
Contextual Networks and Unsupervised Ranking of
Sentences

Hao Zhang
Dept. of Computer Science
University of Massachusetts

Lowell, USA
hao zhang@student.uml.edu

You Zhou
Dept. of Computer Science
University of Massachusetts

Lowell, USA
you zhou@student.uml.edu

Jie Wang
Dept. of Computer Science
University of Massachusetts

Lowell, USA
wang@cs.uml.edu

Abstract—We construct a contextual network to represent a
document with syntactic and semantic relations between word-
sentence pairs, based on which we devise an unsupervised
algorithm called CNATAR to score sentences, and rank them
through a bi-objective 0-1 knapsack maximization problem over
topic analysis and sentence scores. We show that CNATAR
outperforms the combined ranking of the three human judges
provided on the SummBank dataset under both ROUGE and
BLEU metrics, which in term significantly outperforms each
individual judge’s ranking. Moreover, CNATAR produces so
far the highest ROUGE scores over DUC-02, and outperforms
previous supervised algorithms on the CNN/DailyMail and NYT
datasets. We also compare the performance of CNATAR and
the latest supervised neural-network summarization models and
compute oracle results.

Index Terms—contextual network, topic analysis, T5 sentence
similarity, bi-objective 0-1 knapsack

I. INTRODUCTION

Ranking sentences (or segments of text) for a given article
may be used, for example, as an oracle to build a hierarchical-
reading tool to allow readers to read the article one layer of
sentences at a time in a descending order of significance, as
a selection criterion to construct a better search engine, or as
a base for constructing a summary.

We present an unsupervised algorithm called CNATAR
(Contextual Network And Topic Analysis Rank) to rank
sentences for a given article, which works as follows:

Step 1: Construct a contextual network (CN) to represent se-
mantic and syntactic relations between sentences in the article
by leveraging dependency trees and contextual embeddings of
words to form weighted edges between word-sentence pairs.

Step 2: Devise an unsupervised algorithm called CNR
(Contextual Network Rank) to score nodes of the underlying
CN using a biased PageRank algorithm w.r.t. the underlying
article structure, and then score a sentence by summing up
node scores for nodes containing the said sentence with a
BM25 normalizer.

Step 3: Carry out topic analysis using Affinity Propagation
[1] based on T5 sentence similarity, and rank sentences
by approximating a bi-objective 0-1 knapsack maximization
problem to select sentences with the largest scores and topic
diversity using the Within-Cluster Sum of Square metric and
dynamic programming.

We show that CNATAR outperforms the combined ranking
of all human judges over the SummBank dataset in all cate-
gories under both ROUGE and BLEU measures, and substan-
tially outperforms each judge’s individual ranking. Moreover,
CNATAR is efficient with an average running time of about
0.7 seconds for each document in SummBank on a com-
monplace CPU desktop computer. We also evaluate CNATAR
on other datasets for abstractive summaries, including DUC-
02, CNN/DailyMail (CNN/DM in short), and NYT. We show
that CNATAR outperforms all previous algorithms on DUC-
02; and outperforms all previous unsupervised algorithms and
the supervised model REFRESH [2] on CNN/DM and NYT
trained on these datasets. We then compare performance of
CNATAR and the two latest supervised BERT-based models
BERTSum [3] and MatchSum [4].

II. RELATED WORK

Early sentence-ranking algorithms typically score sentences
in connection to text summarization. Recent unsupervised
methods include CP3 [5], Semantic SentenceRank (SSR) [6],
BES (BERT Extractive Summarizer) [7] and PacSum [8].

CP3 models a document as a bipartite graph between words
and sentences and uses Hyperlink-Induced Topic Search [9]
to score sentences that maximizes sentence importance, non-
redundancy, and coherence.

SSR introduces semantic relations overlooked by early
unsupervised algorithms to construct word-level and sentence-
level semantic graphs. It uses article-structure-biased (ASB)
PageRank to score words and sentences separately, and then
combines them to generate the final score for each sentence.
SSR ranks sentences based on their final scores and topic
diversity through semantic subtopic clustering. In so doing,
SSR offers higher ROUGE scores on the DUC-02 dataset
than CP3 and the previous unsupervised algorithms, and
significantly outperforms each judge’s individual ranking on
the SummBank dataset, but still falls short of the combined
ranking of the three judges.

