

cck = (A ∨ b1 ∨ ... ∨ bk−1 ∨ bk)
c2 = (A ∨B)

We denote k-expansion an application of the expansion rule
on a clause c and a disjunction of literals B such that |B| = k.
Now, we will study the relation between the expansion rule
and the split rule in Propositions 4 and 5. Then, we will prove
the soundness of the expansion rule in Proposition 6.

Proposition 4. Each split step can be simulated using one
1-expansion step.

Proof. If we consider one split step (A) ` (x∨A)∧ (x∨A).
We just have to set B = x and the application of the expansion
rule on clause (A) and literals B simulates the application of
the split rule on clause (A) and on variable x. �

Proposition 5. Each k-expansion can be simulated using k
split steps.

Proof. Let (A) ` (A∨b1)∧...∧(A∨b1∨...∨bk−1∨bk)∧(A∨B)
a k-expansion step. We apply the split rule k
times to simulate the expansion step as below:
(A) ` (A ∨ b1) ∧ (A ∨ b1)

` (A ∨ b1) ∧ (A ∨ b1 ∨ b2) ∨ (A ∨ b1 ∨ b2)
...
` (A ∨ b1) ∧ ... ∧ (A ∨ b1 ∨ ... ∨ bk−1 ∨ bk) ∧ (A ∨B)

�

Proposition 6. The expansion rule is sound for Max-SAT.

Proof. The split rule is sound for Max-SAT [20] and it can
simulate the expansion rule as shown in Proposition 5. We
conclude that the expansion rule is sound for Max-SAT. �

To construct an explanation for any explainable clause or
formula, we define below a proof system composed of the



symmetric cut and the expansion rules, called Explanation
Calculus (ExC). Then, we prove in Proposition 7 that it
is inferentially complete. Notice that, although this result is
established for ExC, it remains valid for Max-SAT resolution
+ expansion, symmetric cut + split and ResS (Max-SAT
resolution + split).

Definition 10 (Explanation Calculus). The Explanation Cal-
culus (ExC) is composed of two rules: symmetric cut and
expansion.

Proposition 7. ExC is inferentially complete.

Proof. The proof system ResS has been proved inferentially
complete in [20]. Furthermore, it was shown that symmetric
cut + split simulates ResS in [7] and, therefore, it is also
inferentially complete. Finally, since the expansion rule simu-
lates the split rule, we also conclude that ExC is inferentially
complete. �

Now, we study the relation between ExC and other proof
systems. It is important to note that in this paper, we are
interested in the notion of inference in the context of Max-
SAT on a wider scope, i.e. we want to study the general
inferential power of proof systems and compare them in this
sense and not just focus on their refutational power. Therefore,
we provide a new definition for simulation below which we
refer to as inferential simulation. It differs from the traditional
definition of simulation [20], [15], which we can refer to
as refutational simulation to avoid confusion, in the sense
that it does not restrict the proofs to refutations. Clearly, if
P1 inferentially p-simulates P2 then P1 also refutationally p-
simulate P2 but the opposite is not necessarily true. We prove
in Proposition 8 that ExC i-p-simulates symmetric cut +
split, Max-SAT resolution and ResS [20]. Finally, we observe
that it is possible to weaken Max-SAT resolution into the
symetric-cut without loosing any power if we add expansion.
This can be directly implied from Proposition 9 in which we
establish that ExC is i-p-equivalent to Max-SAT resolution +
expansion.

Definition 11 (inferential simulation). Let P1 and P2 be
two proof systems. P1 i-p-simulates (inferentially polynomially
simulates) P2 if there exists a polynomial computable function
f such that for any proof Π deducing a clause c in P2, f(Π)
is a proof deducing c in P1. P1 and P2 are i-p-equivalent if
P1 i-p-simulates P2 and P2 i-p-simulates P1.

