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Abstract—This paper introduces stochastic sparse adversarial
attacks (SSAA), standing as simple, fast and purely noise-based
targeted and untargeted attacks of neural network classifiers
(NNC). SSAA offer new examples of sparse (or L0) attacks for
which only few methods have been proposed previously. These
attacks are devised by exploiting a small-time expansion idea
widely used for Markov processes. Experiments on small and
large datasets (CIFAR-10 and ImageNet) illustrate several advan-
tages of SSAA in comparison with the-state-of-the-art methods.
For instance, in the untargeted case, our method called Voting
Folded Gaussian Attack (VFGA) scales efficiently to ImageNet
and achieves a significantly lower L0 score than SparseFool (up
to 2

5
) while being faster. Moreover, VFGA achieves better L0

scores on ImageNet than Sparse-RS when both attacks are fully
successful on a large number of samples.

Index Terms—Adversarial Attacks, Machine Learning, Ran-
dom Noises, Neural Network Classifiers

I. INTRODUCTION

Adversarial examples in machine learning have been

essential in improving robustness of neural networks in

recent years. Most of the work in this topic has been

centered around three categories of attacks according to the

minimised distance between original and adversarial samples:

L2 (squared error) [4], [17], L∞ (max-norm) [10], [14], [15]

and much less L0 (or sparse) attacks (minimising the number

of modified components). For L0 attacks, a list of the most

influential works, also related to our paper might be given

[1], [2], [4]–[7], [9], [16], [18].

For a NNC F : Rn → R
p, the predicted label for an input

x is label(x) = argmax
k

Fk(x), where F1, · · · , Fp are the class

probabilities of F . We recall that an adversarial example to

x is an item x∗ such that label(x∗) 6= label(x) (untargeted

attack), or such that label(x∗) = c, with c 6= label(x) a

specific class (targeted attack).

Sparse alterations can be encountered in many situations

and have been motivated in the previous works. For instance,

they could correspond to some raindrops on traffic signs

that are sufficient to fool an autonomous driver [16].

Understanding these special perturbations is fundamental to

mitigate their effects and take a step forward trusting neural

networks in real-life.

This paper presents a general probabilistic approach to

generate new L0 attacks which rely on random noises. We

argue that existing deterministic attacks, which classically

perform by sequentially applying maximal perturbations on

selected components of the input, fail at reaching accurate

adversarial examples on real-world large scale datasets.
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Fig. 1: Plots of the initial and targeted class probabilities for

a one pixel version of XSMA on the left failing to converge

along more than 3,000 iterations and our VFGA10 method

converging efficiently in less than 400 iterations on the right.

Figure 1 (left) illustrates this failure on the ImageNet

dataset [19] for a one-component version of the targeted

XSMA attacks (JSMA [18], WJSMA, TJSMA [5]) which

does not succeed to affect the initial probability of the input

on the Inception-v3 network [21]. On the other hand, working

with more than one component at a time, while more accurate,

does not scale at all on datasets as ImageNet. An alternative

would be to repeatedly apply very small perturbations on

components, but this would be at the cost of efficiency. Our

claim is that random attacks, while not much studied in the

literature of L0 adversarial attacks, are able to cope with

http://arxiv.org/abs/2011.12423v4


these issues.

Stochastic sparse adversarial attacks (SSAA) are inspired

by the study of stochastic diffusions, their infinitesimal

generators and boundary behaviors. They follow main

existing L0 attacks, which rely on iteratively selecting

the most salient input feature by means of saliency maps,

but consider probabilistic distributions for component and

intensity selections. After identifying the best component to

alterate first, the process samples intensities of perturbations

for the selected component and chooses the best move among

them. This allows to obtain accurate adversarial samples

more efficiently than approaches based on deterministic

perturbations. Experimental results on large scale datasets, as

depicted on the same example as the failure case of XSMA

in Figure 1 (on the right), show that our SSAA approaches

(denoted VFGA10) succeed at efficiently producing accurate

attacks in most cases.