BES clusters sentence embeddings generated by BERT with
K-means, and ranks a sentence by the Euclidean distance
between the sentence and the centroid of the underlying
cluster. PacSum builds a complete graph based on dot products

ar
X

iv
:2

20
3.

04
45

9v
1

 [
cs

.C
L

]
 9

 M
ar

 2
02

2

of sentence embeddings, attempting to capture influence of any
two sentences to their respective importance by their relative
positions in the document.

Recent supervised methods construct neural-network mod-
els to perform sequence scoring/labeling. REFRESH [2] a sen-
tence with a CNN encoder and scores sentences using LSTM
that globally optimizes the ROUGE metric with reinforcement
learning. BERTSum [3], a fine-tuned BERT embeddings for
sentences from the input document, scores sentences with a
summarization-specific layer trained on a labeled dataset such
as CNN/DM. MatchSum [4], another variant of BERT, pro-
duces an embedding for the input document and an embedding
of the best summary candidate that is most similar to the
document embedding. A summary candidate is formed with
a desired number of sentences selected from a number of
sentences with high scores produced by other models such
as BERTSum. These supervised models are trained on the
CNN/DM and NYT datasets, all imposing a small upper bound
on the size of an input sequence due to the difficulty on
handing a long sequence. BERTSum, for example, imposes
an input sequence of upto 512 tokens (about 30 sentences on
average) and drops the remaining text after the first 512 tokens.
Needing a large labeled dataset to train a supervised neural-
network model also imposes a major roadblock for languages
without such labeled datasets.

III. CONTEXTUAL NETWORKS

Let D denote a document of m sentences and let
〈S1, S2, . . . , Sm〉 be the original sequences of sentences in D.
Compute a dependency tree for each sentence and then replace
each pronoun in a sentence with its original mention using a
coreference resolution tool. A dependency tree for a sentence
[10] is an undirected tree rooted at the main verb, connecting
other words according to grammatical relations (see Fig. 1
for an example). Compute a contextual embedding e(w, S)

Fig. 1: A dependency tree for “He bought her a beautiful dress
last year.”

for with w ∈ S. Next, mark non-content words (stop words)
using a stopword filter. Stop words include determiners, prepo-
sitions, postpositions, coordinating conjunctions, copulas, and
auxiliary verbs. For each sentence S, let w and w′ be two
content words in S. If there are stopwords σ1 · · · , σr such
that w, σ1, . . . , σr, w′ forms a path on the dependency tree

TS , then add a new connection of w and w′ in TS . Finally,
remove stop words and replace every content word with its
lemma using a lemmatizer.

In what follows, unless otherwise stated, by “word” it means
its lemma. For each word w in S, let Nw be the set of direct
neighbors of w on TS . Two words x and y are said to be
syntactically related if either they are neighbors (i.e., x ∈ Ny)
or they share a common third neighbor w (i.e., x ∈ Nw and
y ∈ Nw). This relation captures the structure of subject-verb-
object in the same sentence such that any two of these words
are syntactically related.

Let 〈w1, w2, . . . , wn〉 be the original sequence of words in
D. By comparing wi with wj we mean to compare the words
at locations i and j. Denote by (wi, Sk) the i-th word in the k-
th sentence. When i is given, it is straightforward to determine
k, which can be expressed with a function h(i). Namely, wi ∈
Sh(i) for all i. If i 6= j, then (wi, Sh(i)) and (wj , Sh(j)) are
different entities even if wi = wj and h(i) = h(j).