Proposition 8. ExC i-p-simulates the following proof systems:
• Max-SAT resolution,
• symmetric cut + split
• ResS

Proof. A Max-SAT resolution step can be simulated using
two expansion steps and one symmetric cut step as follows:
(x ∨A) ` (x ∨A ∨ b1) ∧ ... ∧ (x ∨A ∨B) [expansion]
(x ∨B) ` (x ∨B ∨ a1) ∧ ... ∧ (x ∨B ∨A) [expansion]
(x ∨A ∨B) ∧ (x ∨B ∨A) ` (A ∨B) [symmetric cut]

Therefore, ExC i-p-simulates Max-SAT Resolution.
Furthermore, as shown in Proposition 4, each split step can

be simulated using one 1-expansion step and, consequently,
ExC i-p-simulates symmetric cut + split. Finally, since
one Max-SAT resolution step can be simulated by two
expansions and one symmetric cut, and since one split step
can be simulated by one expansion, we conclude that ExC
i-p-simulates ResS. �

Proposition 9. ExC is i-p-equivalent to Max-SAT resolution
+ expansion.

Proof. As shown in Proposition 8, ExC i-p-simulates Max-
SAT resolution and, consequently, it also i-p-simulates Max-
SAT resolution + expansion. Conversely, Max-SAT resolu-
tion + expansion trivially i-p-simulates ExC since they share
the expansion rule and the symmetric cut rule is a specific
case of Max-SAT resolution. �

We summarize the results presented in Propositions 8 and 9
on the relation between ExC and other proof systems in Figure
2. In the next Section, we will show how it is possible to
construct clause and formula explanations in ExC. This result
is easily extendable for the following inferentially complete
proof systems: symmetric cut + split, ResS and Max-SAT
resolution + expansion.

ExC
i-p-equivalent

Max-SAT resolution
+

expansion

i-p-simulate r-p-simulate

ResS

i-p-sim
ulate [7]

r-p
-sim

ulate [7]

symmetric cut
+

split

i-p-simulate

Max-SAT resolution
r-p-simulate [7]

Fig. 2. Relationship between ExC and other proof systems

V. THE EXPLANATION ALGORITHM

In this section, we use the characterization in Theorem
1 to introduce a method to construct an explanation of a
given clause, if possible. The intuition is that, given a CNF
formula φ, we can exhibit an explanation of clause c by
reverse inferring the sequence of transformations starting from
c instead of φ. First, we prove an intermediate result which
follows from the proof of Proposition 1.

Proposition 10. Let φ be a CNF formula and c be a non-
tautological clause. If ∃c′ ∈ φ such that c′ subsumes c then
there exists an explanation of c in φ using the expansion rule.



Proof. Suppose ∃c′ ∈ φ such that c′ subsumes c. The formula
φ2 in the proof of Proposition 1 corresponds, by definition,
to an expansion step on clause c′ with B = c \ c′. Therefore,
this application of the expansion rule is an explanation of c in
φ. �

Now, we prove our main result in which we show that we
can exhibit a transformation for any explainable clause in ExC
and we provide a bound on the number of inference steps for
such explanations.

Theorem 3. Let φ be a CNF formula with n variables and c
an explainable clause in φ. There exists an explanation of c
in φ using ExC rules containing O(2n) inference steps.

Proof. Suppose that c is explainable in φ. We have two cases:
• If ∃c′ ∈ φ such that c′ subsumes c then we can explain
c by expansion of c′ as proved in Proposition 10.

• Else, by Theorem 1, we know that ∃c′ ∈ φ such that c′

doesn’t oppose c and, thus, that ∃x /∈ var(c). Since we
also have ∀x /∈ var(c), c∨x and c∨x are both explainable
by Theorem 1, we can pick any variable x /∈ var(c) and
recursively construct explanations T1 and T2 respectively
for c∨x and c∨x. Notice that the recursion is guaranteed
to stop because the size of clauses is bounded by n, in
which case they are clearly subsumed. Therefore, we can
provide a proof for c by applying the symmetric cut as
follows (c ∨ x) ∧ (c ∨ x) ` c. More precisely, if this
application of the symmetric cut is denoted T3 then T =
(T1, T2, T3) is an explanation of clause c.