The rest of the paper is organised as follows. Section II

introduces our SSAA. In Sections III and IV, we experiment

these attacks on deep NNC on CIFAR-10 [13] and ImageNet

[19] and compare their performances with the-state-of-the-art

methods SparseFool [16], GreedyFool [9], Brendel & Bethge

L0 attack (B&B) [3] and Sparse-RS [6]. Experimental results

show that our untargeted VFGA scales efficiently to ImageNet

and outperforms SparseFool while being faster. Furthermore,

VFGA achieves better L0 scores on ImageNet than Sparse-RS

when both attacks are fully successful on a large number of

samples in the untargeted/targeted case. It is significantly less

complex than B&B and GreedyFool and obtains competitive

results in some cases. Finally, Section V presents a conclusion

and possible continuations of this work.

Our findings demonstrate that, unlike ongoing works

[1], [2] to introduce adversarial attacks at the level of the

state-of-the-art while using random noises, our methods are

able to reach and by-pass the state-of-the-art ones.

II. STOCHASTIC SPARSE ATTACKS

In this section, we introduce SSAA by means of Gaussian

noises on selected components of the input. To simplify the

presentation, we mainly discuss targeted attacks and then

deduce untargeted ones by applying slight modifications. The

aim herein is to iteratively identify the best component to

perturb and the best move for this component until the target

label becomes the most probable for the NNC.

Consider a Gaussian noise Xθ ∼ N (0, θ) and denote

by (e1, · · · , en) the basis of R
n. Any c-targeted probability

expectation of the perturbed input x+Xθei can be expanded

as follows:

E[Fc(x+Xθei)] = Fc(x) + θ(GiFc)(x) + ... (1)

where GiFc =
1

2

∂2Fc

∂x2
i

is the infinitesimal generator of Xθ

seen as a diffusion. When taking the folded Gaussian noise

Xθ ∼ |N (0, θ)|, this expansion becomes:

E[Fc(x+Xθei)] = Fc(x) +

√

2θ

π

∂Fc

∂xi

(x) + θ(GiFc)(x) + ...

(2)

We build our reasoning upon a heuristic which is to look

for the input feature i that maximizes E[Fc(x +Xθei)]. The

assumption behind this heuristic is that searching for the best

expectation will allow to discover the best moves according

to the distribution of the noise Xθ. This does not hold for

the Gaussian noise Xθ ∼ N (0, θ), since in that case the

approximations E[Fc(x + Xθei)] ≈ Fc(x) + θ(GiFc)(x) and

V ar[Fc(x + Xθei)] ≈ θ

(

∂Fc

∂xi

)2

(x) are of the same order

as θ, indicating that variance should be taken into account

in selecting the best components to perturb. On the other

hand, considering the folded Gaussian noise |Xθ| and using

the approximation E[Fc(x +Xθei)] ≈ Fc(x) +

√

2θ

π

∂Fc

∂xi

(x)

induces a negligible variance (only terms of θp with p ≥ 1)

in front of the expectation, at least when |θ| < 1. This means

that working with the folded Gaussian distribution allows us

to only focus on the expected probability of the perturbed

input. Note also that the approximation of this expected

probability only contains first derivatives w.r.t. to the input

component which is a practical advantage of the folded over

the pure Gaussian noise.

While it would have been possible to consider some

combination of E[Fc(x + Xθei)] and V ar[Fc(x + Xθei)]
for the Gaussian noise, taking a folded noise presents an

important additional advantage for bounded inputs. Please

note that, without loss of generality, we consider inputs

bounded in [0, 1] in this paper, as well as the adversarial

samples which share the same support domain. In the

following, we propose to automatically tune the variance

parameter θ of Xθ according to the distance of the input

xi to these bounds. Please note that, for a given component

i, xi 6= 0.5, the possible amplitude of move is not the

same in both directions. Considering a Gaussian noise, since

symmetric, would be problematic for this θ tuning. Rather,

considering two folded Gaussian noises for each component,

one positive (only for component increase) and one negative

(only for component decrease) allows better fitted selections.

In the following, we first present a one-sided, only

increasing perturbations, stochastic attack based on folded

Gaussian noises. Then, we deduce a both-sides attack, that

considers the best choice between increase and decrease of

each component, called Voting Folded Gaussian Attack.