Construct a weighted, undirected multi-edge graph GD =
(VD, ED) with VD = {vi | vi = (wi, Sh(i)), 1 ≤ i ≤ n}.
Let vi, vj ∈ VD with i 6= j. ED is constructed below: (1)
Semantic edges inside or across sentences. Connect vi and
vj if the cosine similarity of e(vi) and e(vj) is at least
δ (a hyperparameter; it is reasonable to set δ = 0.7). (2)
Syntactic edges inside the same sentence, namely, h(i) = h(j).
Connect vi and vj if wi and wj are syntactically related on the
dependency tree TSh(i)

. (3) Syntactic edges across sentences,
namely, h(i) 6= h(j). Connect vi and vj if there is a third
node vq = (wq, Sh(q)) with h(q) = h(i) and q 6= i such that
wq = wj , vq and vj are semantically connected as in (1),
and vq and vi are syntactically connected as in (2); or the
mirror condition (i.e., swap i with j in the above condition)
is true. Fig. 2 illustrates this construction. In other words, we

Fig. 2: Two syntactic edges between Sk and Sl.

transform a syntactic relation between wq and wi inside Sh(i)

to a syntactic relation between vi and vj if wq w.r.t. Sh(i)

is semantically close to wj w.r.t. Sh(j). Note that requiring

wq = wj is critical, for it will result in undesirable syntactic
relations if wq 6= wj (see Remark 1 below).

To construct a contextual network for D, compute edge
weights and merge multiple edges. If vi and vj are connected
by a syntactic edge, let its initial weight be 1, and normalize it
by the total number of syntactic edges. If they are connected by
a semantic edge, let its initial weight be the cosine similarity
of e(vi) and e(vj), and normalize it by the summation of all
the initial weights of the semantic edges. If vi and vj are
connected by both a syntactic edge and a semantic edge, then
merge the two edges to one edge and let its new weight be
the summation of the corresponding syntactic weight and the
semantic weight.

Remark 1. To see why we must require wq = wj

when constructing syntactic edges across sentences consider,
for example, the following two sentences: S1: A dove with
an olive branch in its mouth is a common symbol of world
peace. S2: Doves, comparing with pigeons, are smaller and
slenderer, while pigeons are larger. Fig. 3 depicts the correct
syntactic relations by our construction. If, however, we allowed
wq 6= wj , then because the cosine similarity of e(“dove”, S1)
and e(“pigeion”, S2) is greater than the threshold value of
δ = 0.7, these two nodes would be connected by a semantic
edge, implying that “dove” in S1 and “large” in S2 would be
syntactically connected, which is undesirable.

Fig. 3: Syntactic relations via dependency trees on S1 (red)
and S2 (green) mentioned in Remark 1.

Remark 2. Co-occurrences of words are previously used to
capture syntactic relations between words, where two words
are related if they co-occur in a small window of successive
words. However, this method may falsely relate unrelated
words and miss related words. For example, if two adjacent
words in the same sentence fall in different sub-trees of its
dependency tree, then they are unrelated from the syntactic
point of view, but they could be made related because they
co-occur. Co-occurrence also fails to capture related words
that do not co-occur within a small window. Fig. 4 depicts the
syntactic relations of words in the above sentences S1 and S2

with a window size of 3, which includes undesirable syntactic
edges between “pigeon” and “small”, “pigeon” and “slender”,
and “mouth” and “symbol”; yet misses desirable syntactic
edges between “dove” and “small”, “dove” and “slender”,
“dove” and “peace”, among other things. Our construction of

syntactically related words through dependency trees resolve
these issues.

Fig. 4: Syntactic relations through co-occurrences with a
window size of 3 between words in S1 and S2 in Fig. 3.

IV. SENTENCE RANKING

Article structures also play a role in ranking sentences [6],
which may be classified into four types based on locations
where words tend to be more important: (1) Rectangle. Words
are of the same importance in any part of the article. Narrative
articles are typically of this type. (2) Inverted pyramid. Words
toward the beginning of the article tend to be more important.
News articles are typically of this type. (3) Pyramid. Words
toward the end of the article tend to be more important.
Argumentative articles are typically of this type. (4) Hourglass.
Words toward the beginning and the end of the article tend to
be more important. Research papers are typically of this type.

