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Abstract—Ship propulsion is the largest consumer of energy —
and by extension fuel — on cruise ships. Improving its efficiency
is thus an important aspect of energy management, both for
environmental and economic reasons. Various approaches have
been detailed in the literature for improving propulsion efficiency,
ranging from optimal voyage planning to prediction of propulsion
power or fuel consumption using Machine Learning algorithms,
trained on high frequency sensor data. On this latter topic, the
approaches typically involve a series of data transformations
and time-aggregations (windowing), followed by shuffling and
separation of data points into train and validation sets. However,
this approach leads to very similar data in the train and
validation sets, preventing trained models to generalize well on
future ship voyages. In this article we highlight methodological
issues and give insights on how to tackle them to train models
that focus on optimizing generalizability, especially predictive
accuracy on unseen future test sets. We present a temporal
approach to splitting data into train, validation and test sets.
We perform our analysis using simple multilayer perceptron
architectures, of distinct dimensions. Our study concludes that
smaller/simpler models, trained on temporal-split data have a
lower error when predicting on unseen future test data, compared
to larger models and usage of shuffle-split datasets, while also
providing better confidence in model accuracy, due to reduced
discrepancy between obtained validation and test errors.

Index Terms—propulsion power prediction, methodology, neu-
ral networks.

I. PROBLEM STATEMENT
A. Context and Challenges

Global shipping accounts for roughly 2.8% of global carbon
emissions, according to the International Maritime Organiza-
tion 2014 Green House Gas study [1]]. The current objective of
the organization is to reduce shipping carbon intensity by 40%
by 2030 and 50% total (70% intensity) by 2050 compared to
the 2008 baseline [1]]. It specifies evaluation indexes, as well
as milestones to be achieved, based on the type and size of the
ship. Emissions of other pollutant chemicals such as sulfur are
also increasingly being tightened by restrictions internationally
and in protected zones [2].

Shipping companies and shipyards alike are thus under pres-
sure to reduce fuel and energy consumption and, consequently,
carbon emissions to comply with these relatively recent objec-
tives and evolving regulations. In this context, cruise lines play
a crucial role in reducing their greenhouse gas and chemical
emissions owing to size and number of passengers. Cruise
lines and shipyards work in tandem to innovate fuel-saving

solutions involving all phases from design to operation of the
ship. While a cruise ship can be compared to a small city in
the number and variety of energy consumers on board (e.g., air
conditioning, hotel, water production, lighting, entertainment
infrastructure), the major fuel consumer of a cruise ship is the
propulsion system.

The propulsion of a cruise ship accounts for roughly 40-60%
of the ship’s total energy consumption [3]]. The performance
of the ship in terms of its energy efficiency is thus highly
dependent on this system, and efforts are being made in
various directions to improve it. Energy efficiency improve-
ment strategies can roughly be classified as either design or
operational. Design improvements may include hull form,
propeller design, energy conversion efficiency, use of greener
fuels and alternative energy sources (e.g., liquefied natural gas,
methanol), or supplementary equipment (e.g., air lubrication
system). From an operational perspective, measures such as
speed and trim optimization, best route prediction, or regular
hull maintenance can lead to important energy savings. With
respect to the latter point, hull fouling — i.e., accumulation of
marine growth on the hull — could indeed lead to an increasing
performance deterioration and hence an increase in energy
consumption [4].

Analysis and evaluation of energy-saving measures has been
boosted by the improvement of data collection, storage and
processing technologies. The literature today contains vari-
ous examples of monitoring tools capable of collecting high
frequency data from various sensors and analyses are being
carried out over several months of data. Among these tools,
Machine Learning (ML) has gained a lot of interest, especially
models based on Artificial Neural Networks (ANNs). How-
ever, it appears that most works from the field of propulsion
power prediction suffer from methodological issues, which is
the main message of this article.

B. Related Work

In recent years, various studies have analyzed the use of ML
algorithms applied to ship propulsion. The problem is typically
stated as a prediction problem with the target variables being
propulsion power [5], [6], [7], fuel consumption [8]], [9]], or
speed [10], [11] and the input variables being operational
parameters such as ship trim, draft, speed, and external condi-
tions such as wind and sea state. The datasets used are either



noon reports (data sheets prepared on a daily basis by a ship’s
chief engineer, consisting of average values of the above-
mentioned parameters, as well as the total fuel consumption
and other information) or ship sensor data, sampled at varying
frequencies, weather forecast or hindcast data. In the field of
propulsion power prediction, the first ML-based approach —
based on sensor data — was introduced in 2009 [5]]. However,
the use of such data has only seen an increase starting around
2017, and the number of papers on the topic yet remains
limited.