A. Folded Gaussian Attack (FGA)

For our one-side targeted attack FGA, the most relevant

input feature to perturb is thus selected by the rule



i = argmax
j

√

θj
∂Fc

∂xj

, considering a folded Gaussian noise

|N (0, θi)|.

Choosing the variance θi. Since FGA only considers

positive perturbations of the input, fixing the variance θi
must consider the upper-bound of the input domain. A quite

natural choice could be either θi = 1−xi (variance = 1−xi)

or
√
θi = 1 − xi (standard deviation = 1 − xi). We choose√

θi = 1− xi to ensure that a generated perturbation xi +Ni

to xi has probability 2/3 to be inside the interval [xi, 1]
(before clipping to [0, 1]) which is a more motivated choice.

Our experimental results (not reported in this paper) show

that this choice gives slightly more effective attacks than the

second one.

After selecting the input feature i, our proposal is to

simulate NS samples from |N (0, θi)| to find an accurate

move towards a close adversarial sample. The complete

process is depicted in Algorithm 1 introducing the increasing

FGA (and the decreasing FGA by analogy).

Algorithm 1 (Increasing) Folded Gaussian Attack (FGA)

Input: x: input of label l, c 6= l: targeted class.

NS : number of samples to generate.

maxIter: maximum number of iterations.

Output: x̃: adversarial sample to x.

1 Initilialise x̃ ← x, Γ ← {1, · · · , dim(x)} \ {i : x̃i = 1},
iter← 0.

2 while Γ 6= ∅, label(x̃) 6= c and iter < maxIter do

3 i0 = argmax
i∈Γ

(1− x̃i)
∂Fc

∂xi

(x̃).

4 Generate samples
(

Sh
)

1≤h≤NS
from |N (0, θi0)|

where
√

θi0 := 1− x̃i0 .

5 for h ∈ [[1, NS ]] do

6 Define the input ỹ h by

{

ỹ h
j ← Clip[0,1]

(

x̃j + Sh
)

if j = i0

ỹ h
j = x̃j otherwise.

7 Batch compute Fc

(

ỹ h ; h ∈ [[1, NS ]]
)

.

8 x̃← argmax
ỹ h

Fc

(

ỹ h
)

, Γ← Γ \ {i0}
iter← iter+ 1.

9 return x̃

Choosing NS . The number NS is the main hyperparameter

of Algorithm 1. Given its definition, one can expect that

increasing it will increase, up to saturation, the effectiveness

of the attacks. This may, however, slow down their speeds.

Thanks to batch computing, with sufficient memory, Step 8

can be performed at the cost of NS = 1 and (reasonably)

augmenting NS can make Algorithm 1 converge faster as

less iterations would be needed. In most of our experiments,

we fix this number to NS = 10 but also address some

comparisons with NS = 20, 100. We refer to the analysis of

the experimental results for more discussions related to this

point. Finally, we also notice that batch computing used here

does not often require a parallel computing effort by the user

as this option is available in standard libraries.

While the previous process only applies perturbations that

increase the input, lowering the input features intensities

can be as effective as increasing them. Following the same

analogy, we introduce the decreasing FGA attack by taking√
θi = xi rather than

√
θi = 1 − xi and replacing |N (0, θi)|

with −|N (0, θi)| in the previous algorithm. Note that FGA

and XSMA are one sided attacks but, while XSMA apply

predefined maximal perturbations, FGA explores in real time

best perturbations to apply.

B. Voting Folded Gaussian Attack (VFGA)

In this section, we propose a two-sided attack, which

both considers E[Fc(x + |Xθ+

i
| ei)] and E[Fc(x − |Xθ−

i
| ei)]

for each feature, with Xθ ∼ N (0, θ),
√

θ+i = 1 − xi and
√

θ−i = xi. This method applies increasing and decreasing

FGA at each iteration and chooses the most effective moves

in both directions. Details are given in Algorithm 2.

Algorithm 2 Voting Folded Gaussian Attack (VFGA)

Input: x: input of label l, c 6= l: targeted class.