Let LW(i) > 0 denote the location weight of the i-th
word (to be constructed later) with

∑n
i=1 LW(i) = 1. CNR

computes the score of node vi over the contextual network,
denoted by score(vi), using the following article-structure-
biased (ASB) PageRank:

score(vi) = 0.85M(vi) + 0.15LW(i), where

M(vi) =
∑

vj∈Adj(vi)

wt(vi, vj) · score(vj)∑
vk∈Adj(vj)

wt(vj , vk)
,

and wt(u, v) is the edge weight of (u, v). It then scores a
sentence Sk by summing up the scores of all the nodes vi with
h(i) = k and normalizing the sum by a BM25 normalizer:

score(Sk) =

∑
i:h(i)=k score(vi)

1− β + β
(

|Sk|
avsl

) ,

where |Sk| is the number of words contained in Sk, avsl =∑m
j=1 |Sj |/m is the average sentence length of the document,

and β ∈ [0, 1] is a hyperparameter for the purpose of penal-
izing sentences that are longer than average and rewarding
sentences that are shorter than average. Since the ratio of
a sentence length over the average sentence length for a
given document is often larger than 2 or smaller than 1/2,
an appropriate value of β should be near the first quadrant
and we choose β = 0.2.

Next, we define LW(i) so that it does not abruptly change
weight from location i to location i+1. For the rectangle struc-
ture we simply use a uniform distribution with LW(i) = 1/n.
For the inverted pyramid structure, we use a slow decreasing
quadratic curve to assign location weight for the i-th word by

LW(i) =
6(γ − 1)(i− n)2

(n− 1)n(2nγ − n− γ)
+
a(n− 1)2

γ − 1
,

where γ = LW(1)/LW(n) is a hyperparameter (e.g., let
γ = 5). The pyramid structure is a mirror image of
the inverted pyramid, where the location weight of the i-
th word equals the weight for the (n − i + 1)-th word
in the inverted pyramid structure. For the hourglass struc-
ture, we again use a quadratic curve defined by LW(i) =(
(i− n/2)2 + 1

)
/
∑n

i=1

(
(i− n/2)2 + 1

)
, with the mini-

mum value in the middle of 1 and n.
Sentence ranking should reflect the topics covered by the

article. A topic clustering algorithm partitions sentences into
topic clusters based on a sentence similarity measure. Let
F (D′) denote the distribution of topic covered by a subset
D′ ⊆ D, and L the maximum |D′| allowed. The sentence
ranking problem can be modeled as the following bi-objective
0-1 knapsack maximization problem:

Maximize
m∑

k=1

score(Sk) · xk and F ({Sk | xk = 1}),

subject to
m∑

k=1

xk = L and xk ∈ {0, 1},

where xk = 1 if Sk is selected, and 0 otherwise. A ranking of
sentences can be achieved by starting L from 1, incremented
by 1 each time, until L = |D| − 1.

CNATAR approximates the bi-objective 0-1 knapsack prob-
lem as follows: Suppose that D is partitioned into K topic
clusters of sentences D1, . . . , DK . Define a topic diver-
sity function F by dividing L into K numbers Lj =

b(Wj/
∑K

`=1W`)Lc, where Wj is the Within-Cluster Sum of
Square (WCSS) [11] for cluster Dj , which is the squared aver-
age distance of all the points within Dj to the cluster centroid.
Thus,

∑K
j=1 Lj ≤ L. Divide the bi-objective 0-1 knapsack into

K 0-1 knapsack problems over each Dj with length bound Lj

for 1 ≤ j ≤ K. That is, maximize
∑

Sk∈Dj
score(Sk) · xk,

subject to
∑

Sk∈Dj
xk = Lj and xk ∈ {0, 1}, where the Lj

sentences in Dj with the highest scores form the maximum
solution. Rank sentences in all solutions according to their
scores. Let L′ =

∑K
j=1 Lj . If L′ < L, then select a remaining

sentence with the highest score, rank it after the selected
sentences, and increase L′ by 1. Repeat until L′ = L.