Although data can be viewed as signals or time-series,
a common simplification of the problem — assumed by the
majority of articles to date — consists in considering data as a
collection of independent observations. While this certainly
reduces the accuracy of predictions, it allows to evaluate
first the predictive powers of features without considering
their dynamics. In this article, we choose to make the same
simplification, as we want to focus on methodological issues
in the literature. Considering time series, though, is a clear
line for future work.

The standard approach taken in the literature for preprocess-
ing data before training and testing ML models thus consists
of the following steps:

1) applying certain filters [12];

2) extracting features;

3) performing appropriate aggregations (e.g., mean, vari-

ance, derivative) of the input and target variables.

The data points are then split into train, validation, and/or
test sets. Although, performing this split is approached in
various ways in the literature. The most common one is the
shuffle-split approach, in which the processed data points are
randomly shuffled and then allocated to these subsets.

Pedersen et al. [5] and Petersen et al. [6] are the first
studies focusing on ANNs and sensor data, collected at a high
frequency (up to 1Hz in [5]). Data is then aggregated using
a fixed window length. The architecture implemented in both
cases is a MultiLayer Perceptron (MLP), with hyperparameters
selected using a parameter sweep and k-Fold Cross-Validation
(k-Fold CV). Petersen et al. [6] propose two methods for
shuffling data: 1) shuffling individual 10-minute windows;
2) shuffling trips. The authors report that shuffling trips leads
to a slightly higher prediction error, but that this method
avoids what they refer to as cross-talk, whereby the data in
the train and test sets are likely to be very similar. This is
very reasonable, since the dynamics of large moving ships are
long-term and consecutive ten-minute aggregated windows of
data are not likely to be very different from each other.

Drawing on the conclusions of [3]], Du et al. [13] use a MLP
architecture on noon report data. The goal of their approach
is to quantify the impact of sailing speed, trim, displacement,
weather and sea conditions on a ship’s fuel consumption rate
and then to optimize speed and trim for each segment of a
voyage in order to minimize the total fuel consumption.

Kim et al. [8] study the use of MLP and multiple linear
regression models to predict the fuel oil consumption of a
container ship using 6 months of sensor data. Training of the

MLP model is performed using train/validation sets generated
by a shuffle-split approach. The authors then test the model on
an independent voyage not used at all during training. Similar
settings are also used in the work of Farag et. al [14], in which
they train an ANN on a first voyage and report test errors on
a distinct second one, for an oil tanker.

Gkerekos et al. [[15] evaluate the use of various ML al-
gorithms to predict fuel oil consumption using both noon
report data and sensor data collected using an automatic data
logging and monitoring system, sampled every hour. The
algorithms include, among others, linear regression, tree- and
forest-based models, k-Nearest Neighbors (k-NN) and MLPs.
Separate models are trained for each type of dataset. The noon
report dataset contains two and a half years of data, while the
other contains only three months of data.Each dataset is then
split into train and test subsets (80%-20%) and k-Fold CV is
performed on the train set.

Uyanik et al. [9] also perform a comparison of various ML
models for the prediction of fuel oil consumption. Here, data
comes from noon reports and the target variable is the total fuel
oil consumption over the voyage. The methodology used is
similar to the shuffle-split approach. Though, no aggregations
needs to be performed as the information is already aggregated
in the noon reports. Grid-search and k-Fold CV are used to
find optimal hyperparameters for the different ML models.

Besikei et al. [[16] implement a MLP architecture to predict
fuel oil consumption from noon report and weather data. The
data points are shuffled and split into train and validation sets
(70%-30%). Hyperparameters for the MLP were selected using
trial-and-error.