To explain c, we clearly have at most 2n applications of
the symmetric cut. Indeed, in the worst case, each clause
c′ including c has to be explained by two clauses c′ ∨ x
and c′ ∨ x (where x is a variable not appearing in c′) until
we obtain clauses of size n. In the worst case all the non-
explained clauses that are subsumed have to be explained by
the expansion of a clause in the formula, so we need at most
one application of expansion per non-explained clause and
hence at most 2n expansions steps for the entire explanation.
We conclude that if c is explainable then there exists an
explanation of c in ExC in less than 2n+1 inference steps. �

Notice how the previous results stay valid if we replace
the symmetric cut rule by the Max-SAT resolution rule or
the expansion rule by the split rule (in that case we need
to add an additional factor of n to the bound). The proof of
Theorem 3 can be described as an algorithm, that we refer to as
the explanation algorithm, which can explain a clause in ExC
or refute its explainability. We present it below where T (φ)
denotes the application of the transformation T on the formula
φ, T1.T2 denotes the concatenation of the transformations T1
and T2 and expansion(c′, c) denotes the application of the
expansion rule on clause c′ to get clause c.

Example 2. We consider the CNF formula φ = (x1 ∨ x2) ∧
(x1∨x2∨x3)∧(x3)∧(x1) and we want to explain c = (x1). We
denote T and C respectively the sequence of transformations
and the set of clauses that need to be explained. We construct

Algorithm 1 Explanation Algorithm
Require: clause c, CNF formula φ
Ensure: (R, T, φ′) with R ∈ {EXPLAINABLE, UNEXPLAINABLE},

T the proof of explanability of c and φ′ = T (φ)
1: if ∀c′ ∈ φ : c′ opposes c then
2: return (UNEXPLAINABLE, ∅, φ)
3: if ∃c′ ∈ φ : c′ subsumes c then
4: T ← expansion(c′, c)
5: return (EXPLAINABLE, T, T (φ))
6: Choose a variable x /∈ var(c)
7: (E1, T1, φ)← Explain(c ∨ x, φ)
8: (E2, T2, φ)← Explain(c ∨ x, φ)
9: if E1 = UNEXPLAINABLE or E2 = UNEXPLAINABLE then

10: return (UNEXPLAINABLE, ∅, φ)
11: T3 ← ((c ∨ x) ∧ (c ∨ x) ` c)
12: T ← T1.T2.T3
13: return (EXPLAINABLE, T, T3(φ))

the explanation of c = (x1), where variables are chosen in
the lexicographic order, as follows:

1) T = () and C = {(x1)}
• (x1) is not subsumed by any clause of φ.
• (x1) is not opposed to all clauses of φ.
• We pick the variable x2 not appearing in (x1). Now,

we need to explain clauses (x1 ∨ x2) and (x1 ∨
x2). The application of the symmetric cut on these
clauses is also added to T .

2) T = (T1) where T1 = (x1 ∨ x2)∧ (x1 ∨ x2) ` (x1) and
C = {(x1 ∨ x2), (x1 ∨ x2)}
• Clause (x1 ∨ x2) ∈ φ so it is trivially explained.

3) T = (T1) and C = {(x1 ∨ x2)}
• (x1 ∨ x2) is not subsumed by any clause of φ.
• (x1 ∨ x2) is not opposed to all clauses of φ.
• We pick the variable x3 not appearing in (x1∨x2).

Now, we need to explain clauses (x1∨x2∨x3) and
(x1∨x2∨x3). The application of the symmetric cut
on these clauses is also added to T .

4) T = (T2, T1) where T2 = (x1∨x2∨x3)∧(x1∨x2∨x3) `
(x1 ∨ x2) and C = {(x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨ x3)}
• Clause (x1 ∨ x2 ∨ x3) is explained by expansion of

(x3) ∈ φ which subsumes it.
5) T = (T3, T2, T1) where T3 = (x3) ` (x1 ∨ x3) ∧ (x1 ∨

x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) and C = {(x1 ∨ x2 ∨ x3)}
• Clause (x1∨x2∨x3) ∈ φ so it is trivially explained.

6) T = (T3, T2, T1) and C = ∅. Explanation of clause (x1)
is complete.

We conclude that φ ` (x1∨x3)∧(x1∨x2∨x3)∧(x1)∧(x1) by
applying the transformation T , represented in Figure 3. Notice
how the explanation T is inferred reversely. Clauses (x1∨x3)
and (x1 ∨ x2 ∨ x3) are compensation clauses, essential to
preserve Max-SAT equivalence.