Remark 3. Sometimes we may need to select sentences
such that the total number of words contained in them do not
exceed a certain limit L′

j . The constraint of the 0-1 knapsack
becomes

∑
Sk∈Dj

xk·|Sk| ≤ L′
j . Using dynamic programming

we can obtain a maximum solution to this version of the j-th
0-1 Knapsack problem in O(|Dj |L′

j) time, which is feasible
in practice since |Dj | and L′

j would be small. We will need

to use this version of 0-1 knapsack later when we deal with
the DUC-02 dataset.

V. IMPLEMENTATION AND EVALUATION

We preprocess documents with spaCy [12] to split the
text into sentences, and resolve coreference within a sentence
using the NeuralCoref pipline [13]. We then generate, for
each sentence, a dependency tree with spaCy, and generate
contextual embedding using BERT-Large [14] for each word
in the sentence. Next, we identify stopwords with spaCy’s
stopword list and replace each content word with its lemma
using spaCy’s lemmatizer. To generate a contextual embedding
for each word w.r.t. to a sentence, we sum up, the corre-
sponding vector representations in the last 4 layers of BERT-
Large to form a contextual embedding of the word, to take the
advantage of more syntactic information at the lower layers
more semantic information at the higher layers [15]. Finally,
we use Affinity Propagation (AP) [1], an exemplar-based
clustering algorithm, to cluster sentences using a pretrained T5
similarity [16] to compute sentence similarities. T5 similarity
takes two sentences as input and returns a similarity score
between 1 and 5. AP dynamically determines the number
of topic clusters. The major components and dataflows of
CNATAR are shown in Fig. 5.

Fig. 5: CNATAR components and dataflows

Datasets. SummBank [17] is the most suitable dataset for
evaluating sentence-ranking algorithms. Three human judges
rank sentences for each of the 200 news articles written in
English individually in categories of top 5%, and 10% to 90%
with an increment of 10%. A combined sentence ranking of all
judges, denoted by CMB-HR, is also provided on each article.
DUC-02, CNN/DM, and NYT are other datasets for evaluating
single-document summarization algorithms, consisting of one
or more human-written abstractive summaries for each article
as the gold standard. Each summary in DUC-02 consists of
upto 100 words, while each summary consists of an average
of 3 sentences in CNN, and 4 sentences in DM and NYT.
These datasets, although not ideal for evaluating sentence

TABLE I: Comparison of CMB-HR, CNATAR, CNR, SSR, PacSum, and BES against all judges over SummBank

ranking, are used to compare with the latest summarization
algorithms in the last 5 years. We follow the standard split
of training and evaluating [18] of CNN/DM on supervised
algorithms, and use scripts supplied by [19] to obtain non-
anonymized version of data. The XSum [20] dataset provides
a one-sentence abstractive summary for each article, and so is
inappropriate for evaluating sentence-ranking algorithms.

All of these datasets are news articles and so the location
weight function for the inverted pyramid structure is applied.

Comparison on SummBank. We compare machine rank-
ings with CMB-HR against each individual ranking as ref-
erence and average the ROUGE [21] and BLUE [22] scores
over all documents. Both CMB-HR and SSR outperform each
individual judge’s ranking using the other two judges’ ranking
as reference [6]. A full-range comparison is shown in Table
I against all judges under common measures of ROUGE-
n (R-n) and BLEU-n (B-n), where n = 1, 2. The highest
score under each category is shown in boldface. It can be
seen that under all categories, CNATAR outperforms CMB-HR
and substantially outperforms SSR, PacSum, and BES. SSR
slightly outperforms CNR. The oracle results are computed by
choosing, for each article and under each percentage category,
an individual judge’s selection of sentences that has the highest
R-1 score against all three judge’s selections. Because one
judge’s selection is always selected, the corresponding BLEU
score is 100%. We carry out the same experiments on two
32G-RAM computers, one with an Intel Core i7-8700K CPU
and the other an NVIDIA RTX 2080 Ti GPU. The average
running time of CNATAR on each document is 0.73 seconds
on the CPU machine, and 0.6 seconds on the GPU machine.