Theodoropoulos et al. [7] evaluate the use of two ANNs
for the prediction of ship propulsion power using sensor data.
First, a MLP architecture similar to the previous literature is
used. Data is preprocessed using various filtering and outlier
removal techniques. Data is then smoothed using a simple
moving average over S-minute windows. Training is performed
following the shuffle-split approach and using k-Fold CV.
The final model is then used in a simulated operational
scenario where the first 80% of the data is used for training
and the final 20% data for testing. The article evaluates a
second neural network model for propulsion prediction using
Long Short-Term Memory (LSTM) architecture. However, as
mentioned earlier in the section, we will focus on models not
incorporating the temporal aspect of the data.

Finally, Laurie et al. [4] tackle the subject of propulsion
power prediction using ML models. Their study evaluates var-
ious ML models, trained with sensor data (10 second sampling
rate) and weather data. The authors provide a model to analyze
the effect of hull fouling on the propulsion performance of
the ship. They use a shuffle-split approach after aggregating
over 10 minute intervals, followed by hyperparameter selection
using k-Fold CV. Laurie et al. point out that a k-NN algorithm
achieves the second best performance with a Mean Absolute
Percentage Error (MAPE) only 0.07% lower than the best
model — a random forest.



C. Knowledge gaps and contributions of the paper

The state of the art raises several issues regarding a potential
implementation of prediction models in operational conditions:

1) The cross-talk problem [6]: Separating high frequency,

2)

3)

sensor-acquired data into train and validation subsets after
shuffling would always lead to very close analogs in the
train set for every validation data point (see Figure[T). An
issue thus arises when using this shuffle-split approach for
validating the predictive accuracy of the model: although
the validation error reported for a model may be very
low, it is possible that the model is strongly overfitting to
training data, leading to high accuracy errors in testing
conditions.

Step 1: shuffle

‘ >3 Shuffle
|
0 time

Step 2: split + cross-validation + test

Fig. 1. The cross-talk problem

Cross-validation

An indication of the existence of this cross-talk issue
is the performance of the k-NN algorithm in evaluation
papers [15], [4]. In particular, Laurie et al. point out
that for any data point in the validation/test sets, there
exist very close analogs in the train set, when data is
sampled at a high frequency [4]]. Figure [2] illustrates this
phenomenon.
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Fig. 2. Shuffled data

Overlapping windows: The problem of cross-talk is
further exacerbated when overlapping windows are used
for aggregation, such as in the case of simple moving av-
erages [7]]. Such an operation, used in conjunction with a
shuffle-split approach, causes train and validation datasets
to share information, leading to trained models not being
able to learn generalizable characteristics of the data.
Thus, validation accuracy reported may be misleading
if the goal is to implement models for predicting ship
behavior for future voyages.

Parsimony: the literature review exhibits already a wide
range of ML models, from simple (e.g., multiple linear

regression) to complex (e.g., recurrent neural networks)
approaches. Laurie et al. [4] suggest that parsimonious
models such as £-NN can outperform most refined tech-
niques for the prediction task. Therefore, one gap is
related to a rigorous methodology to compare models’
complexity, for instance by comparing small vs. large
architectures within the same models family. As an exam-
ple, a small MLP performing at least as well as a large
model on future unseen data would indicate overfitting
in the selection of the larger one. Moreover, overfitting
could be detected when a model performs much worse
on future, unseen test data than could be reasonably
expected. Concretely, the test error is much higher than
the validation error.

The goal of this paper is NOT to propose a new comparison
of ML methods for propulsion power prediction. The purpose
is rather to come up with a simple methodological contribution
that addresses the above-mentioned knowledge gaps. The
research questions we would like to tackle are three-fold:

QD

Q2)

Q3)

Given a propulsion power prediction task, what is the
most appropriate splitting approach (train/validation/test)
to obtain a model leading to similar validation and test er-
rors (i.e., providing more confidence for implementation
in operational conditions)?

Given a fixed size of a model, which splitting approach
gives the minimum test error (i.e., which approach gen-
eralizes better)?

Given a specific splitting approach, does a small model
perform as well on a future test as a large model (i.e.,
principle of parsimony)?

With respect to these research questions, the main contri-
butions of this paper can be summarized as follows:

Methodological framework: We propose to compare
two methodologies to train and validate a machine learn-
ing model for prediction of propulsion power using 27
months of high-frequency sensor data. The first of these
is the shuffle-split approach, whereby data for both train
and validation datasets comes from exactly the same time-
frame (e.g., 1 year). In the second approach, data is
split temporally (we refer to this as the temporal-split
approach); the first part of the dataset is used for training,
the second part for validation.