NS : number of samples to generate.

maxIter: maximum number of iterations.

Output: x̃: adversarial sample to x.

10 Initilialise x̃ ← x, Γ ← {1, · · · , dim(x)} \ {i : x̃i = 1},
iter← 0.

11 while Γ 6= ∅, label(x̃) 6= c and iter < maxIter do

12 i+ = argmax
i∈Γ

(1− x̃i)
∂Fc

∂xi

(x̃), i− = argmin
i∈Γ

x̃i

∂Fc

∂xi

(x̃).

13 Generate samples
(

S+, h
)

1≤h≤NS
from |N (0, θ+i )| where

√

θ+i := 1− x̃i+ .

14 Generate samples
(

S−, h
)

1≤h≤NS
from − |N (0, θ−i )|

where

√

θ−i := x̃i− .

15 for h ∈ [[1, NS]] do

16 Define the input ỹ h by

{

ỹ±, h
j ← Clip[0,1]

(

x̃i± + S±, h
)

if j = i±

ỹ±, h
j = x̃j otherwise.

17 Batch compute Fc

(

ỹ±, h ; h ∈ [[1, NS ]]
)

.

18 x̃ ← argmax
ỹ±, h

Fc

(

ỹ±, h
)

, Γ ← Γ \ {i0} with i0 = i+ or

i− according to the best move; iter← iter+ 1.

19 return x̃



C. Untargeted SSAA

The main focus for these attacks is to decrease the class

probability of the input until a new class label is found. Few

modifications are required to deduce the untargeted versions

of the previous Algorithms: by assuming c is the true label

of x and replacing argmax with argmin in Steps 3 and 9 of

Algorithm 1 and making similar slight changes in Algorithm 2.

III. EXPERIMENTS ON UNTARGETED ATTACKS

In this section, we present experiments to highlight the

benefits of our untargeted attacks. First, we aim to showcase

the relevance of FGA in comparison with an alternative

approach that uses the uniform noise called UA. Second, we

aim to compare our attacks and more specifically VFGA with

relevant state-of-the-art approaches. To this end, we will need

to distinguish between two categories of methods: (1) fast

and (2) more slow/complex methods. The code is available at

https://github.com/hhajri/stochastic-sparse-adv-attacks.

In the experiments, we consider two popular computer

vision datasets illustrating small and high dimensional data:

CIFAR-10 [13] (32 × 32× 3 images divided into 10 classes)

and ImageNet [19] (ILSVRC2012 dataset containing 299 ×
299× 3 images divided into 1,000 classes). The used neural

network classifiers are described in the upcoming paragraphs.

The state-of-the-art attacks considered for comparison in

this section are:

SparseFool [16]. This method is fast and scalable. At

each iteration, it applies DeepFool [17] to estimate the

minimal adversarial perturbation thanks to a linearization of

a classifier. Then, it estimates the boundary point and the

normal vector of the decision boundary and finally updates

the input features with a linear solver.

Brendel & Bethge L0 attack (B&B) [3]. This gradient-based

adversarial attack follows the boundary between the space of

adversarial and non-adversarial images to find the minimum

distance to the clean image. It is powerful and more efficient

(but also slower and more complex) than many gradient-based

approaches such as SparseFool.

GreedyFool [9]. This attack is an improvement of SparseFool.

It is however more complex than the later as it needs to

carefully train a distortion map which is a generative

adversarial network GAN [11]. We remark (based on one

experiment on ImageNet) that it is less efficient (but also

faster and less complex) than B&B.

Sparse-RS [6]. This attack is fast and achieves high success

rate on ImageNet outperforming many white-box attacks

such as PGD0 [7]. It requires fixing the maximum number

of pixels to modify which is then fully exploited. In order to

generate adversarial examples with minimal L0 perturbations

by Sparse-RS, one needs to run this method for several

budgets before selecting a convenient one.