Comparison on DUC-02. Table II depicts the comparison
results of the algorithms published in the last five years on
the DUC-02 dataset, where each of the algorithms extracts
sentences of the highest ranks with a total length bounded
by 100 words. Among these algorithms, CNN-W2V [23] is a
supervised algorithm. In addition, we also provide oracle re-
sults by selecting a subset of sentences for each document that
maximizes the ROUGE score w.r.t. the benchmark summaries

except the 6 articles with 78 sentences or more. For these
6 articles we use an approximation to avoid combinatorial
explosion by selecting the first sentence with the highest R-1
score, then the next to the already-selected sentences with the
highest R-1 score until the total number of words exceeds 100.
To the best of our knowledge, no oracle results on DUC-02
were published before. It can be seen that CNATAR outper-

TABLE II: Comparison results (%) on DUC-02, where the
italic numbers are extracted from the corresponding papers.

Methods R-1 R-2 R-SU4
Oracle 52.0 29.1 29.2
CNATAR 49.4 25.6 26.7
CNR 49.2 24.8 26.1
SSR 49.3 25.1 26.5
CP3 49.0 24.7 25.8
PacSum 48.7 23.3 25.3
CNN-W2V 48.6 22.0 −
BES 48.5 23.3 25.4

forms all previous algorithms, supervised and unsupervised.
The three latest supervised models trained on CNN/DM and
NYT only produce 3 to 4 sentences for a given document, and
so perform poorly on DUC-02, where each summary typically
contains more than 4 sentences.

Comparison on CNN/DM and NYT. Table III shows the
comparison results of CNATAR, REFRESH [2], BERTSum
[3], and MatchSum [4] on CNN/DM, NYT, and SummBank-
4, a subset of 156 articles in SummBank that provide the
top 4 sentences (the rest of the articles do not provide
top 4 sentences because SummBank only rank sentences on
certain percentages). All models output 4 sentences. Recall
that MatchSum suffers from a combinatorial blowup, to make
it feasible to train, we select sentence candidates using the
top 5 most important sentences on CNN/DM, top 6 sentences
on NYT, and top 9 sentences on SummBank-4. It can be
seen that CNATAR outperforms the unsupervised PacSum
and the supervised REFRESH while MatchSum achieves the
highest ROUGE scores, where R-L stands for ROUGE-L.

On SummBank-4, CNATAR outperforms all the supervised
models by a large margin, even if MatchSum has tried all
possible candidate outputs for each article in SummBank-4.
The oracle results are computed by selecting the first sentence
with the highest R-1 score, then select the next sentence to
the already selected sentences with the highest R-1 score.

TABLE III: Comparison results (%), where the numbers in
italic are taken from the corresponding papers.

Ablation study. We show that, over SummBank, each
mechanism in CNATAR is necessary for achieving its over-
all performance. In particular, contextual networks, location
weights, and topic-cluster-wise 0-1 knapsack are the most
significant components. Table IV depicts the numerical results,
where V-NSR denotes a variant of CNATAR without con-

TABLE IV: Results from ablation study.

textual networks but using co-occurrences to capture weaker
syntactic relations between words as in SSR [6], V-NLW
denotes a variant without location weight functions, and V-
NBM25 a variant that replaces the use of a BM25 normalizer
with the standard normalizer of sentence length. Moreover,
V-BERT and V-WMD denote two variants that replace the
T5 similarities with, respectively, the cosine similarity of
BERT embedding, and similarities based on Word Mover’s
Distance [24] as in SSR. Finally, V-RR and V-CS denote
two variants that replace the cluster-wise 0-1 knapsack with,
respectively, round-robin selections from clusters as in SSR
and proportional selections based on cluster size.

VI. CONCLUSIONS AND FINAL REMARKS

CNATAR ranks sentences based on context networks and
topic analysis, and achieves the state-of-the-art results. Our
construction of contextual networks, however, only takes ad-
vantage of a few recent NLP tools. More NLP tools may
be leveraged, including part-of-speech tags, role labeling,
and sentiment analysis. Using these extra language features,

it is expected a more appropriate weight can be computed
when merging two edges in constructing a contextual net-
work, instead of assigning an equal weight as in the current
construction. Topic diversity also plays an important role in
ranking sentences, and so it would be interesting to investigate
a better mathematical formulation for the diversity function
and explore other topic clustering algorithms.