Models dimension analysis: Based on a MLP archi-
tecture, we also analyze the dimensions of the models
obtained using the two approaches, and propose a cross-
comparison of small vs. large MLP configurations in both
splitting strategies (shuffle vs. temporal split).

Realistic evaluation: The best models obtained from
the two approaches are then tested on an independent
future test set, unseen by either model during the training
process. This allows us to clearly see the gaps between
validation and test errors (hence assessing overfitting) and
also highlight the degradation of the performance when
the prediction horizon increases.



(C, D)

(B, E)

(F. G)

The paper is organized as follows. In Section [[, we present
the global methodological framework and the splitting strate-
gies. Section is related to the data presentation, including
preprocessing, feature engineering and windowing. Results are
presented in section [V} Section [V] concludes the paper with
a discussion.

II. SYSTEMATIC METHODOLOGY

To answer the three research questions Q1, Q2, Q3 pre-
sented in Section [[-C] we propose a global methodological
framework that enables a comparison of the two splitting
strategies for training and validation, as well as a cross-
comparison of small vs. large MLP architectures. The process
starts with the selection of a machine learning framework.

A. Choice of the ML framework

A MLP architecture was selected as the ML framework to be
used in this study. This choice was made for several reasons:

1) This approach is majoritary in the literature on propulsion
power/fuel consumption prediction;

2) The dimensions of two MLP models can easily be com-
pared in terms of number of weights to train, related to
number of layers and layer size;

3) Existing work tends to use large MLPs (e.g., [7]). We
want to explore the use of smaller networks and their
impact on prediction.

MLP can have various architectures, defined by hyperparam-
eters such as the number of layers and nodes (neurons), or
choices of activation functions. While there is a contemporary
dominance of neural networks and deep learning in the ML
community, the goal of this paper is not to come up with
the best architecture for propulsion power estimation — e.g.,
including convolutional layers and temporality (e.g., LSTMs).
Hence, we proceed to use simple MLP architectures and rather
maintain focus on the learning process. For simplicity, we
use an architecture where the number of nodes per layer is
constant, and find optimal hyperparameters using a grid search
procedure.

B. Global methodology

Given an appropriate ML framework, Figure [3] presents
the flowchart diagram of the different steps performed during
experimentation.

As shown in Figure [3] the systematic methodology is
composed of the following blocks:

(A) Data preprocessing: consisting of feature transforma-
tions and filters presented in Section [[II-B}

Data splitting: divide the dataset into train, validation
and test sets according to the two possible approaches:
shuffle-split and temporal-split, described in Section [[I-C
Windowing and aggregation: described in Section
Depending on the selection strategy (shuffle vs. tempo-
ral), this step comes before or after the split;

Train model (grid search): for both temporal- and
shuffle-splits, the optimal models and their hyperparam-
eters are found;
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Fig. 3. Global methodological framework

(H, I) Cross-training: the purpose is to use the optimal hy-
perparameters obtained using one approach (e.g., shuffle-
split) to train a model using the dataset of the other
approach (e.g., temporal-split), yielding to two extra
models (described in Section [[I-D).

All four models are evaluated on an independent future test
set, unseen by the models during the training process.

C. Shuffle vs. Temporal Split

Figure [ depicts the two strategies taken for model training
and evaluation — shuffle-split and temporal-split — for prepar-
ing the train and validation sets.

1) Shuffle-split approach: In this first approach, all raw
training data is used both for training and validation.
This is performed by shuffling the data points after
aggregation, as described in Figure [}
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Fig. 4. Comparison of shuffle-split and temporal-split approaches for train
and validation sets generation. Note that the test set remains identical.

2) Temporal-split approach: In the second approach, data
used for training and validation are selected using a
temporal split as described in Figure

Train and validation set sizes are set the same for both

approaches. The temporal split was applied assigning the first
12 months of data for training and the next 3 months for
validation.