Now that we can explain any clause (or refute its explain-
ability), we will use the result of Theorem 2 to extend our
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Fig. 3. Explanation of clause (x1) in φ

algorithm to explain formulas. To this aim, we can iteratively
explain each clause of the wanted formula as established in
Theorem 2.

Theorem 4. Let φ1 and φ2 be two CNF formulas with n
variables such that φ2 is explainable in φ1 and let m = |φ2|.
There exists an explanation of φ2 in φ1 using ExC rules
containing O(m× 2n) inference steps.

Proof. We construct an explanation of φ2 in φ1 using the result
of Theorem 2, i.e. explaining successively each clause of φ2
in the current formula in which we eliminate progressively
each explained clause. As shown in Theorem 3, explaining
one clause of φ2 costs at most O(2n) inference steps, and
we have to explain m clauses. We conclude that the complete
explanation of φ2 in φ1 contains at most O(m×2n) inference
steps. �

VI. PROOFS FOR THE MAX-SAT PROBLEM

Now that we can explain any formula using the explanation
algorithm, we want to use it to build proofs for the Max-SAT
problem. Intuitively, the idea is to iteratively try to explain the
empty clause until it is no longer explainable in the current
formula. By doing it, we iteratively infer as many empty
clauses as the optimum of the initial formula.

Theorem 5. Let φ be a CNF formula with n variables and
m clauses, we can deduce φ ` � ∧ · · · ∧�︸ ︷︷ ︸

opt(φ)

∧φ′ where φ′ is

satisfiable using ExC rules in O(m× 2n) inference steps.

Proof. We build a complete proof for φ in several steps,
each step being an explanation of the empty clause � which
transforms the working formula φi (with φ0 = φ) to an
equivalent formula φi+1 and an empty clause �. Therefore,
we have φ0 ` � ∧ φ1 ` · · · ` � ∧ · · · ∧�︸ ︷︷ ︸

s

∧φs (s ≥ 0) where

the explanation algorithm fails to explain � in φs. Since the
formula φs is satisfiable, we conclude that s = opt(φ).

By Theorem 3, we can provide an explanation for each
empty clause in O(2n) inference steps. Notice that explaining
an empty clause does not increase the number of variables of
the formula. Furthermore, opt(φ), i.e. the minimum number
of falsified clauses in φ is clearly bounded by m. There-
fore, we construct at most m proofs of the empty clause
as explained in the proof of Theorem 2. We conclude that
φ ` � ∧ · · · ∧�︸ ︷︷ ︸

opt(φ)

∧φ′ can be deduced in O(m × 2n) ExC

inference steps. �

The result established in Theorem 5 shows that the Expla-
nation Algorithm can be used to generate proofs for Max-SAT
with a better bound on their size than the existing result using
Max-SAT resolution which is in O(m×n×2n) inference steps
[9]. In the next section, we extend our results to weighted
partial Max-SAT.

VII. WEIGHTED PARTIAL MAX-SAT

In weighted partial Max-SAT, a finite or infinite weight is
associated to each clause c, representing the penalty of falsify-
ing it. Clauses with infinite weight are called hard clauses and
must be satisfied while clauses with finite weight wc ∈ N∗ are
called soft clauses. The cost of an assignment I is the sum
of the weights of clauses falsified by I . Solving the weighted
Max-SAT problem consists in determining the minimum cost
over all possible assignments. The notion and characterization
of explainable clauses and formulas are easily extendable to
weighted partial clauses and formulas. We extend the proof
systems studied in Section IV to weighted partial formulas
by adding two rules to deal with weights, namely the unfold
and fold rules which respectively allow to duplicate clauses
by splitting their weights and to merge duplicated clauses by
summing their weights. We will refer to the system ExC +
fold + unfold as the Weighted Explanation Calculus (WExC).

Definition 12 (Fold & Unfold). Given a weighted clause c and
two positive weights w1 and w2, the fold and unfold rules are
respectively defined as follows:

(c, w1) (c, w2)
(c, w1 + w2)

(c, w1 + w2)
(c, w1) (c, w2)

To explain any soft clause (c, w), we ignore the weights
in the formula and we try to explain c in its unweighted
version. The obtained (unweighted) explanation can be easily
adapted to the weighted case, possibly with a lower weight
than w. In such case, we repeat the same treatment until we
get the wanted weight. This result is established in Theorem
6. Remark that explaining a hard clause (c,∞) is exactly the
same as explaining the unweighted clause c in the unweighted
set of the hard clauses. Hereafter, we consider w.l.o.g. formulas
with finite weights.