A notable difference with Sparse-R. It should be

mentioned that our attacks and Sparse-RS follow different

strategies. Indeed, the budget k for Sparse-RS is fixed in the

pixel space. For instance, on CIFAR-10 this can go up to

32 × 32, and once k is fixed the number of modified pixels

in the input space, for Sparse-RS, is near 3 × k. Our attacks

compute perturbations directly in the input space. All attacks

are however L0 in the usual definition and they are compared

according to the most commonly used metric which is, up to

our knowledge, the L0 distance in the input space.

All the previous attacks are experimented using the original

(PyTorch) implementations by the authors and following

the recommended hyperparameters. Our attacks are also

implemented with PyTorch.

Finally, we introduce the attack based on the uniform noise:

Uniform attack (UA). This method adds random uniform

noises instead of folded Gaussian ones. It follows the lines of

Algorithm 1 (in its untargeted form), but Step 3 is replaced

with i0 = argmin
i∈Γ

(1 − xi)
∂Fc

∂xi

(x) and sampling in Step 4 is

done from U([0, θi]), θi = 1− xi.

To compare between the different methods, we rely on the

following scores: success rate (SR), mean/median number of

changed pixels (Mean and Median), complexity based on

the number of model propagation [8] (MP). We prefer MP

over the running time per image since the later depends very

much on the software used when executing the codes.

More approaches. In this paper, since we propose fast

methods, we only focus on comparisons with similar fast

approaches like SparseFool and Sparse-RS. The B&B,

although not fast, has been selected as a highly efficient

benchmark attack. We omit comparison with Carlini&Wagner

L0 [4] and we believe the results would be similar to our

comparison with B&B. Also, we omit comparison with

CornerSearch [7] because it is less effective than Sparse-RS

based on the work [6] and also needs a large computational

cost on ImageNet (see results in [7]).

A. On CIFAR-10.

On this dataset, we use the ResNet18 [12] and VGG-19

[20] models. After training with PyTorch, these networks

reached 95.55% and 93.87% accuracies respectively. For

our attacks UA, FGA and VFGA, the hyperparameter NS is

fixed to NS = 10 in the experiments (the obtained attacks

are denoted UA10, FGA10 and VFGA10). The effect of

augmenting NS is analysed later on in this section. We notice

that, otherwise stated, maxIter is put to its maximal value

https://github.com/hhajri/stochastic-sparse-adv-attacks


in all the paper. The state-of-the-art approaches outlined

before, except GreedyFool, are tested and compared with

our methods on the correctly predicted samples among the

10, 000 CIFAR-10 test images. We refrained from comparing

with GreedyFool because of the need to train the distortion

map network on CIFAR-10 not provided in the code of [9]

(this network has been made available for the ImageNet

dataset and comparisons on this dataset are considered in

the next section). For Sparse-RS, several budgets of pixels

k (the number of pixels to modify) have been experimented

and the smallest budget giving 100% has been selected. On

CIFAR-10, k is optimal, i.e k′ = k − 1 does not give full

success of the attack. Our intention is to show that under the

condition of full success for all attacks (when possible) our

VFGA method is overall more advantageous.

Attacks SR Mean Median MP

ResNet18

B&B 100 8.33 8.0 1927

SparseFool 99.31 36.48 9.0 520

Sparse-RS (k = 10) 100 29.79 30 GS + 49

UA10 100 30.94 20.0 363

FGA10 100 29.70 20.0 134

VFGA10 100 17.03 11.0 99

VGG-19

B&B 100 5.30 6.0 1483

SparseFool 97.98 67.71 8.0 686

Sparse-RS (k = 7) 100 20.82 21 GS + 55

UA10 100 22.16 11.0 281

FGA10 100 19.67 11.0 103

VFGA10 100 11.40 7.0 80

TABLE I: Results on the correctly predicted among the 10, 000
test images of CIFAR-10. SR is the success rate of the

attack, Mean, Median are the average and median number of

modified pixels on successful samples and MP is the number

of model propagations. GS is a greed-search to find optimal

values of k giving full success that took several hours. The

highlighted results of our VFGA in comparison with the fast

methods SparseFool and Sparse-RS are in bold.