D. Models and evaluation

We now describe the models that we obtain using the two
splitting approaches — labeled (F) and (G) in Figure3]- as well
as the models obtained obtained after cross-training — labeled
(H) and (I) in Figure 3]-. In terms of the MLP learning process,
we use settings described in Table [I}

Parameter Value
Batch Size 128
Optimizer Adam [17]
Learning Rate Se-4
Max Epochs 50
Loss Mean Absolute Percentage Error (MAPE)
TABLE T

SHARED HYPERPARAMETERS

Number of layers and number of nodes per layer were
defined experimentally through grid search to find optimal
hyperparameter values. We have used two distinct grids of
possible hyperparameter values, deemed large (described in
Table [lI} used in step (F) in Figure E]) and small (described in
Table [Tl used in step (G) in Figure [3). The use of these two
grids aims at addressing research question Q3 on the principle
of parsimony. Values of the large grid have been chosen to be
in the same range as those used in [7]].

Parameter Possible values
Layers 10, 15, 20
Nodes per layer | 50, 100, 200, 300, 400
ABLE 1T

HYPERPARAMETERS GRID FOR THE LARGE MODEL

For each combination of layers and nodes, k-Fold CV
was used to train 4 models (k = 4) to account for model
initialization and batches variability. The performance of the
parameters is evaluated using the average validation loss over
the k£ models obtained per parameter.

Hyperparameter Possible values
Layers 1, 3,5, 10
Nodes per layer 5, 10, 15, 20, 30, 40, 50
TABLE TIT

HYPERPARAMETERS GRID FOR THE SMALL MODEL

Models resulting from the training procedures using grid
searches are labeled Mgy, and Mrg in Figure [3| Comparison
between these two models will give us an idea of whether or
not overfitting is occurring.

Next, in order to test the effect of model size indepen-
dently from the splitting approach, we interchange the op-
timal hyperparameters found during model building and the
train/validation datasets used to obtain them (step referred to
as cross-training in Section This produces two more
models, Mggs and My, as shown in Figure E}

The evaluation metric used is the Mean Absolute Percentage
Error (MAPE) [18]. The network takes as input an array of
sensor readings and weather forecast data and produces as
output an estimated propulsion power. The network is then
trained using the MAPE as the loss function to minimize.

III. DATA PRESENTATION

In this section we discuss the data that was used for the
experiments, as well as the various preprocessing steps that
were taken to prepare the prediction task. For confidentiality
reasons, information allowing a possible identification of the
ship (e.g., absolute speed and propulsion power, geographical
coordinates) is not described.

A. Data description

The dataset comes from a large cruise ship in operation.
Auvailable data consist of a few dozen variables, however, only
20 of these variables with a known effect on the overall ship
resistance were selected. Two primary types of data are present
in the set:

1) Sensor data: Data coming from sensors and systems
installed onboard the ship. This data is used in the
automation and control systems of the ship. Data is first
stored on board and then transferred to the data provider.
Sensor data selected includes speed (over ground and
through water), drafts (fore and aft), acceleration (over
ground and through water), number of stabilizers used,
air and sea temperatures, thruster power, and electrical
propulsion power.

2) Weather forecast data: This data is acquired from a third
party meteorological data provider. All interpolations are
performed by the meteorological data provider, and infor-
mation regarding how these interpolations are performed
is not, at this time, known. Information collected includes
relative wind (longitudinal and transversal speed) and
wave (period, angle and height).

"Models are identified as My, where z € {S,T} denotes the use of
the Shuffle- or Temporal-split dataset, and y € {S, L} denotes the use of
hyperparameters coming from the Small or Large grid for training.



The dataset collected contains 27 months of data. The sensor
data is sampled every 30 seconds. Figure [5] shows a sample
time series of the target variable, propulsion power.
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Fig. 5. Sample propulsion power time series (values are normalized for
anonymity)

Accordingly, the weather data also contains data points at a
30-second sampling rate — however, as mentioned earlier, this
data is interpolated spatially and temporally by the meteoro-
logical data provider as a function of the ship’s geographical
coordinates and time. Weather forecast data was used in this
study as the model aims at being used for propulsion power
forecasting purposes. Air and sea temperatures were taken
from the sensor readings as they were found to be very highly
correlated with the weather forecast data.

The data collected contains temporal gaps and noise issued
from possibly varied sources (e.g., sensor error, extrapolation
error). This requires a few basic filters and preprocessing steps
to be applied before the dataset can be used.