Theorem 6. Let φ be a weighted formula with n variables
and (c, w) an explainable soft clause in φ. There exists an
explanation of c in φ using WExC in O(w × 2n) inference
steps.

Proof. We consider the unweighted version of the formula φ,
i.e. φ′ = {c|(c, w) ∈ φ}. Since (c, w) is explainable in φ, c is
clearly explainable in φ′. We apply the explanation algorithm
to get an explanation T of c in φ. Let ξ be the initial premises
in T . We set w′ = min{w | (c, w) ∈ φ and c ∈ ξ} and we
apply the unfold rule on the clauses which correspond to ξ
in φ, and then the weighted version of T (where the rules
of ExC are exchanged with their weighted version) to get an
explanation of (c, w′). Now, we have three possible cases:
• if w′ = w, we have an explanation of (c, w) in φ.



• if w′ > w, we simply apply one unfold step on (c, w′)
to get the explanation of (c, w) in φ.

• if w′ < w, we repeat the previous procedure on WT (φ)\
{(c, w′)}, where WT is the (weighted) explanation of
(c, w′) in φ, until we explain clauses (c, w′i) such that 1 ≤
i ≤ k and

∑
1≤i≤k w

′
i ≥ w. Then, we merge these clause

using k fold steps to get an explanation of (c,
∑

1≤i≤k w
′
i)

and we can thus refer to the previous two cases to get
the full explanation of (c, w) in φ.

As shown in Theorem 3, each unweighted clause can be
explained in O(2n) inference steps and we need at most O(2n)
applications of the unfold rule to get the weighted explanation.
This is repeated k times where k is clearly bounded by w.
Therefore, we conclude that there exists an explanation of
(c, w) in φ using WEXC in O(w × 2n) inference steps. �

Theorem 7. Let φ1 and φ2 be two weighted formulas with n
variables such that φ2 is explainable in φ1 and let m = |φ2|
and w = max{w′ | (c, w′) ∈ φ2 and w′ 6= ∞}. There exists
an explanation of φ2 in φ1 using WExC containing O(m ×
w × 2n) inference steps.

Proof. We iteratively explain each of the clauses of φ2. Each
clause can be explained in O(w×2n) inference steps as shown
in Theorem 6 and we have m clauses to explain. We conclude
that there exists an explanation of φ2 in φ1 using WExC
containing O(m× w × 2n) inference steps. �

Definition 13 (roof). Let φ be a weighted formula. The roof
of φ, denoted rf(φ), is defined as follows:

rf(φ) =
∑

(c,w)∈φ | w 6=∞

w

Theorem 8. Let φ be a weighted formula with n variables
and m clauses, we can deduce φ ` (�, opt(φ))∧φ′ where φ′

is satisfiable using WExC in O(rf(φ)× 2n) inference steps.

Proof. We iteratively explain a new empty clause until it is
no longer possible and we merge these empty clauses into
one clause (�, opt(φ)). The number of empty clauses opt(φ)
is bounded by rf(φ) and each of the empty clauses (�, 1) can
be explained in O(2n) inference steps as shown in Theorem 6.
Consequently, we can build a proof for the weighted Max-SAT
problem with O(rf(φ)× 2n) inference steps. �

VIII. CONCLUSIONS AND FUTURE WORK

This paper focuses on inference in Max-SAT. In particular,
we introduced the notion of explainable clauses (and formulas)
which can be deduced from a given formula by applying Max-
SAT-equivalent transformations. Since Max-SAT resolution is
not inferentially complete, we defined a new proof system
called ExC which is inferentially complete and we compared
it to other proof systems. We presented a procedure, called
the explanation algorithm, to explain any clause or to refute
its explainability using ExC. We extended the explanation
algorithm to explain any formula or refute its explainability
and to construct proofs for the Max-SAT problem with a better

bound compared to Max-SAT resolution. Finally, we explained
how to adapt our work to weighted partial formulas.
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