Comments. The previous results show that the folded

Gaussian noise is more advantageous in attacking than the

uniform noise and that combining two folded distributions is

useful not only for the SR, Mean and Median but also for

the model propagation score. Concerning the state-of-the-art

methods: VFGA has less advantageous Mean and Median
than B&B (near 2 times greater for Mean and the gap is

reduced for Median). Nevertheless, it is up to 1
20 less complex

based on the MP score. Second, all of our methods and

more particularly VFGA significantly outperform SparseFool.

Regarding the comparison with Sparse-RS, we remark that

VFGA has notable Mean and Median advantages (up to 3

times fewer) and is also less complex given the number of

experiments carried for Sparse-RS to achieve full success

(with minimal Mean and Median). Notice also the difficulty

to find a good k with full success for Sparse-RS as the

optimal value depends on each sample and high values

impact the overall performance of this attack. An advantage

of our attack is that this parameter is set automatically and is

optimal for each sample.

A comparison between Sparse-RS and VFGA for

different distortions. As stressed before, we only focus

on performances under the condition of full success which

is usually reported to summarise the contribution of new

methods. If we relax this condition, we remark that for small

budgets k when both VFGA and Sparse-RS are not fully

successful, Sparse-RS outperforms VFGA in SR but VFGA

obtains better Mean and Median which are always near k for

Sparse-RS. Starting from a k which approaches full success,

VFGA becomes more advantageous in SR, Mean and Median.
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Fig. 2: Results over the number of perturbed pixels for

untargeted attacks (VFGA10 and Sparse-RS) on CIFAR-10

for the ResNet-18 model. On the left, the success rate SR and

on the right, the Mean and Median L0 scores.

We draw in Figure 2 the SR (on the left), and Mean
and Median L0 scores (on the right) versus the number

of perturbed pixels for VFGA10 and Sparse-RS. When

only few pixels are perturbed, Sparse-RS performs better

than VFGA10 in SR. Once the number of perturbed pixels

exceeds 105, the two SR become very competitive (near and

then equal to 100%). The Mean and Median L0 scores for

VFGA10 are, however, always better than those by Sparse-

RS regardless the number of pixels which have been modified.

For Sparse-RS, Median is linear as a function of the

number of perturbed pixels. For the budget of 285 modified

pixels, Mean is 282.78. For VFGA10, this budget is the

worst L0 score among the 10,000 test images of CIFAR-10

and with this value, Mean is 17.03 which is about 16 times

fewer than Sparse-RS. In short, even if for a small number of

disturbed pixels, VFGA10 is not able to reach 100% in SR,

its Mean and Median are still better than those of Sparse-RS.

Augmenting NS . In what follows, we investigate the impact

of augmenting NS on the performances of our attacks by

testing UA20, FGA20 and VFGA20, which correspond to

NS = 20, on the same data as Table I.



Attacks SR Mean Median MP.

ResNet18

UA20 100 30.93 20.0 684

FGA20 100 30.23 19.0 193

VFGA20 100 16.76 11.0 131

VGG-19

UA20 100 20.60 10.0 457

FGA20 100 19.71 10.0 134

VFGA20 100 11.22 7.0 113

TABLE II: Comparison between our attacks for NS = 20.

We remark that SR, Mean and Median are slightly

improved but based on MP score, the attacks become more

complex. This illustrates the fact that increasing so much NS

may not significantly improve the attacks but on the other

hand it may slow down them. Also, we observe that despite

augmenting NS from 10 to 20, the uniform attack cannot

beat FGA10. This is quite remarkable since for the uniform

distribution the NS generated samples are different and fall

inside the domain of the input features while for the folded

Gaussian distribution, due to clipping, several samples are

likely to be clipped at the minimal and maximal bounds.

Augmenting NS also increases more quickly MP for the

uniform noise.

B. On ImageNet.

In this section, we test the ability of the previous attacks

and additionally GreedyFool to generate adversarial examples

at large scale by considering models on ImageNet. Two

pre-trained networks provided by PyTorch are considered for

testing: Inception-v3 [21] and VGG-16 [20] whose accuracies

are respectively 77.45% and 71.59%. Inputs are of size

299×299×3 and 224×224×3 for the first and second model

respectively.