B. Preprocessing and feature engineering

As the goal of this study is not to find the optimal prepro-
cessing steps or features that provide the best model, but rather
to focus on the implications of the methodology used, only
simple operations were performed for cleaning and preparing
the data:

« Feature transformations: Two types of feature trans-
formations were used. For variables that are supposed
to contain integer values, a rounding was applied if the
values were reported with decimal points. For example
the number of stabilizers used should contain values 0,
1, or 2. For variables containing angles represented in
degrees (0 - 360), the sine and cosine of the angles (in
radians) were extracted and used as input features;

« Filters: Two types of filters were used in the processing
of the 30-second raw data: 1) Operational filters: data
was filtered to remove outliers concerning the speed and
propulsion power of the ship. This includes setting a min-
imum and maximum value for the variables concerned.
Data points having thruster power greater than 0 were also
eliminated from the set, as thrusters are only used during
maneuvers and not at sea. These filters were applied to
keep only data representative of the ship’s time spent
at sea and to remove periods spent at berth, maneuvers

and outliers; 2) Noise filters: after visualizing the various
data, it was found that certain sensors were giving erratic
values at certain times. These data points were manually
filtered out.

C. Windowing and aggregation

Windowing and aggregation has been performed in all of the
studies dealing with high frequency sensor data. The reasons
for these are to remove potential noise from the sensors, and
also to extract features relevant to the dynamics of the system.
Studies have applied various window sizes ranging from 3 to
15 minutes depending on the dataset and application. For this
study, we have used a window size of 5 minutes.

Windowing produces an M x N matrix of the input variables
(where M is the number of samples per window and N is the
number of input variables) and an N x 1 vector of propulsion
power. The window is rejected if any value — either in the
input matrix or in the output vector — is missing. This is done
in order to not deal with data imputation and its effects.

If the window has not been dropped, the data in the window
is aggregated by taking the average over the time dimension,
producing an input vector of dimension 1 x [N and an output
vector of dimension 1 x 1.

IV. RESULTS

Table [I[V| presents the final hyperparameters selected for the
two splitting approaches presented in Section i.e., the
output of (F) and (G) in Figure 3] These hyperparameters
represent the models showing the smallest validation loss in
their respective approaches.

Using the shuffle-split approach and the large grid, optimal
hyperparameters found are the largest possible values from
Table [II] (20 layers and 400 nodes per layer). The temporal-
split method, trained with the small grid, produces a smaller
network, with optimal values being intermediate in tested
values from Table [III] (3 layers and 40 nodes per layer).

Model | Layers | Nodes per layer

Mgy, 20 400

Mrg 3 30
TABLE TV

GRID SEARCH RESULTS: OPTIMAL HYPERPARAMETERS FOUND DURING
STEPS (F) AND (G) IN FIGURE[J]

According to the proposed methodology, the hyperparame-
ters of Mgy, and Mg have been used on the datasets built
by the two other splitting approaches, temporal and shuffle,
respectively, leading to two extra models Mp; and Mgg.
Table [V] reports the validation and test losses of the four
models.

Model | Val. Loss | Test Loss | Difference

Mgy, 0.75 6.33 88.3%

My, 445 541 17.7%

Mgg 2.75 5.52 50%

Mg 4.35 5.14 15.2%
TABLE V

COMPARISON OF VALIDATION AND TEST LOSSES FOR THE FOUR MODELS



With respect to the research question Q1, we notice that
the two models applied to a shuffle-split data set exhibit the
lowest validation losses, respectively 0.75 et 2.75 for Mgy,
and Mgg, and yet are associated with the highest test losses
(6.33 and 5.52). This result demonstrates the presence of the
cross-talk problem between the train and validation sets, and
the degradation of the generalization performances when the
test set is appropriate. On the other hand, the temporal split
allows getting more confident validation losses, compared to
test losses: 4.45 vs. 5.41 for Mry,, 4.35 vs. 5.14 for Mrg.