REFERENCES

[1] D. Dueck, “Affinity propagation: clustering data by passing messages,”
Ph.D. dissertation, University of Toronto, 2009.

[2] S. Narayan, S. B. Cohen, and M. Lapata, “Ranking sentences for
extractive summarization with reinforcement learning,” in Proc. of
NACCL 2018, Vol. 1, pp. 1747–1759.

[3] Y. Liu, “Fine-tune BERT for extractive summarization,” arXiv preprint
arXiv:1903.10318, 2019.

[4] M. Zhong, P. Liu, Y. Chen, D. Wang, X. Qiu, and X. Huang, “Extractive
summarization as text matching,” arXiv preprint arXiv:2004.08795,
2020.

[5] D. Parveen, M. Mesgar, and M. Strube, “Generating coherent summaries
of scientific articles using coherence patterns,” in Proc. of EMNLP 2016,
pp. 772–783.

[6] H. Zhang and J. Wang, “An unsupervised semantic sentence ranking
scheme for text documents,” Integrated Computer-Aided Engineering,
no. 28, pp. 17–33, 2021.

[7] D. Miller, “Leveraging BERT for extractive text summarization on
lectures,” arXiv preprint arXiv:1906.04165, 2019.

[8] H. Zheng and M. Lapata, “Sentence centrality revisited for unsupervised
summarization,” arXiv preprint arXiv:1906.03508, 2019.

[9] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
in Proc. of SODA 1998, pp. 668–677.

[10] R. A. Hudson, Word grammar. Blackwell Oxford, 1984.
[11] J. A. Hartigan and M. A. Wong, “Ak-means clustering algorithm,”

Journal of the Royal Statistical Society: Series C (Applied Statistics),
vol. 28, no. 1, pp. 100–108, 1979.

[12] M. Honnibal and I. Montani, “spaCy 2: Natural language understanding
with bloom embeddings, convolutional neural networks and incremental
parsing.”

[13] T. Wolf, “State-of-the-art neural coreference resolution for chatbots,”
Blog post, 2017.

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[15] G. Jawahar, B. Sagot, and D. Seddah, “What does BERT learn about
the structure of language?” in Proc. of ACL 2019.

[16] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of trans-
fer learning with a unified text-to-text transformer,” arXiv preprint
arXiv:1910.10683, 2019.

[17] D. Radev et al., “Summbank 1.0 ldc2003t16. web download,” Philadel-
phia: Linguistic Data Consortium, 2003.

[18] R. Nallapati, B. Zhou, C. Gulcehre, B. Xiang et al., “Abstractive text
summarization using sequence-to-sequence rnns and beyond,” arXiv
preprint arXiv:1602.06023, 2016.

[19] A. See, P. J. Liu, and C. D. Manning, “Get to the point: Summariza-
tion with pointer-generator networks,” arXiv preprint arXiv:1704.04368,
2017.

[20] S. Narayan, S. B. Cohen, and M. Lapata, “Don’t give me the details, just
the summary! topic-aware convolutional neural networks for extreme
summarization,” arXiv preprint arXiv:1808.08745, 2018.

[21] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,”
in Text summarization branches out, 2004, pp. 74–81.

[22] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: a method for
automatic evaluation of machine translation,” in Proc. of ACL 2002, pp.
311–318.

[23] Y. Zhang, M. J. Er, and M. Pratama, “Extractive document summariza-
tion based on convolutional neural networks,” in Proc. of IECON 2016,
pp. 918–922.

[24] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger, “From word embed-
dings to document distances,” in Proc. of ICML 2015, pp. 957–966.

	I Introduction
	II Related Work
	III Contextual Networks
	IV Sentence Ranking
	V Implementation and Evaluation
	VI Conclusions and Final Remarks
	References