Again, we consider B&B as a benchmark of a highly

successful attack. GreedyFool requires training a GAN

network on ImageNet but once carefully done it is highly

successful. We recover the GAN model from the code of [9]

and complement the code to compute MP for this attack. For

Sparse-RS, we again fix our objective to compare with this

attack when 100% SR is achieved. This requires launching

several experiments for different values of k on the whole

considered set of images in order to obtain a near-optimal

value. By this, we mean a value k giving 100% SR ; there

exists k′ < k and the performances of VFGA in Mean and

Median are better than those obtained by Sparse-RS with

budget k′. This implies in particular that VFGA gives better

results than Sparse-RS when tested with the optimal value of

k. To get an idea of the difference between our results and

those by Sparse-RS, we always report the results for k′ and

k by Sparse-RS (in this section and next one).

The obtained results for the different attacks are reported in

Table III and commented after.

Attacks SR Mean Median MP.

Inception-v3

B&B 100 43.96 37.0 5602

GreedyFool 100 86.09 79.0 GAN + 617

SparseFool 100 348.16 167.5 2531

Sparse-RS (k′ = 90) 99.62 267.13 270.0 GS + 341

Sparse-RS (k = 100) 100 297.12 300.0 GS + 358

UA10 100 335.19 101.0 3042

FGA10 100 323.27 102.0 744

VFGA10 100 198.25 64.0 1133

VGG-16

B&B 100 39.24 25.0 3416

GreedyFool 100 66.18 31.0 GAN + 589

SparseFool 100 216.21 164.0 1460

Sparse-RS (k′ = 60) 99.78 179.01 180.0 GS + 240

Sparse-RS (k = 70) 100 204.59 210.0 GS + 246

UA10 100 150.04 85.0 2122

FGA10 100 140.15 82.0 986

VFGA10 100 77.85 43.0 709

TABLE III: Results on the firstly 6, 000 correctly predicted

validation images of ImageNet. GS is a greed-search to

near-optimal values of k that took several days. GAN is

a generative network trained on ImageNet. Our results in

comparison with the fast methods SparseFool and Sparse-RS

when fully successful are highlighted in bold.

Comments. First, B&B achieves the best SR, Mean and

Median scores. GreedyFool comes after but with the cost

of training a GAN model on ImageNet. The complexity

comparison between these two attacks is difficult to address

and we only claim that both methods are significantly more

complex than our approach (GreedyFool is complex to

reproduce on new datasets). Despite this fact, we observe that

on VGG-16 our VFGA has a gap of Mean and Median of less

than 12 pixels which is relatively small. Among the methods

shown in the previous table, our attacks and SparseFool are

the fastest ones under the full success condition and when

minimising at the same time Mean and Median. Our attacks,

obtain, however, overall better performances than SparseFool

according to all metrics. Specifically, VFGA significantly

outperforms SparseFool with respect to all scores. Moreover,

despite the fact that we select near-optimal values of k for

Sparse-RS, VFGA is still more advantageous regarding Mean
and Median and also faster if the complexity of finding

k is added. Finally, we notice that after finding a good k
giving full success for Sparse-RS, this attack can not generate

relevant adversarial examples with minimal L0 distance

1, while due to the flexibility of our attack, several such

examples can be generated. This is a further advantage of our

attack.

IV. EXPERIMENTS ON TARGETED ATTACKS

Targeted attacks are more challenging than untargeted ones.

The objective of this section is to compare (targeted) VFGA,

our selected method, with (targeted) Sparse-RS as a fast

attack outperforming several state-of-the-art methods [6]. We

recall that SparseFool is not efficient as a targeted attack. We

do not report results by FGA and UA but claim that FGA is



still more relevant than UA and only omit to address a similar

comparison as before. We do not report results by B&B and

GreedyFool as targeted attacks because of the need of the

distortion map on CIFAR-10 for GreedyFool, the non ability

to reproduce B&B in the targeted mode and moreover since,

we consider that these approaches are complex to reproduce

on new datasets. Thus, we only focus on the comparison

with Sparse-RS and defend our approach as an efficient fast

method. Our main conclusion in this paragraph is that, for

ImageNet which is more challenging, VFGA is still more

relevant than Sparse-RS regarding the same previous metrics

when both attacks are fully successful and despite the fact

that a near-optimal value of k is selected. On CIFAR-10, we

conclude that Sparse-RS is more advantageous in Mean and

Median.