The aim of research question Q2 is to compare which
splitting approach gives us the minimum test error, given a
fixed model size. Figure [f] reports the error distributions of
the four models for the 12 months of test data.
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Fig. 6. Boxplot distributions of the Absolute Percentage Error for the 4

models

Comparing large size models, Figure [6] shows that Mrpy,
outperforms Mgy with lower percentiles and less variability.
The same conclusion lies for smaller architectures, as we can
see the dominance of Mrg over Mgg with a comparable
interquartile range. Thus, temporal-split enables a better gen-
eralization with unseen data. Regarding the research question
Q3, whose goal was to investigate the models’ dimensions,
Figure [6] indicates that, for a given splitting approach, a
small architecture is in nearly all cases slightly better than
a large one. This can be seen by comparing Mgy vs. Mgg,
as well as My, vs. Mpg. The significance of the differences
between pair-to-pair distributions have been assessed through
hypothesis testing (Fisher-Snedecor procedure [19]]) with a
99% confidence level.

A last category of results deals with the deterioration of
the performances as the prediction horizon increases. Figure
shows the evolution of the monthly-averaged MAPE for the

two optimal model of each splitting strategy, namely Mgy and
Mrs.
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Fig. 7. Monthly Test MAPE for models Mgy, and Mrg

The best model obtained from the temporal-split, Mpg
presents a later and lower performance decrease as the predic-
tion horizon decreases. In addition to a larger degradation from
the first months, Mgy exhibits a larger confidence interval,
hence more variance. This trend is confirmed by Figure [§]
which displays monthly APE distributions instead of single
monthly averages.
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Fig. 8. Monthly Test APE for models Mgp and Mg

These last two figures also show that after a given amount of
time, the two models tend to harmonize towards higher error
rates, which could be explained by the presence of additional,
time-evolving factors such as hull fouling.

V. CONCLUSIONS AND PERSPECTIVES

The aim of this paper was to provide new methodological
insights into the problem of propulsion power prediction. After
the identification of several knowledge gaps from the state of
the art, we have proposed a systematic methodology in order to
assess appropriate splitting strategies and model complexities
for the task of predicting the propulsion power of cruise
ships on unseen future data. The main conclusions can be
summarized as follows:

o A shuffle-split including the test set, as shown in Figure
m leads to the cross-talk problem, a methodological flaw



yielding an overestimation of the models performances
(see Figure 2));

« Given an appropriate independent test set of unseen future
data, a training methodology based on a temporal-split
training and validation historical data set always out-
performs a shuffle-split cross-validation. A shuffle split
underestimates the validation error by overfitting during
the training phase;

o For a given splitting approach, within the MLP frame-
work, parsimonious models are equal or better than most
refined architectures, with less variance in the test errors.

Several issues merit discussion:

1) Explanation vs. Prediction: A shuffle-split methodology
on high frequency sensor data would be appropriate in
situations where future prediction is not the final goal. If
the goal is to analyze the effects of a certain variable on
a historical dataset (reanalysis), such an approach may
be appropriate. In these cases, ML is employed as an
explanatory tool rather than a prediction tool, and could
possibly be applied to evaluating factors affecting the
propulsion efficiency (e.g., [4]) or evaluating the efficacy
of certain equipment;

2) Even though the error increases for data outside the
window of the training data, the temporal split model still
performs with lower error at a 6-months horizon. This
suggests that, even though we might expect the model to
perform worse with time as new data is encountered and
hull fouling may occur, the model trained using temporal
split has generalized better than its counter part;

3) Sensitivity analysis on the effect of window’s size on
overfitting: It is likely that larger windows (e.g., 30, 60,
90 minutes) would be able to overcome cross-talk. An
extreme case would be to shuffle entire trip segments
(port-to-port) when enough data is available.

Perspective work to improve on the understanding and
prediction of propulsion power for cruise ships could include a
combination of supervised and unsupervised algorithms, and
the inclusion of physical knowledge to the problem. Within
the context of supervised learning, data could be segmented
by trips and the trips could be shuffled and split into train,
validation, and test sets. This would likely enable the learning
of a more generalized model and avoid the cross-talk problem.
Furthermore, temporal aspect can be considered a) using time-
series based approaches (e.g., ARIMA models, LSTM); and
b) by including time passed since hull/propeller cleaning as a
feature to encapsulate the biofouling effect.

Unsupervised methods could be used to classify data based
on power consumption (similar to [20]], [21]) or power con-
sumption deviation from an expected (theoretical) value. The
latter could provide insights on factors affecting deviation
from — for example — a physical model, and could be used
to build a hybrid predictive model. Moreover, if entire trips
are segmented, clustering could be performed at the trip-level
considering consumed energy instead of power.
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