We consider the same datasets and network models as

before. To simplify the experiment, we do not consider all

possible target labels but, for each test dataset, we generate

a list of random labels which were fixed once for all. Each

input image is then attacked to have one desired label.

For Sparse-RS, we again select a near-optimal k in both

experiments. This task took several hours on CIFAR-10 and

several days on ImageNet. We report in Tables IV and V the

results obtained on CIFAR-10 and ImageNet. In Table IV

VFGA100 is VFGA with NS = 100.

Attacks SR Mean Median MP

ResNet18

Sparse-RS (k = 30) 100 89.43 90.0 GS + 1678

VFGA10 100 641.49 174.0 13427

VFGA100 100 154.43 105.0 20619

VGG-19

Sparse-RS (k = 25) 100 73.17 75.0 GS + 1123

VFGA10 100 551.27 150.0 12213

VFGA100 100 174.93 97.0 21417

TABLE IV: Results on the correctly-predicted test images of

CIFAR-10. GS is a greed-search to find near-optimal values of

k that took several hours. The results for k′ are not reported

since Sparse-RS is here more advantageous in full success.

First, we notice that Sparse-RS obtains better Mean and

Median than VFGA10. Increasing NS from 10 to 100
improves considerably VFGA but our results are still less

better than Sparse-RS. Given the time needed to find the

near-optimal values k, we claim that our attacks are still

overall much faster than Sparse-RS to obtain full success

with optimal Mean and Median.

Attacks SR Mean Median MP

Inception-v3

Sparse-RS (k′ = 950) 99.87 2671.19 2850.0 GS + 6591

Sparse-RS (k = 1000) 100 2898.72 3000.0 GS + 6899

VFGA10 100 2148.53 1843.45 21616

VGG-16

Sparse-RS (k′ = 450) 99.91 1278.45 1350.0 GS + 6963

Sparse-RS (k = 500) 100 1398.56 1500.0 GS + 7003

VFGA10 100 1436.02 1057.38 14223

TABLE V: Results obtained on the 5,000 firstly correctly-

predicted validation images of ImageNet. GS is a greed-search

to find near-optimal values of k that took several days.

Our interpretation of Table V is overall similar to Table

III. For Inception-v3, which is more challenging, VFGA10

outperforms Sparse-RS regarding all scores. On VGG-16

Sparse-RS only takes a slight advantage of Mean. As for

untargeted attacks, a notable advantage of our methods is the

flexibility of our budget of modifiable pixels which allows us

to generate adversarial examples with minimum L0 distance

while being 100% successful on all samples.

V. CONCLUSION

This paper introduced noise-based attacks to generate

sparse adversarial samples to inputs of deep neural network

classifiers. A first advantage of our methods is that they

work as both untargeted and targeted attacks. Moreover, they

are very simple to put in place and require fixing only one

parameter whose interpretation is intuitive (the bigger the

best up to saturation in performance). Our attacks are faster

to apply on new models and datasets than existing approaches

(SparseFool, GreedyFool) while assuring full success. They

are much less complex than the-state-of-the-art method B&B

relying on the model propagation score (near 1
20 on CIFAR-10

and 1
5 on ImageNet) and achieve competitive results in some

cases. Finally, in comparison with Sparse-RS, our attacks are

flexible allowing to find an optimal budget of pixels for each

input image and achieve full success with minimal L0 scores.

Our methodology relies on a simple expansion idea that

provides a close link between adversarial examples and

Markov processes. We believe it can be pursued in several

ways. For instance, continuing with L0 attacks, it could be

interesting to explore other types of noises such as Poisson

or compound Poisson noises and study their relevance in the

setting of adversarial examples. Combining different noises

attacks in a voting way, although simple, can lead to powerful

L0 attacks. We leave these questions to possible future works.
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